
 A Project Report

 on
 FITWORLD: Your Fitness Buddy

 Submitted in partial fulfillment of the

 requirement for the award of the degree of

 Bachelor of Technology in Computer Science and

 Engineering

 Under The Supervision of
 Ms. AANCHAL VIJ:

 ASSISTANT PROFESSOR

 Submitted By

 SARTHAK AGARWAL– 19SCSE1180005
 ROHIT BASRA– 19SCSE1180123

 SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 GALGOTIAS UNIVERSITY, GREATER NOIDA
 INDIA

 DECEMBER, 2021

 SCHOOL OF COMPUTING SCIENCE AND
 ENGINEERING

 GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

 I/We hereby certify that the work which is being presented in the project, entitled “ FITWORLD:

 Your Fitness Buddy ” in partial fulfillment of the requirements for the award of the

 BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

 submitted in the School of Computing Science and Engineering of Galgotias University,

 Greater Noida, is an original work carried out during the period of JULY, 2021 TO

 DECEMBER, 2021 , under the supervision of MS. AANCHAL VIJ, Assistant Professor,

 Department of Computer Science and Engineering of School of Computing Science and

 Engineering , Galgotias University, Greater Noida

 The matter presented in the project has not been submitted by me/us for the award of any

 other degree of this or any other places.

 Sarthak Agarwal- 19SCSE1180005

 Rohit Basra- 19SCSE1180123

 This is to certify that the above statement made by the candidates is correct to the best of my

 knowledge.

 Ms. Aanchal Vij

 Assistant Professor

 CERTIFICATE

 The Final Thesis/Project/ Dissertation Viva-Voce examination of SARTHAK AGARWAL:

 19SCSE1180005 AND ROHIT BASRA: 19SCSE1180123 has been held on

 _________________ and his/her work is recommended for the award of BACHELOR OF

 TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING .

 Signature of Examiner(s) Signature of Supervisor(s)

 Signature of Project Coordinator Signature of Dean

 Date: December, 2021

 Place: Greater Noida

 ABSTRACT

 In the modern era of work from home and the recent Covid=19 times , Fitness or we

 can say obesity has become a major problem that we face. The sudden increase in

 use of technology in our life has embedded itself.

 For the emergence of those people we are creating a fitness app namely

 FITWORLD that helps people to achieve their respective goals by providing them

 workout schedules and diet plans according to their respective goals. We have

 studied fitness patterns of different people with different goals and with different

 BMI and used that study for our recommendation.These recommendations are easy

 to follow and also increase immunity which further protects from Covid.

 The various tools and technology that we are using here are:

 ● Android Studio

 ● Kotlin

 ● XML

 ● Draw.io

 ● Figma

 As a result we are attempting to make an app namely Fitworld using above

 mentioned tools and technology.

 As a future scope we are aiming to make our country Fit and Healthy by helping

 people maintain a healthy lifestyle by using our app.

 List of Tables

 Student Details:

 S.No Name Enrollment

 No.

 Admission No. Program

 /Branch

 Sem Mobile Email

 1. Sarthak

 Agarwal

 19021180004 19SCSE1180005 Btech

 CSE –

 AIML

 5 9811402220 agarwal.sarthak262012@g

 mail.com

 2. Rohit

 Basra

 19021011638 19SCSE1180123 Btech

 CSE -

 AIML

 5 8826201279 rohitbasra76@gmail.com

 Faculty Details:

 Name Designation Email id Mobile No.

 Ms. Aanchal Vij Assistant Professor aanchal.vij@galgotiasuniversity.edu.in 8146325511

 List of Figures

 Figure No Table Name Page No.

 1 Data flow diagram 14

 2 Application Wireframes 15,16,17

 Acronyms:

 B.Tech Bachelor of Technology

 M.Tech Master of Technology

 BCA Bachelor of Computer Applications

 MCA Master of Computer Applications

 B.Sc. (CS) Bachelor of Science in Computer Science

 M.Sc. (CS) Master of Science in Computer Science

 SCSE School of Computing Science and Engineering

 Title

 Table of Contents

 Page

 No.

