

1

A Project/Dissertation Report

on

Gesticulation Recognition System

Submitted in partial fulfillment of the

requirement for the award of the degree

of

B. Tech CSE with Specialization in AIML

 Under The Supervision of

Mr. Samson Ebenezar U

Assistant

Professor

Submitted By

Akshat Sharma

19SCSE1180127

Atul Kumar Prasad

19SCSE1180130

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERINGDEPARTMENTOFCOMPUTERSCIENCEANDE

NGINEERINGGALGOTIASUNIVERSITY, GREATER NOIDA

INDIA

DECEMBER

2021

2

Table of content

Title Page

No.

 Abstract 3

Sample dataset figure 4

Chapter 1 Introduction 5
 1.1 Introduction

1.2 Motivation
6

 1.3 Formulation of Problem 7

 1.3.1 Tool and Technology Used 8

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Literature Survey/ Project Design

Implementation and Source Code

Output and Result

Future Works

Conclusion

9

10

19

22

23

References 24

3

Abstract

We are aiming to build a web application in order to overcome the disabilities of deaf and dumb

people to make sure they don't feel like straggling behind than the rest of the world. The problem

with the current gesticulation recognition application is that they are incompetent, as a there is not

one but many types of sign languages approximately 300 different types of sign languages all

around the globe. The earlier systems were developed under the functioning of MATLAB, but it’s

not efficient.

 With the growth in globalization and emphasis on educational advancements, we want to

make sure that no one should face any kind of hindrance regardless of one's in capabilities. We will

be letting the user select which sign language they are comfortable with, initially however we will

have a few sign languages available for the users and with further updates we will add more with

given proper time.

 Initially we will be starting with 2 different types of sign language datasets ASL (American

Sign Language) dataset and ISL (Indian Sign Language) dataset. CNN (Convolutional Neural

Network is best suited for the purpose of model training and gesture prediction which is a type of

machine learning neural network. Language used is Python.

 This web application will be reading user's hand gestures and after analysis it will convert

that sign in text as well as speech format so they can communicate easily with everyone around

them.

This project will not only be used in academic fields but also in day-to-day life as well

because communication is must to survive. This gesticulation recognition system that we are

building is only limited to English language as of now, but we will be looking forward to expand

its linguistic basket to have multiple language conversion in the near future

4

Sample dataset figure

Introduction

With the growth in globalization and emphasis on educational advancements, we want to

make sure that no one should face any kind of hindrance regardless of one's in capabilities. We are

aiming to build a web application in order to overcome the disabilities of deaf and dumb people to

make sure they don't feel like straggling behind than the rest of the world, as education define one's

personality. This project will not only be used in academic fields but also in day-to-day life as well

because communication is must to survive. This web application will be reading user's hand

gestures and after analysis it will convert that sign in text as well as speech format so they can

communicate easily with everyone around them. This gesture conversion that we are building is

only limited to English language as of now, but we will be looking forward to expand its linguistic

basket to have multiple language conversion in the near future.

The problem with the current gesticulation recognition application is that they are

incompetent, as a there is not one but many types of sign languages approximately 300 different

types of sign languages all around the globe. The earlier systems were developed under the

functioning of MATLAB, but it’s not efficient.

Motivation

Need for a very efficient gesticulation recognition system is must approximately 7 million people

of the whole Indian’s population are deaf and dumb. It’s very important that this part of India as

well as in whole world needs to be brought and taught equally. We are hoping our web application

will be helpful not only in educational sector but also in day to day life use as well i.e. in

communication of mentally challenged people with people who are not mentally challenged and

also between two mentally challenged people.

Problem Formulation and Remedy

There are currently a few gesticulation recognition/ sign language detection systems that are not

very efficient and limited to a certain type of sign language out of hundreds of types of sign

languages. In earlier sign language detection system user had to wear a green glove to separate the

hand from the background in order to be detected and recognize which alphabet or word the user is

trying to make.

 Also because of the so many different types languages all the sign language detection

systems are limited by a linguistic barrier because all different types of sign languages uses

different types of symbols to represent the same alphabet , digit , or words and every different

languages has a different set of grammar rules.

 Our gesticulation recognition system will not need any special equipment that is needed to

be worn by user/users. We will be preprocessing image by reading the image and reshaping the

images to equal size and removing noise making our system work without more easily without

needing any type of equipment.

