A Project Report
on
YOUTUBE TRANSCRIPT SUMMARIZER

Submitted in partial fulfillment of the

requirement for the award of the degree of

B.Tech SCSE

» GALGOTIAS
UNIVERSITY

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Under The Supervision of
Ms Suman Devi
Assistant Professor

Submitted By
19SCSE1010612- TRIPTI

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA '
DECEMBER, 2021

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

sertation,

We hereb i W b
y certify that the work which is being presented in the thesis/project/dis
f the

entitled ‘
itted “YOUTUBE TRANSCRIPT SUMMARIZER” in partial fulfillment ©

requi
equirements for the award of the Btech submitted in the School of Computing Science and
is an original work carried out during the

Engineering of Galgotias University, Greater Noida,
period of october, 2021 to December, 2021, under the supervision of Ms Suman Devi, Assistant
ment of Computer Science and Engineering/ Computer Aplication. an¢
Galgotias

professor, Depart
and Engineering ,

Information and Science, of School of Computing Science

University, Greater Noida
other

The matter presented in the project has not been submitted by me for the award of any

degree of this or any other places.
Tripti,19SCSE1010612

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.
Ms Suman Devi
Assistant Professor

CERTIFICATE

e it

The Final Thesis/Project/ Dissertation Viva-Voce examination of Tripti:19SCSE1010612 has

been held on and his/her work is recommended for the award of B.Tech
Signature of Examiner(s) Signature of Supervisor(s)
Signature of Project Coordinator Signature of Dean

Date: 22" December 2021
Place: Greater Noida

ABSTRACT

People are watching YouTube videos daily which can be educational, documentary
or of any genre with longer length to which maybe most of the people don’t have
time to watch completely. Enormous number of video recordings are being created
and shared on the Internet throughout the day. It has become really difficult to
ay have a longer duration than expected

spend time watching such videos which m
futile if we couldn't find relevant

and sometimes our efforts may become

information out of it

Think about how much time can be saved if someone narrated the whole summary

of the video to us in shorter length of paragraphs . Summarizing transcripts of such

automatically allows us to quickly lookout for the important patterns in the

videos
e whole content of the

video and helps us to save time and effort to go through th

video.

In this project, we will be targeting to make one such creating Chrome Extension

which will make a request to backend API where it will perform NLP and respond
with a summarized version of a YouTube transcript. . Summarizing transcripts of
such videos automatically allows us to quickly lookout for the important patterns

in the video and helps us to save time and effort to go through the whole content of

the video.

Table of Contents

Title Page No.

Candidates Declaration I
Abstract 111
Contents IV
List of Table \%
List of Figures VI
Acronyms VII
LITERATURE REVIEWS 8
PROBLEM FORMULATION 11
REQUIRED TOOLS 12

COMPLETE WORK PLAN OUT 13

REFERENCES

List of Figures

Title

User scenario diagram

Work flow diagram

Paée No.

13
15

E—

Acronyms
NLP Natural Language Processing
API Application Programming Interface
REST Representational state transfer

1. LITERATURE REVIEWS

YouTube is an American free to use online video sharing and social media platform
launched in February 2005. It is currently one of the biggest video platforms where its
users watch more than 1 billion hours of videos every day. Closed captions are the
text derived from the video which are intended for adding more details (such as
dialogues, speech translation, non-speech elements) for the viewer. They are widely

used to understand video without understanding its audio.

We spend a noticeable amount of our weekly time watching YouTube videos, be it for
entertainment, education, or exploring our interests. In most cases, the overall intent is
to obtain some form of information from the video. We were seeking a solution to
increase the efficiency of this "information extraction” process as YouTube's speed
adjustment option is the only relevant tool. Enormous number of video recordings are
being created and shared on the Internet throughout the day. It has become really
difficult to spend time watching such videos which may have a longer duration than
expected and sometimes our efforts may become futile if we couldn't find relevant
information out of it. Summarizing transcripts of such videos automatically allows us
to quickly lookout for the important patterns in the video and helps us to save time and
effort to go through the whole content of the video. Various organizations today, be it
online shopping, private sector organizations, government, tourism, and catering
industry, or any other institute that offers customer services, are all concerned to learn
their customer’s feedback each time their services are utilized. Now, consider that these
companies are Teceiving an enormous amount of feedback and data every single day. It

becomes quite a tedious task for the management to analyze each of these data points

and come up with insights. However, we have reached a point in technological
advancements where technology can help with the tasks and we ourselves do not need
to perform them. One such field that makes this happen is Machine Learning.
Machines have become capable of understanding human language with the help of
NLP or Natural Language Processing. Today, research is being done with the help of
text analytics. One application of text analytics and NLP is Text Summarization. Text
Summarization Python helps in summarizing and shortening the text in the user
feedback. It can be done with the help of an algorithm that can help in reducing the text
bodies while keeping their original meaning intact or by giving insights into their

original text.