 Abstract I

 List of Table II

 List of Figures III

 Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem 3

 1.2.1 Tool and Technology Used 4

 Chapter 2 Literature Survey/Project Design 5

 Introduction

 Being unhealthy and getting obese is a major problem that we all are facing due to

 our uncertain schedule and work from home caused due to covid which led to effect

 our lifestyle and our health also. This led to cause some serious problem like

 cholesterol increment, heart issue , rise of uric acid and lack of physical activity

 makes our body stiff which leads to back pain.We ourselves have faced the problem

 and trying to help our society with an app which provides people with exclusive

 workout plans according to their body structure and their goals which basically will

 help to maintain a healthy lifestyle and keep our body fit.

 We have firstly studied various body types and according to their BMI have

 designed diet and workout plans and have tested these plans on different individuals

 which works successfully based on these studies we are recommending these plans.

 Since, mental health is equally important to physical health, the application also

 helps in reducing mental fatigue by creating a habit of regular mental health

 exercises so that the users can be relieved of their stress.

 The application that we are designing, namely “FITWORLD” requires the following

 tools and technologies: Android Studio, IntelliJ Idea, Kotlin, Ktor, REST APIs,

 XML, draw.io, Figma.

 Formulation Of Problem

 We specifically chose to work on this project because we experienced this problem

 first hand. During the pandemic when everyone had to work from home, people took

 to their comforts and forgot about their physical and mental health. While the

 traumatic effects of COVID-19 deteriorated people’s mental health, many became

 couch potatoes and gained weight.

 We were no different from this. We also experienced severe mental stress and faced

 physical challenges. The pandemic made it difficult for all of us to lead a healthy

 lifestyle. This unhealthy lifestyle often leads to lack of efficiency and productivity.

 Many surveys indicate that people wanted to get out of this rut but weren’t able to

 sustain their actions of self development.

 So, when we were presented with the opportunity of doing a project this semester,

 we just jumped upon this idea and started working towards creating value for

 everyone in this world.

 Our aim is to create a product that adds value to user’s daily life by helping them

 reach their fitness goals. The application helps in creating a habit of physical and

 mental fitness exercises by providing tailor-made plans in accordance with the user's

 profile to boost their personal development. This product takes away all the worries

 of the users and helps them grow and perform at optimum levels all the time.

 Tool and Technology Used

 The various tools and technology that we used in our app are:

 ● Android studio

 ● IntelliJ Idea

 ● Kotlin

 ● Ktor

 ● XML

 ● draw.io

 ● Figma

 Literature Survey

 The three fitness apps selected for this study were based on the Functional Triad as

 well as from a focus group with fitness professionals to ensure each app fit strongly

 with one of the three types of technology in the Functional Triad. The Functional

 Triad suggests that there are three functions of technology in the way people react or

 use them: (I) a medium provides an experience; (II) a tool increases capability; and

 (III) a social actor creates relationships. Each of the three apps in the present study

 had a primary function as a medium that provided the user an experience in terms of

 a dashboard coordinating fitness efforts, a tool that increased capability in terms of

 prefabricated workouts, or social actor that created relationships with others seeking

 to improve fitness via a social media platform. Apps were available for free on

 Android and iOS.

 A one-group pre-posttest design was utilized since a goal of this study was to

 examine technology usage attrition in addition to effectiveness of apps. Participants

 were allowed to use all three apps simultaneously to determine which app functions,

 as outlined in the Functional Triad (medium, tool, social actor), were utilized and

 found to be effective. After receiving IRB approval, 64 participants (17 men, 47

 women) aged 18 or older were recruited in-person from a Midwest suburban fitness

 center between June 2014 and January 2015. An already active population was

 selected for the study because effects of fitness apps were being tested against

 exercise without technology. At recruitment, participants downloaded the three apps,

 but were not told the purpose of each app as a medium, tool, and social actor.

 Participants were told to use the apps however they preferred, as if they had found

 and downloaded them on their own.

 Participants completed a validated TPB and exercise survey at pretest and posttest

 regarding attitude, subjective norm, perceived behavioral control, and behavioral

 intention over exercise and exercise with apps. The bipolar adjective scales measured

 exercise attitude by descriptive paired adjective categories including useless/useful,

 foolish/wise, harmful/beneficial, unenjoyable/enjoyable, unpleasant/pleasant,

 boring/interesting, and stressful/relaxing. Subjective norm measured peer support

 and peer approval of exercise and exercise with apps. Perceived behavioral control

 examined control over and barriers to exercise and exercise with apps. According to

 the authors of the instrument , a subscale total score is calculated by summing scores

 of individual items (each ranging from 1 to 7) in each construct. Lastly, behavioral

 intention to exercise and to exercise with apps asked about the number of times the

 participant intended to exercise and exercise with apps over the next 2 weeks in six

 groups (0, 1–3, 4–6, 7–9, 10–12, and 12 times or more).