 Our gesticulation recognition system will initially have two different types of sign

languages ASL (American Sign Language) dataset and ISL (Indian Sign Language) dataset.This

gesticulation recognition system that we are building is only limited to English language as of now,

but we will be looking forward to expand its linguistic basket to have multiple language conversion

in the near future.

Tools and Technology Used

• Python- We will be using python as our main source coding language. We will be

implementing a few specific libraries like scikitlearn and few more.

• Neural Network- Our whole gesticulation recognition system is based on neural network

more specifically artificial neural network (ANN). We will be using CNN (Convolution

Neural Network) which is type of ANN, best suited for image classification.

• Tensorflow- It is a very important type of library in python when it comes to implementing

machine learning or artificial intelligence especially deep learning.

• IDE- Jupyter Integrated Development Environment is what we will be using for building

our web application.

• Web Cam – Web camera is needed for taking and reading the image from the user.

• Keras – It is also very important python library that is needed for creating an interface for

ANNs. It provides an interface for tensorflow to work.

Literature survey/ Project Design

Our work mainly focuses on static sign language detection for ASL and ISL. There are two

types of sign languages static sign language and dynamic sign language, static sign language

involves separate symbols like a particular alphabet or digit it is comparatively easier to recognize

than dynamic sign language which involves words and often complete sentences.

Our gesticulation recognition system will be designed to initially ask the user which sign

language user the user is comfortable in and then read, then recognize and classify it into its

respective category and then convert that recognized symbol into respective text and speech

format.

We will be starting with 2 different types of sign language datasets ASL (American Sign

Language) dataset and ISL (Indian Sign Language) dataset. CNN (Convolutional Neural Network

is best suited for the purpose of model training and gesture prediction which is a type of machine

learning neural network. Language used is Python.

We will be letting the user select which sign language they are comfortable with, initially

however we will have a few sign languages available for the users and with further updates we will

add more with given proper time.

Implementation and Source Code

#Import necessary libraries
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#Load the dataset
train = pd.read_csv('sign_mnist_train.csv')

test = pd.read_csv('sign_mnist_test.csv')

train.head()

get our training labels
labels = train['label'].values

#get the unique labels, 24 in total
unique_val = np.array(labels)

np.unique(unique_val)

[out]array([0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17,

 18, 19, 20, 21, 22, 23, 24], dtype=int64)

#plot the quanties in each class
plt.figure(figsize=(18,8))

sns.countplot(x=labels)

#drop training labels from our training data so we can separate it
train.drop('label',axis=1,inplace=True)

#extract the image data from each row in our csv, remember it's in a row

of 784 columns

images = train.values

images = np.array([np.reshape(i,(28,28)) for i in images])

images = np.array([i.flatten() for i in images])

#hot one incode our labels
from sklearn.preprocessing import LabelBinarizer

label_binrizer = LabelBinarizer()

labels = label_binrizer.fit_transform(labels)

view our labels
labels

[out] array([[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 1, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 1, 0]])

inspect an image
index = 0

print(labels[index])

plt.imshow(images[index].reshape(28,28))

#use opencv to view 10 random images from our training data
import cv2

import numpy as np

for i in range(0,10):

 rand = np.random.randint(0,len(images))

 input_im = images[rand]

 sample = input_im.reshape(28,28).astype(np.uint8)

 sample = cv2.resize(sample, None, fx=10, fy=10,interpolation =

cv2.INTER_CUBIC)

 cv2.imshow("sample image",sample)

 cv2.waitKey(0)

cv2.destroyAllWindows()

split our data into x_test,y_train and y_test
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(images,labels,test_size =

0.3,random_state = 101)

start loading our tensorflow modules and define our batch size

etc
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten,Dropout

batch_size = 128

num_classes = 24

epochs = 10

#scale our image
x_train = x_train/255

x_test = x_test/255

#reshape them into the size required by tf and keras
x_train = x_train.reshape(x_train.shape[0],28,28,1)

x_test = x_test.reshape(x_test.shape[0],28,28,1)

plt.imshow(x_train[0].reshape(28,28))

create our CNN Model
from tensorflow.keras.layers import Conv2D,MaxPooling2D

from tensorflow.keras import backend as K

from tensorflow.keras.optimizers import Adam

model = Sequential()

model.add(Conv2D(64,kernel_size=(3,3),activation='relu',input_shape=(28,28,1)

))

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Conv2D(64,kernel_size=(3,3),activation='relu'))

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Conv2D(64,kernel_size=(3,3),activation='relu'))

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())

model.add(Dense(128,activation='relu'))

model.add(Dropout(0.20))

model.add(Dense(num_classes,activation='softmax'))