This project will give us an opportunity to have hands-on experience with state of the
art NLP technique for abstractive text summarization and implement an interesting
idea suitable for intermediates and a refreshing hobby project for professionals. This
project will allow us to have hands-on experience with state-of-the-art NLP techniques
for abstractive text summarization and implement an interesting idea suitable for
intermediates and a refreshing hobby project for professionals.
REST is a set of architectural constraints, not a protocol or a standard. API developers can
implement REST in a variety of ways. When a client request is made via a RESTful API, it
transfers a representation of the state of the resource to the requester or endpoint. This
information, or representation, is delivered in one of several formats via HTTP: JSON
(Javascript Object Notation), HTML, XLT, Python, PHP, or plain text. JSON is the most
generally popular file format to use because, despite its name, it’s language-agnostic, as well
as readable by both humans and machines.Something else to keep in mind: Headers and
parameters are also important in the HTTP methods of a RESTful API HTTP request, as they
contain important identifier information as to the request's metadata, authorization, uniform

resource identifier (URI), caching, cookies, and more. There are request headers and

response headers, each with their own HTTP connection informétion and status codes.
Representational state transfer (REST) is a software architectural style that was created to
guide the design and development of the architecture for the World Wide Web. REST defines
a set of constraints for how the architecture of an Internet-scale
distributed hypermedia system, such as the Web, should behave. The REST architectural
style emphasises the scalability of interactions between components, uniform interfaces,

independent deployment of components, and the creation of alayered architecture to

facilitate caching components to reduce user-perceived latency, enforce security, and

encapsulate legacy systems.

2. PROBLEM FORMULATION:

Youtube is an online video download, upload, and stream platform which
encounters enormous viewers on daily basis. People often come across long videos
of long length like an hour or so and sometimes it is not feasible for them to watch
the whole video as it is time taking and less efficient for their situation. In that
case we always want if someone could just recite a summary of the video. Here is
exactly what we are doing. Using natural language processing we can summarize

the transcipt of the video. Further producing the summary of the video.

. REQUIRED TOOLS:

Processor: minimum 2.0GHz

RAM: 4 GB

Hard disk: 100 GB

Input device: standard keyboard
Software: visual studio

0OS: windows 7 and above, linux, mac

Languages: Python, Flask, HTML,CSS.

4. COMPLETE WORK PLAN :

YouTube Video Transcript Summarization over Flask:

eive API calls from the client and then

This back-end uses Flask framework to rec
s API can work only on those

respond with the summarized text response. Thi
1 it. The same backend

YouTube videos which have well-formatted closed captions 1
s in simple way

also hosts a web version of the Summarizer to make those API call

and show the output within the webpage.

Pre-requisite Knowledge:

YouTube is an American free to use online video sharing and social media platform -

launched in February 2005. It is currently one of the biggest video platforms where its

users watch more than 1 billion hours of videos every day.

Closed captions are the text derived from the video which are intended for adding

more details (such as dialogues, speech translation, non-speech elements) for the

viewer. They are widely used to understand video without understanding its audio.

Use case Scenario:

YouTube has very large number of videos which has transcripts. Summarization
would be especially helpful in the cases where videos are longer in length and

different parts might have varying importance. In this sense, Summarization of the

video might be useful in saving the viewer’s time. It will help in improving user

productivity since they will focus only on the important text spoken in video.

r sm——
|
. Sends Summary Request : } Asks for subtitles
. Our Back-End Server B o
m 4) i (Running on Flask) A
Receives Summary | Receives Subtitles
Client f YouTube

There are four endpoints:

(Root Endpoint): It displays a general purpose introductory webpage and also

provides links to web summarizer and API information.