 Participant app usage was tracked at months 1, 3, and 5 after download to determine

 usage and perceived fitness. Participants received an email with a checkpoint survey

 that inquired about times per month of app usage for each app and minutes of usage

 per each time for each app. The amount of app use was calculated by multiplying the

 frequency of app use per month and the minutes of use each time. At month 5,

 participants also received the posttest survey via email. Additionally, fitness

 perception was measured at pretest, checkpoint one, checkpoint two, and checkpoint

 three (posttest). Measurements of perceived fitness on a 12-point scale included

 cardiovascular fitness, muscular strength, muscular endurance, flexibility, and body

 composition. If participants did not respond to the initial checkpoint email, they were

 sent one reminder email.

 Survey data were analyzed using statistical software Stata . Our analysis focused on

 comparisons of pre-post differences and comparisons of those who used apps (users)

 and those who did not (non-users). Paired sample t -tests analyzed data for pretest to

 posttest comparisons of (I) individual item scores for constructs of attitude,

 subjective norm, and perceived behavioral control; (II) subscale total scores for

 attitude, subjective norm, and perceived behavioral control for each exercise and

 exercise with apps; and (III) perceived fitness scores. A pre-post difference in

 behavioral intention over exercise and exercise with apps was examined using a sign

 test for matched pairs. A sign test is appropriate for ordinal variables because the

 non-parametric test compares scores of matched or paired samples without requiring

 the outcome’s distribution to be normal or symmetric . The sign test produces the

 results of three hypothesis tests: whether the median of the differences between

 paired observations is positive, negative, and zero .

 Baseline characteristics of users and non-users were examined to identify types or

 statuses of individuals who are more likely to use mobile apps for exercise. Fisher’s

 exact tests were used for categorical (e.g., gender, race, marital status) and ordinal

 (e.g., behavioral intention) independent variables, and simple logistic regression was

 used for continuous independent variables (e.g., subscale total scores of TPB

 constructs) with app use status as the dependent variable. In addition, we examined

 whether app use is associated with TPB constructs at posttest. Independent sample

 t -tests were used to examine differences between users and non-users in subscale

 total scores for attitude, subjective norm, and perceived behavioral control at

 posttest. Fisher’s exact tests were used to compare behavioral intention over exercise

 and exercise with apps at posttest between users and non-users. T -tests were used to

 examine whether the amount of app use (minutes of use per month) was different

 between two different checkpoints for each app. Simple linear regression was used to

 examine whether the amount of app use (minutes of use per month) is associated

 with TPB constructs or perceived fitness at posttest.

 App usage and effectiveness appears to have a connection to usefulness (attitude)

 and to perceived difficulties of exercising using apps (perceived behavioral control).

 Exercise and exercise using apps are not influenced by peer influence (subjective

 norm). Intention to exercise using these particular apps decreased (behavioral

 intention). Those who utilized the apps were more likely to have a positive attitude

 about the apps. Usefulness and perceived difficulties in particular should be

 considered with future app development. App usefulness and ease of use may be

 facilitated by using health behavior theories to guide development.

 Project Design

 ● Login Page Layout

 In the Login Page it asks users for registration to continue using the app for

 which users have to add his/her details to register themselves.After successful

 verification of their credential details then users will be allowed to login using

 their username and password. If the login details are correct then It will be

 directed to Homepage else it will show invalid login.

 ● HomePage

 Homepage includes feature of :

 ● Physical Fitness Data:

 ○ It stores workout information about the workouts that the

 user has to perform.

 ○ It also stores the data after physical exercise has been

 performed like how much weight used for how many reps

 and for how long exercise were done

 ● Mental Fitness Data:

 ○ It stores meditation information like meditation name,

 audio track and other metadata for the meditation that the

 user has to perform.