#compile our model
model.compile(loss =

'categorical_crossentropy',optimizer=Adam(),metrics=['accuracy'])

print(model.summary())

[out]

Model: "sequential"

 Layer (type) Output Shape Param #

===

 conv2d (Conv2D) (None, 26, 26, 64) 640

 max_pooling2d (MaxPooling2D (None, 13, 13, 64) 0

)

 conv2d_1 (Conv2D) (None, 11, 11, 64) 36928

 max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0

 2D)

 conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

 max_pooling2d_2 (MaxPooling (None, 1, 1, 64) 0

 2D)

 flatten (Flatten) (None, 64) 0

 dense (Dense) (None, 128) 8320

 dropout (Dropout) (None, 128) 0

 dense_1 (Dense) (None, 24) 3096

===

Total params: 85,912

Trainable params: 85,912

Non-trainable params: 0

None

#train our model
history =

model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=epochs,batch_s

ize=batch_size)

[out]

Epoch 1/10

151/151 [==============================] - 69s 437ms/step - loss: 2.6858 -

accuracy: 0.1835 - val_loss: 1.6268 - val_accuracy: 0.4787

Epoch 2/10

151/151 [==============================] - 65s 430ms/step - loss: 1.2733 -

accuracy: 0.5711 - val_loss: 0.8176 - val_accuracy: 0.7402

Epoch 3/10

151/151 [==============================] - 64s 421ms/step - loss: 0.7697 -

accuracy: 0.7368 - val_loss: 0.5300 - val_accuracy: 0.8326

Epoch 4/10

151/151 [==============================] - 64s 422ms/step - loss: 0.5275 -

accuracy: 0.8206 - val_loss: 0.3705 - val_accuracy: 0.8805

Epoch 5/10

151/151 [==============================] - 62s 411ms/step - loss: 0.3547 -

accuracy: 0.8803 - val_loss: 0.2434 - val_accuracy: 0.9239

Epoch 6/10

151/151 [==============================] - 61s 407ms/step - loss: 0.2566 -

accuracy: 0.9169 - val_loss: 0.1676 - val_accuracy: 0.9503

Epoch 7/10

151/151 [==============================] - 61s 405ms/step - loss: 0.1929 -

accuracy: 0.9381 - val_loss: 0.1274 - val_accuracy: 0.9649

Epoch 8/10

151/151 [==============================] - 61s 404ms/step - loss: 0.1490 -

accuracy: 0.9526 - val_loss: 0.0694 - val_accuracy: 0.9874

Epoch 9/10

151/151 [==============================] - 65s 431ms/step - loss: 0.1073 -

accuracy: 0.9686 - val_loss: 0.0631 - val_accuracy: 0.9870

Epoch 10/10

151/151 [==============================] - 66s 437ms/step - loss: 0.0918 -

accuracy: 0.9734 - val_loss: 0.0358 - val_accuracy: 0.9958

#save our model
model.save("sign_mnist_cnn_50_Epochs.h5")

print("Model Saved")

#view our training history graphically
plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Accuracy')

plt.xlabel('epoch')

plt.ylabel('accuracy')

plt.legend(['train','test'])

plt.show()

[out]

#reshape our test data so that we can evaluate it's performance on

unseen data

test_labels = test['label']

test.drop('label',axis = 1,inplace=True)

test_images = test.values

test_images = np.array([np.reshape(i,(28,28)) for i in test_images])

test_images = np.array([i.flatten() for i in test_images])

test_labels = label_binrizer.fit_transform(test_labels)

test_images = test_images.reshape(test_images.shape[0],28,28,1)

test_images.shape

y_pred = model.predict(test_images)

#get our accuracy score
from sklearn.metrics import accuracy_score

accuracy_score(test_labels,y_pred.round())

[out] 0.8113496932515337

create function to match label to letter
def getLetter(result):

 classLabels = {0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

 4: 'E',

 5: 'F',

 6: 'G',

 7: 'H',

 8: 'I',

 9: 'K',

 10: 'L',

 11: 'M',

 12: 'N',

 13: 'O',

 14: 'P',

 15: 'Q',

 16: 'R',

 17: 'S',

 18: 'T',

 19: 'U',

 20: 'V',

 21: 'W',

 22: 'X',

 23: 'Y'}

 try:

 res = int(result)

 return classLabels[res]

 except:

 return "Error"

test on actual webcam Input
cap = cv2.VideoCapture(0)

while True:

 ret,frame = cap.read()

