

A Project Report

on

Cartoonify the image

Submitted in partial fulfillment of the

requirement for the award of the degree of

Under The Supervision of

Mrs. Suman Devi

Assistant Professor

Submitted By

PRACHI SINGH

19SCSE1010537

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA,

INDIA

DECEMBER, 2021

 CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the project, entitled “Cartoonify

the image” in partial fulfillment of the requirements for the award of the B.Tech(CSE)

submitted in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of JULY-2021 to DECEMBER-

2021 and Year, under the supervision of Mrs. Suman Devi, Assistant Professor, Department of

Computer Science and Engineering, of School of Computing Science and Engineering,

Galgotias University, Greater Noida.

The matter presented in the thesis project has not been submitted by me/us for the award of any

other degree of this or any other places.

PRACHI SINGH

19SCSE1010537

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Mrs. Suman Devi

Assistant Professor

 CERTIFICATE

The Final Project Viva-Voce examination of PRACHI SINGH 19SCSE1010537 has been held on

 and his/her work is recommended for the award of Department Of

 Computer Science and Engineering.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator

Signature of Dean

Date: December 2021

Place: Greater Noida

ACKNOWLEDGEMENT

I thank the almighty for giving us the courage and perseverance in completing the main project.

This project itself is acknowledgment to all those people who have given us their heartfelt co-

operation in making this project a grand success.

I am greatly indebted to project guide Mrs. Suman Devi, Assistant Professor, Computer Science,

and engineering, for providing valuable guidance at every stage of this project work. I am

profoundly grateful for the unmatched services rendered by him.

Our special thanks to all the faculty of Computer Science and Engineering and peers for their

valuable advises at every stage of this work.

5

ABSTRACT

In this paper, we propose a solution to transforming pho- tos of real world scenes into cartoon

style images, which is valuable and challenging in computer vision and computer graphics.

Our solution belongs to learning based methods, which have recently become popular to

stylize images in artistic forms such as painting.However, existing methods do not produce

satisfactory results for cartoonization, due to the fact that (1) cartoon styles have unique

charac- teristics with high level simplification and abstraction, and(2) cartoon images tend to

have clear edges, smooth color shading and relatively simple textures, which exhibit signif-

icant challenges for texture-descriptor-based loss functions used in existing methods. In this

paper, we propose Car- toonGAN, a generative adversarial network (GAN) frame- work for

cartoon stylization. Our method takes unpaired photos and cartoon images for training, which

is easy to use. Two novel losses suitable for cartoonization are pro- posed: (1) a semantic

content loss, which is formulated as a sparse regularization in the high-level feature maps of

the VGG network to cope with substantial style variation between photos and cartoons, and

(2) an edge-promoting adversarial loss for preserving clear edges. We further in- troduce an

initialization phase, to improve the convergence of the network to the target manifold. Our

method is also much more efficient to train than existing methods. Exper- imental results

show that our method is able to generate high-quality cartoon images from real-world photos.

6

Table of Contents

Title

Candidates Declaration

Acknowledgement

Abstract

List of Figures

Page no.

Chapter Introduction 1

Chapter 2Literature Survey/Project Design 9

Chapter 3Functionality/Working of Project 24

Chapter 4Source code and Results 25

Chapter 5Conclusion and Future Scope 29

Reference

29

Publication/Copyright/Product

7

List of Figures

S.No. Title

1 Metro cartoon image

2 The Surface Representation,The Structure Representation,The

Texture Representation

3 Super-Pixal and Structure Extraction

4 Image Smoothening

5 Non-photorealistic Rendering

6 Generative Adversarial Network

7 Image-to-Image Translation

8 Architecture of the generator and discriminator networks in

the proposed CartoonGAN

9 By removing clear edges in a cartoon image c

Sdata(c), we generate a corresponding image

ei Sdata(e).