 ○ It also keeps track of your stress level and recommend

 various relief measures

 ● Streak Data: It shows for how long you are being regular in

 exercising and provide you rewards for achieving streak

 ● Physical Exercise: It recommend you exercise according to your

 schedule and level

 ● Meditation: It recommend you to meditate according to your

 stress level

 ● Analysis

 It stores the Physical and Mental fitness data of the user in the database.

 Analysis is done on this Physical Fitness Data and Mental fitness data on the

 basis of which, physical and mental exercises would be provided to the user.

 Data of help frequency is also recorded which is used to determine the number

 of times a week the user would do the exercises. The system would only

 prompt the user to do the exercises on these pre-decided days of the week.

 Implementation

 ● Activity Lifecycle

 The Android system initiates its program within an Activity starting with a call

 on onCreate() callback method. There is a sequence of callback methods that

 start up an activity and a sequence of callback methods that tear down an

 activity as shown in the below Activity life cycle diagram:

 The Activity class defines the following call backs i.e. events. You don't need to

 implement all the callbacks methods. However, it's important that you understand

 each one and implement those that ensure your app behaves the way users expect.

 Sr.N
 o

 Callback & Description

 1

 onCreate()

 This is the first callback and called when the activity is first created.

 2

 onStart()

 This callback is called when the activity becomes visible to the user.

 3

 onResume()

 This is called when the user starts interacting with the application.

 4

 onPause()

 The paused activity does not receive user input and cannot execute any code

 and is called when the current activity is being paused and the previous activity

 is being resumed.

 5
 onStop()

 This callback is called when the activity is no longer visible.

 6

 onDestroy()

 This callback is called before the activity is destroyed by the system.

 7
 onRestart()

 This callback is called when the activity restarts after stopping it.

 Example Implementation

 package com.example.helloworld;

 import android.os.Bundle;
 import android.app.Activity;
 import android.util.Log;

 public class MainActivity extends Activity {
 String msg = "Android : ";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Log.d(msg, "The onCreate() event");

 }

 /** Called when the activity is about to become visible. */
 @Override
 protected void onStart() {

 super.onStart();
 Log.d(msg, "The onStart() event");

 }

 /** Called when the activity has become visible. */
 @Override

 protected void onResume() {
 super.onResume();
 Log.d(msg, "The onResume() event");

 }

 /** Called when another activity is taking focus. */
 @Override
 protected void onPause() {

 super.onPause();
 Log.d(msg, "The onPause() event");

 }

 /** Called when the activity is no longer visible. */
 @Override
 protected void onStop() {

 super.onStop();
 Log.d(msg, "The onStop() event");

 }

 /** Called just before the activity is destroyed. */
 @Override
 public void onDestroy() {

 super.onDestroy();
 Log.d(msg, "The onDestroy() event");

 }
 }

 ● REST APIs

 A REST API (also known as RESTful API) is an application programming interface

 (API or web API) that conforms to the constraints of REST architectural style and

 allows for interaction with RESTful web services. REST stands for representational

 state transfer and was created by computer scientist Roy Fielding.

 An API is a set of definitions and protocols for building and integrating application

 software. It’s sometimes referred to as a contract between an information provider

 and an information user—establishing the content required from the consumer (the

 call) and the content required by the producer (the response). For example, the API

 design for a weather service could specify that the user supply a zip code and that the

 producer reply with a 2-part answer, the first being the high temperature, and the

 second being the low.

 In other words, if you want to interact with a computer or system to retrieve

 information or perform a function, an API helps you communicate what you want to

 that system so it can understand and fulfill the request.

 You can think of an API as a mediator between the users or clients and the resources

 or web services they want to get. It’s also a way for an organization to share

 resources and information while maintaining security, control, and

 authentication—determining who gets access to what.

 Another advantage of an API is that you don’t have to know the specifics of

 caching—how your resource is retrieved or where it comes from.

 REST is a set of architectural constraints, not a protocol or a standard. API

 developers can implement REST in a variety of ways.

 When a client request is made via a RESTful API, it transfers a representation of the

 state of the resource to the requester or endpoint. This information, or representation,

 is delivered in one of several formats via HTTP: JSON (Javascript Object Notation),

 HTML, XLT, Python, PHP, or plain text. JSON is the most generally popular file

 format to use because, despite its name, it’s language-agnostic, as well as readable by

 both humans and machines.