 ############################

 frame = cv2.flip(frame,1)

 #define region of interest

 roi = frame[100:400,320:620]

 cv2.imshow('roi',roi)

 roi = cv2.cvtColor(roi,cv2.COLOR_BGR2GRAY)

 roi = cv2.resize(roi,(28,28),interpolation = cv2.INTER_AREA)

 cv2.imshow('roi scaled and gray',roi)

 copy = frame.copy()

 cv2.rectangle(copy,(320,100),(620,400),(255,0,0),5)

 roi = roi.reshape(1,28,28,1)

 #result = str(model.predict_classes(roi,1,verbose = 0)[0])

 predict_x=model.predict(roi,1,verbose = 0)

 classes_x=np.argmax(predict_x,axis=1)

 result = str(classes_x[0])

 #result = str((model.predict(roi,1,verbose=0) > 0.5).astype("int32")[0])

cv2.putText(copy,getLetter(result),(300,100),cv2.FONT_HERSHEY_COMPLEX,2,(0,255,

0),2)

 cv2.imshow('frame',copy)

 if cv2.waitKey(1) ==13: # 13 is the enter key

 break

cap.release()

cv2.destroyAllWindows()

Output and Result

We have successfully implemented our project with the accuracy of around 80% to

85%

Future Works

The extensions of this project are given below:

❖ Translate the text format into the speech for the blind people

❖ Convert the text into sign language

❖ Include the body movements as well as the expression for the conversion

Conclusion

With the growth in globalization and emphasis on educational advancements, we want to make

sure that no one should face any kind of hindrance regardless of one's in capabilities. We are

aiming to build a web application in order to overcome the disabilities of deaf and dumb people to

make sure they don't feel like straggling behind than the rest of the world, as education define one's

personality. This project will not only be used in academic fields but also in day-to-day life as well

because communication is must to survive. This web application will be reading user's hand

gestures and after analysis it will convert that sign in text as well as speech format so they can

communicate easily with everyone around them. This gesture conversion that we are building is

only limited to English language as of now, but we will be looking forward to expand its linguistic

basket to have multiple language conversion in the near future. The problem with the current

gesticulation recognition application is that they are incompetent, as a there is not one but many

types of sign languages approximately 300 different types of sign languages all around the globe.

The earlier systems were developed under the functioning of MATLAB, but it’s not efficient.

References

[1] Brill R. 1986. The Conference of Educational Administrators Serving the Deaf: A

History. Washington, DC: Gallaudet University Press.

[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov.

1998, doi: 10.1109/5.726791.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen, "MobileNetV2: Inverted

Residuals and Linear Bottlenecks," 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018, pp. 4510-4520, doi: 10.1109/CVPR.2018.00474.

[4] L. K. Hansen and P. Salamon, "Neural network ensembles," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, Oct. 1990, doi:

10.1109/34.58871.

[5]Kang, Byeongkeun, SubarnaTripathi, and Truong Q. Nguyen. ”Real- time sign language

fingerspelling recognition using convolutional neural networks from depth map.” arXiv

preprintarXiv: 1509.03001 (2015).

[6] Suganya, R., and T. Meeradevi. ”Design of a communication aid for phys- ically

challenged.” In Electronics and Communication Systems (ICECS), 2015 2nd International

Conference on, pp. 818-822. IEEE, 2015.

[7] SruthiUpendran, Thamizharasi. A,” American Sign Language Interpreter System for

Deaf and Dumb Individuals”, 2014 International Conference on Control, Instrumentation,

Communication and Computa.

[8] David H. Wolpert, Stacked generalization, Neural Networks, Volume 5, Issue 2, 1992,

Pages 241-259, ISSN 0893-6080, https://doi.org/10.1016/S0893-6080(05)80023-1.

[9] Y. Liu, X. Yao, Ensemble learning via negative correlation, Neural Networks, Volume

12, Issue 10,1999, Pages 1399-1404, ISSN 0893-6080, https://doi.org/10.1016/S0893-

6080(99)00073-8.

[10] MacKay D.J.C. (1995) Developments in Probabilistic Modelling with Neural Networks

— Ensemble Learning. In: Kappen B., Gielen S. (eds) Neural Networks: Artificial

Intelligence and Industrial Applications.Springer, London. https://doi.org/10.1007/978-1-

4471-3087-1_37

[11] Polikar R. (2012) Ensemble Learning. In: Zhang C., Ma Y. (eds) Ensemble Machine

Learning.Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9326-7_1

View publication