10 For an original photo (a), the image (b) is the result after the

initialization phase. See the main text for details

11 Some results of different artistic styles generated by Car-

toonGAN. (a) Input real- world photos. (b) Makoto Shinkai

style. (c)
Miyazaki Hayao style

12 Details of edge generation. (a) The result of NST

[6] using all the images in the training set as the style image.

(b) CycleGAN with the identity loss. (c) Our result.

13 Comparison with state of the art

7

1. INTRODUCTION

Cartoons are an artistic form widely used in our daily life. In addition to artistic

interests, their applications range from publication in printed media to

storytelling for children’s education. Like other forms of artworks, many

famous cartoon images were created based on real-world scenes.

Figure1

Figure1 . shows a real-world scene whose cor-responding cartoon image appeared in

the animated film “Your Name”. However, manually recreating real- world scenes in

cartoon styles is very laborious and involves substantial artistic skills. To obtain

high-quality cartoons, artists have to draw every single line and shade each color

region of target scenes. Meanwhile, existing image editing software/algorithms with

standard features cannot produce satisfactory results for cartoonization. Therefore,

specially designed techniques that can automatically transform real- world photos to

high-quality cartoon style images are very helpful and for artists, tremendous amount

of time can be saved so that they can focus on more creative work. Such tools also

provide a useful addition to photo editing soft- ware such as Instagram and

Photoshop. Stylizing images in an artistic manner has been widely studied in the

domain of non-photorealistic rendering .

Traditional approaches develop dedicated algorithms for specific styles.However,

substantial efforts are required to produce fine-grained styles that mimic individual

artists. Recently, learning-based style transfer methods in which an image can be

stylized based on provided ex- amples, have drawn considerable attention. In

8

particular, the power of Generative Adversarial Networks (GANs) formulated in a

cyclic manner is explored to achieve high- quality style transfer, with the distinct

feature that the model is trained using unpaired photos and stylized images. Although

significant success has been achieved with learning based stylization, state-of-the-

art methods fail to produce cartoonized images with acceptable quality. There are

two reasons. First, instead of adding textures such as brush strokes in many other

styles,cartoon images are highly simplified and abstracted from real- world photos.

Second, despite variation of styles among artists cartoon images have noticeable

common appearance — clear edges, smooth color shading and relatively simple

textures — which is very different from other forms of artworks. In this paper, we

propose CartoonGAN, a novel GAN- based approach to photo cartoonization. Our

method takes a set of photos and a set of cartoon images for training. To produce

high quality results while making the training data easy to obtain, we do not require

pairing or correspondence between two sets of images. From the perspective of com-

puter vision algorithms, the goal of cartoon stylization is to map images in the photo

manifold into the cartoon mani- fold while keeping the content unchanged. To

achieve this goal, we propose to use a dedicated GAN- based architec- ture together

with two simple yet effective loss functions. The main contributions of this paper

are:

(1) We propose a dedicatedGAN-based approach that effectively learns the mapping

from real-world photos to car- toon images using unpaired image sets for training.

Our method is able to generate high-quality stylized cartoons, which are substantially

better than state-of-the-art methods. When cartoon images from individual artists are

used for training, our method is able to reproduce their styles.

(2) We propose two simple yet effective loss functions in GAN-based architecture.

In the generative network, to cope with substantial style variation between photos

and car- toons, we introduce a semantic loss defined as an ℓ1 sparse regularization

in the high-level feature maps of the VGG network . In the discriminator network,

we propose an edge-promoting adversarial loss for preserving clear edges.

(3) We further introduce an initialization phase to im- prove the convergence of the

network to the target manifold. Our method is much more efficient to train than

existing methods.

But Machine Learning is constantly evolving thus expanding in almost every field.

And research work done by Xinrui Wang and Jinze Yu has enabled us to cartoonize

real high-quality images with just a little training.

The process of converting real-life high-quality pictures into practical cartoon scenes

is known as cartoonization.