 Something else to keep in mind: Headers and parameters are also important in the

 HTTP methods of a RESTful API HTTP request, as they contain important identifier

 information as to the request's metadata, authorization, uniform resource identifier

 (URI), caching, cookies, and more. There are request headers and response headers,

 each with their own HTTP connection information and status codes.

 In order for an API to be considered RESTful, it has to conform to these criteria:

 ● A client-server architecture made up of clients, servers, and resources, with

 requests managed through HTTP.

 ● Stateless client-server communication, meaning no client information is stored

 between get requests and each request is separate and unconnected.

 ● Cacheable data that streamlines client-server interactions.

 ● A uniform interface between components so that information is transferred in

 a standard form. This requires that:

 ○ resources requested are identifiable and separate from the

 representations sent to the client.

 ○ resources can be manipulated by the client via the representation they

 receive because the representation contains enough information to do

 so.

 ○ self-descriptive messages returned to the client have enough information

 to describe how the client should process it.

 ○ hypertext/hypermedia is available, meaning that after accessing a

 resource the client should be able to use hyperlinks to find all other

 currently available actions they can take.

 ● A layered system that organizes each type of server (those responsible for

 security, load-balancing, etc.) involved the retrieval of requested information

 into hierarchies, invisible to the client.

 ● Code-on-demand (optional): the ability to send executable code from the

 server to the client when requested, extending client functionality.

 Though the REST API has these criteria to conform to, it is still considered easier to

 use than a prescribed protocol like SOAP (Simple Object Access Protocol), which

 has specific requirements like XML messaging, and built-in security and transaction

 compliance that make it slower and heavier.

 In contrast, REST is a set of guidelines that can be implemented as needed, making

 REST APIs faster and more lightweight, with increased scalability—perfect for

 Internet of Things (IoT) and mobile app development.

 ● Public APIs are publicly available to developers and other users with

 minimal restriction. They may require registration, use of an API Key or

 OAuth, or maybe completely open. They focus on external users, to access

 data or services.

 ● Partner APIs are APIs exposed by/to the strategic business partners. They

 are not available publicly and need specific entitlement to access them. Like

 open APIs, partner APIs are the tip of the iceberg because they are the most

 visible ones and are used to communicate beyond the boundaries of the

 company. They are usually exposed to a public API developer portal that

 developers can access in self-service mode. While open APIs are

 completely open, there is an onboarding process with a specific validation

 workflow to get access to partner APIs.

 ● Internal APIs, aka private APIs, are hidden from external users and only

 exposed by internal systems. Internal APIs are not meant for consumption

 outside of the company but rather for use across different internal

 development teams for better productivity and reuse of services. A good

 governance process comprises exposing them to an internal API developer

 portal that connects to the internal IAM systems to authenticate and allow

 users to access the right set of APIs.

 ● Composite APIs combine multiple data or service APIs. They are built

https://blog.axway.com/api-security/api-keys/

 using the API orchestration capabilities of an API creation tool. They allow

 developers to access several endpoints in one call. Composite APIs are

 useful, for example, in a microservices architecture pattern where you need

 information from several services to perform a single task.

 To leverage these different types of APIs, we must follow certain protocols. A

 protocol provides defined rules for API calls. It specifies the accepted data types and

 commands. Let’s look at the major types of protocols for APIs:

 1. REST

 REST (short for Representational State Transfer) is a web services API. REST APIs

 are a key part of modern web applications, including Netflix, Uber, Amazon, and

 many others. For an API to be RESTful, it must adhere to the following rules:

 ● Stateless—A REST API is stateless in nature, Client-Server Architecture

 ● Uniform Interface—A client and server should communicate with one another

 via HTTP (HyperText Transfer Protocol) using URIs (Unique Resource

 Identifiers), CRUD (Create, Read, Update, Delete), and JSON (JavaScript

 Object Notation) conventions.

 ● Client-Server—The client and server should be independent of each other. The

 changes you make on the server shouldn’t affect the client and vice versa.

 ● Cache—The client should cache the responses as this improves the user

 experience by making them faster and more efficient.

 ● Layered—The API should support a layered architecture, with each layer

 contributing to a clear hierarchy. Each layer should be loosely coupled and

 allow for encapsulation.

 2. SOAP

 SOAP (simple object access protocol) is a well-established protocol similar to REST

 in that it’s a type of Web API.