(Web Summarizer Endpoint): It displays the web version of the summarizer tool
The webpage has input elements and a summarize button. After clicking summarize

the API is called and the response is displayed to the user.

(APL Description Endpoint): The webpage at this endpoint describes basic API

information in case you would like to use it

(API Endpoint): This endpoint is for API purposes only. That is why, the response
type of the GET Request at this endpoint is in JSON format.

Sending request to our API:

The query (or API request) to our backend can be made using following three

variables only. They are:

« id: Video ID of the YouTube Video. Each video has its own unique ID in its URL.
For example, 9No-FiEInLA is the Video ID in https://www.youtube
com/watch?v=9No-FiEInLA.

. choice : Algorithm Choice for the summarizing the Transcript. There are only six
accepted values in this variable.
These choices are written along with algorithm names as follows:

o gensim-sum: Text Rank Algorithm Based using Gensim

o spacy-sum : Frequency Based Approach using Spacy.

o nltk-sum : Frequency Based Summarization using NLTK.

o sumy-lsa-sum: Latent Semantic Analysis Based using Sumy.
o sumy-luhn-sun: Luhn Algorithm Based using Sumy.

o Sumy-text—rank—sum : Text Rank Algorithm Based using Sumy

Receiving request from our API

Once you send a successful AP request, our server will take that request and process 1t.
After successful processing, the server will send back the relevant response to the made

request. The response sent is always in the JSON Format

|

1) Open a YouTube Video and |
! g;:k on Summarize in i | 2)Request Transcript for a l
Chrome extension to createa | | given Youtube Video ld |
HTTP request to the back-end. | | !
| i
J

1
|
i
|
|
{
|
|

1

|

4) Perform Transcript \i
Summarizarion and retum |
it as a HTTP Response |

5) Display the summarized

transcript on the extension.

|
3) Retum Transcript for a \fldeoi
Idasa HTTP response |

{

| |
| |

)

IMPLEMENTATION:

So far the code for app has been written and is yet to be debugged.
We have used libraries like

Numpy

Flask

Panda

Etc

The code is in DOM format:

minal Help

€ lepp ® T Untitled}
* yispy

& Summarizer Imporl (Our Another. File: summarizec.py) g A ; i \
summarize, spacy_sumsarize, nltk summarize; sumy_lsa_summorizc, suey Luon_symariie:

sumy Lext rank summarize

ilresy Lmpor L for Serving al Her vkl
from waitress import serve

dei create_app():
n Areating dlesk object and peliening 2L
app = rlask(nme %

unkt” download before nltk tokenfzation
try: ~ it
nltk.data. find(" nizers/punkt')
except LookupLrror: £
print(' Downloading punkr*)
nitk.download(‘punkt’, quiet=True)

ry:

nltk.data. Find(\conpora/wordnet).

except LooKupLITor pNG R
print(Downloading wordnet)
nitk. download(‘wordnet ')

“stopeords™ downfoad before nitk tokenization?

R e Pip package updater .
Loading sonfigurati Do'you min taking a quick feedback suviy?

one loading configuration ;
{Take suivéy | | Remind Melter’| | Don't Show Again

T inz5 Col26” Spaoeka UTE-8 CRLFPython B Q2

o H € < g - o0 - @ _ 12C Smoke A 4) BB NG z)—\cz‘fz‘oz\ 0

@ Yty kedint + Visual Stuako Cote
© by ® F Ut & vy ® F Relense Nowy: 1632
® spy

| oppiroutog Aehz ') ARt ; A
Uof summarzee_web() 3 :
W are at wab.htal, online input boxes are. there to. sumarize the plvm vidto mb
® OLsplaydig web itk o Uie end user 2
Peturn render template(‘web.html’)

|

|

{

; fpp- Lroute(*/ani/*)

| det Summacicer_api_info voute():

| 4 since we haye twa end paints inside root, we are closing rwr mdmlnf-
| 4 Displaying root.hta) to the: eid usor g 3 .
{ neturn render_tesplate(api.htal*)
|

|

|

|

|

i

|

|

|

|

Sapp.belore request A
A Before Requent Function: Wo ard s 85
Lt ‘hm“ i hmh.(s; ard podivecting: .my rml' ruwu..ls l.u mfs
(i 'ovNo* in os.environ: e b
it request .headers.pet(* x-rowamm-mm)ittt
url = request.url.ceplace(:http://!, “hrtps:// i)
code = 301
return redivect(url, g‘uiu—ﬁi»dc)

relurn app

i _name -+ ' main” 'z
Running Flask Application
4 app.run()
flask_app = create _app()
serve(flask app, host-* 6.0.01 4%, port-8a, Mmrl alse. url? sd;-e

M5 OQUTRUT DODUG CONSOLE - TERMINAL
Loading configuration, ... : i 2 ; @ o,m,,.,,d ,....,.g.,qm feedback survey?