Earlier models that proposed the same approach used black-box models, the former

model achieves great accuracies but downturns the stylization quality causing some

bad cases. Like, every cartoon workflow considers different features, these variations

pose a relevant effect on black-box models.

https://towardsai.net/p/machine-learning/what-is-machine-learning-ml-b58162f97ec7
https://towardsai.net/p/machine-learning/what-is-machine-learning-ml-b58162f97ec7
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang

9

To overcome the drawbacks of the former model, more emphasis was given upon

human painting behaviors and cartoon images of different styles, and a white-box

model was developed.

The model decomposes images into three different cartoon representations, which

further counsel the network optimization to generate cartoonized images.

Surface Representation: It helps to extract smooth surfaces of the image that

contains a weighted low-frequency component where the color composition and

surface texture are retained along with edges, textures, and details.

Structure Representation: It helps to derive global structural information and

sparse color blocks, once done we implement adaptive coloring algorithms like the

Felzenswalb algorithm to develop structural representation that can help us to

generate sparse visual effects for celluloid styled cartoon process.

Textured Representation: It helps us to retain painted details and edges. The three-

dimensional image is converted to single-channel intensity map that helps to retain

pixel intensity compromising color and luminance, it follows the approach of manual

artist that first draw a line sketch with contours and then apply colors to it. The

extracted outputs are fed to a Generative Neural Networks (GAN) framework, which

helps to optimize our problem making the solution more flexible and diversified.

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e
https://towardsai.net/p/machine-learning/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e

10

Figure2

2. Proposed Approach

PREPROCESSING

Along with the proposed three-step approach, preprocessing is an important part of

our model. It helps to smoothen the image, filter the features, converting it to

sketches, and translating the output from a domain to another. After implementing

these related work we can be sure that the output generated by our model will give

us the best output that retains the highest quality features.

• Super-pixel and Structure Extraction: This method is used to divide the

image into regions and defining a predicate for measuring the boundary

between two regions. Based on the predicate segmentation, an algorithm is

https://towardsai.net/p/data-science/arketing-analytics-insights-using-machine-learning-338bb94acc14

11

developed whose decision is based on a greedy technique but still helps to

satisfy global properties. After identification of contours, we implement

Gradient Ascent to initialize the image with rough clusters and iteratively

amend the clusters until convergence. Advancing our process, to develop a

cartoon-like segmentation method we use the Felzenszwalb algorithm that

helps us to seize global content information and produce practically usable

results for celluloid style cartoon workflows.

Figure3

• Image Smoothening: To extract smooth and cartoon resembling surfaces

from images, Guided filters are used. A guided filter is an advanced version

of Bilateral filters with better near the edge behavior. The goal is simply

removing/significantly decreasing the noise and obtaining useful image

structures. The filtering output of the guided filter is an optimal linear

transform of an input image. Following the approach of Bilateral filters it

retains smoothing property and in addition, is free from gradient reversal

artifacts.

Figure 4

https://towardsai.net/p/data-science/arketing-analytics-insights-using-machine-learning-338bb94acc14
https://sponsors.towardsai.net/

12

• Non-photorealisticRendering: It helps to convert images into artistic styles

such as sketching, painting, and water-coloring. To expand its functionality

we use it with Neural Style Transfer Methods that helps to sum up the style

of one image and another. The combined piece of code helps to mark semantic

edges while segregating image details. But in the “White box cartoonization”

method a single image is utilized and learns cartoonist features from a set of

animated visuals allowing our model to produce high-quality output on diverse

cases.

.

Figure5

• Generative Adversarial Network-It is an image synthesizer that helps to

generate new data using joint probability. To generate new images it uses

Generator and Discriminator. The generator makes images and

Discriminator checks images to be real or fake and then sends feedback to

the generator thus asking him to generate better data. The more both networks

are trained, the better images we get.