 SOAP has been leveraged since the late 1990s. SOAP was the first to standardize the

 way applications should use network connections to manage services.

 But SOAP came with strict rules, rigid standards were too heavy, and, in some

 situations, very resource-intensive. Except for existing on-premise scenarios, most

 developers now prefer developing in REST over SOAP.

 3. RPCAn RPC is a remote procedure call protocol. They are the oldest and

 simplest types of APIs. The goal of an RPC was for the client to execute code

 on a server. XML-RPC used XML to encode its calls, while JSON-RPC used

 JSON for the encoding.

 Both are simple protocols. Though similar to REST, there are a few key differences.

 RPC APIs are very tightly coupled, so this makes it difficult to maintain or update

 them.

 To make any changes, a new developer would have to go through various RPCs

 documentation to understand how one change could affect the other.

 APIs play a key role in the development of any application. And REST has become

 the preferred standard for building applications that communicate over the network.

 REST fully leverages all the standards that power the World Wide Web and is

 simpler than traditional SOAP-based web services. Unlike RPC, it allows for a

 loosely coupled layered architecture to maintain easily or update them.

 ● Retrofit

 Retrofit is a type-safe REST client for Android and Java which aims to make it easier

 to consume RESTful web services. We’ll not go into the details of Retrofit 1.x

 versions and jump onto Retrofit 2 directly which has a lot of new features and a

 changed internal API compared to the previous versions.

 Interceptors are a powerful mechanism present in OkHttp that can monitor, rewrite,

 and retry calls.Interceptors can be majorly divided into two categories:

 1. Application Interceptors : To register an application interceptor, we need to

 call addInterceptor() on OkHttpClient.Builder

 2. Network Interceptors : To register a Network Interceptor, invoke

 addNetworkInterceptor()instead of addInterceptor()

 class APIClient { private static Retrofit retrofit =

 null ; static Retrofit getClient () {

 HttpLoggingInterceptor interceptor = new

 HttpLoggingInterceptor();

 interceptor.setLevel(HttpLoggingInterceptor.Level.BODY);

 OkHttpClient client = new

 OkHttpClient.Builder().addInterceptor(interceptor).build

 (); retrofit = new Retrofit.Builder()

 .baseUrl("https://reqres.in")

 .addConverterFactory(GsonConverterFactory.create())

 .client(client) .build(); return retrofit; } }

 The getClient() method in the above code will be called every time while setting up a

 Retrofit interface. Retrofit provides a list of annotations for each of the HTTP

 methods: @GET, @POST, @PUT, @DELETE, @PATCH or @HEAD.

 interface APIInterface {

 @GET ("/api/unknown")

 Call<MultipleResource> doGetListResources ();

 @POST ("/api/users")

 Call<User> createUser (@Body User user);

 @GET ("/api/users?")

 Call<UserList> doGetUserList (@Query("page") String

 page);

 @FormUrlEncoded

 @POST ("/api/users?")

 Call<UserList> doCreateUserWithField (@Field("name")

 String name, @ Field ("job") String job);

 }

 public class MultipleResource { @SerializedName ("page")

 public Integer page;

 @SerializedName ("per_page") public Integer perPage;

 @SerializedName ("total") public Integer total;

 @SerializedName ("total_pages") public Integer totalPages;

 @SerializedName ("data") public List<Datum> data = null ;

 public class Datum {

 @SerializedName ("id") public Integer id;

 @SerializedName ("name") public String name;

 @SerializedName ("year") public Integer year;

 @SerializedName ("pantone_value") public StringpantoneValue;

 } }

 public class MultipleResource {

 @SerializedName ("page") public Integer page;

 @SerializedName ("per_page") public Integer perPage;

 @SerializedName ("total") public Integer total;

 @SerializedName ("total_pages") public Integer totalPages;

 @SerializedName ("data") public List<Datum> data = null ;

 public class Datum {

 @SerializedName ("id") public Integer id;

 @SerializedName ("name") public String name;

 @SerializedName ("year") public Integer year;

 @SerializedName ("pantone_value") public String pantoneValue;

 } }

 ● Storage in Android

 Android uses a file system that's similar to disk-based file systems on other

 platforms. The system provides several options for you to save your app data:

 ● App-specific storage: Store files that are meant for your app's use only, either

 in dedicated directories within an internal storage volume or different

 dedicated directories within external storage. Use the directories within

 internal storage to save sensitive information that other apps shouldn't access.