Done loading contiguration ? r ‘ - rsa‘ vy

12°C Polluted air A~ 4% B

Testhingl * Help yis oy - inkedfet - Vesunl Studio Code.

& licpp Untitled-) % yispy £ Kelease otes; 1.63.2

Pro-check it Lhe summary will have dl leasl one Line ',

select length = int(num_sent_text ¥ (int(percent) / 109))
summary will have at least 1 line. Proceed to summarize,
it select length > ©:

o tondition satistied for simmarization, <ummarizing the formatted text hased on choice.

if num senttext » 1:
.

1t summarizing tormatied jext based upon Lhe requestis cholce
il choice == “gensim-sum
summary = gensim_sumsarize(formatted_text,
percent) 4 Gensim ibrary lor TeetRank Hased Summapy.
lif choice - "spacy-sun”:
summary - spacy_sumnarize(formatted_text,
percent) 4 spacy Library (or (requency-based susmary.
elif choice “nitk-sum”: {
sumary = nltk sumarize(formatted text,
percent) U NLIK Libracy used for frequencysbased sunmary,
elif choice == "sumy- 152 Sua":
summary = sumy_lsa_summarize(formatted_text,
percent) f Sumy for extractive summary wsing LSA.
elif choice "sumy- luhn-sum”™s
sumary = sumy luhn_sumvarize(formatled_text,
percent) - umy Library for k- L0F Based Sumaary,

elil clioice -~ "sumy-text-rank:sum”:

summary = suay Lext rank summarice(formalled Lext,
percent) o Suny f

Yo
a7

g
elues

99 |
| SUEDAIY
{

100
101
VRO 1K OUIAIT B o A ¥

; Pip package updoter v =6
Loading configuration.... 4

pone Joading configuration (1) Do you mind taking a quick teedback survey?

TokeSunvey | | Remind Metater | | Dan't Show Agein

125, €l 26 Spaie s ATERCRIE Pytivon ot

512 Polluted ale A ¢ i g 10N
)Ia o 23-12:2001 D

RFERENCES

1]. M. G. Chri ; s
[1] Christel, M. A, Smith, R. Taylor, and D. B. Winker, “Evolving video skims into useful multimedia

abstracti % ; .
: 1ons,” Proceedings of the ACM Computer-Human Interface Conference (CHI'98), April 18-23 1998,
os

Angeles, CA, pp. 171-178,

[2]. L. He, E. Sanocki, A. Gupta, and J. Grudin, “Comparing presentation summaries: Slides vs. reading vs.
listening,” Conference on Human Factors in Computing Systems (CHI 2000), April 1-6 2000, The Hague,
Netherlands, pp. 177-184.

[3]. S. Srinivasan, D. Ponceleon, A. Amir, B. Blanchard, and D. Petkovic, “Engineering the web for

multimedia,”
Proceeding of the Web Engineering Workshop (WEBE), WWW-9, May 15-19 2000, Amsterdam, Netherlands.

[4]. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at

the
end of the early years,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12,

pp. 1349-1380, December 2000.

M. M. Yeung and B.-L. Yeo, “Video visualization for compact presentation and fast browsing of

[5].
pictorial
con’tent,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 5, pp. 771-785, October

1997.

[6]. Y. Taniguchi, A. Akutsu, and Y. Tonomura, “Panorama excerpts: Extracting and packing panoramas for

video

browsing,” Proceedings of the ACM Multimedia, November 9-13 1997, Seattle, WA, pp. 427-436.

. Vasconcelos and A. Lippman, “Bayesian modeling of video editing and structure: Semantic features fi
s or

video

summarization and browsing,” Proceedings of IEEE Intemational Conference on Image Processing, October 4-
1998, Chicago, IL.

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