 ● Shared storage: Store files that your app intends to share with other apps,

 including media, documents, and other files.

 ● Preferences: Store private, primitive data in key-value pairs.

 ● Databases: Store structured data in a private database using the Room

 persistence library.

 Type of

 content
 Access method

 Permissions

 needed

 Can other

 apps

 access?

 Files

 remov

 ed on

 app

 uninst

 all?

 A p p-sp

 ecific

 files

 Files

 meant

 for

 your

 app's

 use

 only

 From internal storage,

 getFilesDir() or

 getCacheDir()

 From external

 storage,getExternalFilesDir()

 orgetExternalCacheDir()

 Never

 needed for

 internal

 storage

 Not needed

 for external

 storage

 when your

 app is used

 on devices

 that run

 Android 4.4

 (API level

 19) or higher

 No Yes

https://developer.android.com/training/data-storage/app-specific
https://developer.android.com/training/data-storage/app-specific
https://developer.android.com/training/data-storage/app-specific
https://developer.android.com/training/data-storage/app-specific

 Media Sharea

 ble

 media

 files

 (image

 s,

 audio

 files,

 videos)

 MediaStore API READ_EXTE

 RNAL_STOR

 AGE when

 accessing

 other apps'

 files on

 Android 11

 (API level

 30) or higher

 READ_EXTE

 RNAL_STOR

 AGE or

 WRITE_EXTE

 RNAL_STOR

 AGEwhen

 accessing

 other apps'

 files on

 Android 10

 (API level

 29)

 Permissions

 are required

 for all files

 on Android 9

 (API level

 28) or lower

 Yes, though

 the other

 app needs

 the

 READ_EXTE

 RNAL_STOR

 AGEpermiss

 ion

 No

 Docum

 ents

 and

 other

 files

 Other

 types

 of

 sharea

 ble

 conten

 t,

 includi

 ng

 downlo

 aded

 files

 Storage Access Framework None Yes, through

 the system

 file picker

 No

 App

 prefere

 nces

 Key-val

 ue

 pairs

 Jetpack Preferences library None No Yes

 Databa

 se

 Structu

 red

 data

 Room persistence library None No Yes

 The solution you choose depends on your specific needs:

 How much space does your data require?

 Internal storage has limited space for app-specific data. Use other types of storage if

 you need to save a substantial amount of data.

 How reliable does data access need to be?

 If your app's basic functionality requires certain data, such as when your app is

 starting up, place the data within internal storage directory or a database.

 App-specific files that are stored in external storage aren't always accessible because

 some devices allow users to remove a physical device that corresponds to external

 storage.

 What kind of data do you need to store?

 If you have data that's only meaningful for your app, use app-specific storage. For

 shareable media content, use shared storage so that other apps can access the content.

 For structured data, use either preferences (for key-value data) or a database (for data

 that contains more than 2 columns).

 Should the data be private to your app?

 When storing sensitive data—data that shouldn't be accessible from any other

 app—use internal storage, preferences, or a database. Internal storage has the added

 benefit of the data being hidden from users.

 Android provides two types of physical storage locations: internal storage and

 external storage . On most devices, internal storage is smaller than external storage.

 However, internal storage is always available on all devices, making it a more

 reliable place to put data on which your app depends.

 Removable volumes, such as an SD card, appear in the file system as part of external

 storage. Android represents these devices using a path, such as /sdcard.

 Android defines the following storage-related permissions:

 READ_EXTERNAL_STORAGE , WRITE_EXTERNAL_STORAGE ,

 and MANAGE_EXTERNAL_STORAGE .

 On earlier versions of Android, apps needed to declare the

https://developer.android.com/reference/android/Manifest.permission#READ_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission#WRITE_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission#MANAGE_EXTERNAL_STORAGE

 READ_EXTERNAL_STORAGE permission to access any file outside the

 app-specific directories on external storage. Also, apps needed to declare the

 WRITE_EXTERNAL_STORAGEpermission to write to any file outside the

 app-specific directory.

 More recent versions of Android rely more on a file's purpose than its location for

 determining an app's ability to access, and write to, a given file. In particular, if your

 app targets Android 11 (API level 30) or higher,

 theWRITE_EXTERNAL_STORAGE permission doesn't have any effect on your

 app's access to storage. This purpose-based storage model improves user privacy

 because apps are given access only to the areas of the device's file system that they

 actually use.

 Android 11 introduces the MANAGE_EXTERNAL_STORAGE permission, which

 provides write access to files outside the app-specific directory and MediaStore. To

 learn more about this permission, and why most apps don't need to declare it to fulfill

 their use cases, see the guide on how to manage all files on a storage device.

 To give users more control over their files and to limit file clutter, apps that target

 Android 10 (API level 29) and higher are given scoped access into external storage,

 or scoped storage , by default. Such apps have access only to the app-specific

 directory on external storage, as well as specific types of media that the app has

 created.

 Use scoped storage unless your app needs access to a file that's stored outside of an

 app-specific directory and outside of a directory that the MediaStore APIs can

 access. If you store app-specific files on external storage, you can make it easier to

 adopt scoped storage by placing these files in an app-specific directory on external

https://developer.android.com/training/data-storage/app-specific#external

 storage. That way, your app maintains access to these files when scoped storage is

 enabled.

 To prepare your app for scoped storage, view the storage use cases and best practices

 guide. If your app has another use case that isn't covered by scoped storage, file a

 feature request. You can temporarily opt-out of using scoped storage.

 Result and Evaluation

 1. Login Page
 a. This page is the authentication page which is used to authenticate the

 user using their email id and password.
 b. Only registered users are allowed to go past this screen.
 c. If the user is not registered, they are suggested to go to the sign up page.

 2. SignUp Page
 a. This page is used to register the user into the application database.
 b. Only registered users are granted access to the application. So every

 user must register.
 3. Physical Analysis

 a. The user is asked a few questions in the page on the basis of which

 physical exercises would be recommended to the user in the home page.
 4. Mental Analysis

 a. The user is asked a few more questions to assess their mental health
 situation. On the basis of the answers, mental exercises are suggested to
 the user.

 5. Frequency Analysis
 a. The user fills in the number of times they want to perform these

 exercises in a week.
 b. Specific days are allotted on the basis of their responses on which

 exercises are shown on the home screen.
 6. Home Screen

 a. Both physical and mental exercises are recommended to the user on this
 screen.

 b. These exercises are carefully recommended by analysing the responses
 filled by the user during registration.

 Conclusion

 We have successfully made our application FITWORLD in which we have provided
 various features like physical fitness and mental fitness in which we analyze the user
 database and according to results recommend various exercises.The app also keeps
 track of the streak maintained and provides a schedule according to their frequency.

 The application serves as the first step towards eradicating the problem of obesity
 and mental trauma that has become a household problem after COVID 19.

 Future Aspects
 In future, there are a lot of features that can be implemented in the future like:

 ● Calorie counter
 ● Step tracker
 ● Water tracker
 ● Insightful articles.

 All these features would make the application robust and provide a lot of value to the
 users.

 Acknowledgement
 We'd like to thank our professors and Galgotias University from the bottom of our
 hearts for giving us the excellent opportunity to work on this fantastic project
 FitWorld: Your Fitness Buddy, which has allowed us to conduct significant study and
 learn about many new things. Second, we'd like to thank Ms. Aanchal Vij, our guide,
 for her essential support in finishing this project in such a short amount of time.

 References

 1. https://developer.android.com/docs
 2. https://developer.android.com/reference
 3. https://firebase.google.com/products/auth?gclid=Cj0KCQiAqbyNBhC2ARIsA

 LDwAsBMNl5rFZn5jBgCe-o1R1AzDe1aTvgZ1LskcsQ5718C8Yjn0iFNJ0Ia
 AuPFEALw_wcB&gclsrc=aw.ds

 4. https://firebase.google.com/products/firestore?gclid=Cj0KCQiAqbyNBhC2A
 RIsALDwAsB5AqHajIjcHWYMo2HdzsCYHfYZYgSzZewTaHcxRom_fhW
 W-JVbmb8aAiLHEALw_wcB&gclsrc=aw.ds

 5. https://www.youtube.com/watch?v=Yt8XkYIdhVU
 6. https://www.youtube.com/watch?v=3q3FV65ZrUs
 7. https://www.figma.com/resources/learn-design/
 8. https://app.diagrams.net/
 9. https://kotlinlang.org/docs/android-overview.html