13

Figure6

• Image-to-Image Translation: The drawback with GAN is, it only works for

given training data, but paired training data isn’t always available. To

overcome the drawback we employ cycleGAN where the goal is to translate

an image from a source domain X to a target domain Y even in absence of

paired training data.

https://towardsai.net/p/machine-learning/best-datasets-for-machine-learning-and-data-science-d80e9f030279
https://towardsai.net/p/machine-learning/best-datasets-for-machine-learning-and-data-science-d80e9f030279

14

Figure7

To continue with the process, we segregate image features which enforces the network to

learn different features with separate objectives, making the process more robust.

2. LITERATURE SURVEY Related

Work

Non-photorealistic rendering (NPR)

Many NPR algorithms have been developed, either au- tomatically or semi-

automatically, to mimic specific artis- tic styles including cartoons . Some works

render 3D shapes in simple shading, which creates cartoon-like ef- fect . Such

techniques called cel shading can save substantial amount of time for artists and have

been used in the creation of games as well as cartoon videos and movies However,

turning existing photos or videos into cartoons such as the problem studied in this

paper is much more challenging.

A variety of methods have been developed to create im- ages with flat shading,

mimicking cartoon styles. Such methods use either image filtering or formulations

in optimization problems . However, it is difficult to cap- ture rich artistic styles

using simple mathematical formulas. In particular, applying filtering or optimization

uniformly to the entirely image does not give the high-level abstrac- tion that an artist

would normally do, such as making object boundaries clear. To improve the results,

alternative meth- ods rely on segmentation of images/videos , although at the costof

15

requiring someuser interaction. Dedicated meth- ods have also been developed for

portraits , where semantic segmentation can be derived automatically by de- tecting

facial components. However, such methods cannot cope with general images.

Stylization with neural networks

Convolutional Neural Networks (CNNs) have received considerable attention for

solving many computer vision problems. Instead of developing specific NPR al-

gorithms which require substantial effort for each style, style transfer has been

actively researched. Unlike tradi- tional style transfer methods which require paired

style/non-style images, recent studies show that the VGG network trained for object

recognition has good ability to extract semantic features of objects, which is very

important in stylization. As a result, more powerful style transfer methods have been

developed which do not require paired training images.

Given a style image and a content image, Gatys et al. first proposed a neural style

transfer (NST) method based on CNNs that transfers the style from the style image

to the content image. They use the feature maps of a pre-trained VGG network to

represent the content and optimize the re- sult image, such that it retains the content

from the content image while matching the texture information of the style image,

where the texture is described using the global Gram matrix . It produces nice results

for transferring a vari- ety of artistic styles automatically. However, it requires the

content and style images to be reasonably similar. Further- more, when images

contain multiple objects, it may transfer styles to semantically different regions. The

results for car- toon style transfer are more problematic, as they often fail to

reproduce clear edges or smooth shading.

Li and Wand obtained style transfer by local match- ing of CNN feature map sand

using a Markov Random Field for fusion (CNNMRF). However, local matching can

make mistakes, resulting in semantically incorrect output. Liao et al. proposed a

Deep Analogy method which keeps se- mantically meaningful dense

correspondences between the content and style images while transferring the style.

They also compare and blend patches in the VGG feature space. Chen et al. proposed

a method to improve comic style transfer by training a dedicated CNN to classify

comic/non- comic images. All these methods use a single style image for a content

image, and the result heavily depends on the chosen style image, as there is inevitable

ambiguity regard- ing the separation of styles and content in the style image. In

comparison, our method learns a cartoon style using two sets of images (i.e., real-

world photos and cartoon images).

16

2.3 Image synthesis with GANs

An alternative, promising approach to image synthesis is to use Generative

Adversarial Networks (GANs) , which produce state-of-the-art results in many

applications such as text to image translation, image in painting, image super-

resolution , etc. The key idea of a GAN model is to train two networks (i.e., a

generator and a dis- criminator) iteratively, whereby the adversarial loss provided by

the discriminator pushes the generated images to- wards the target manifold .

Several works have provided GAN solutions to pixel-to-pixel image synthesis

problems. However, these methods require paired image sets for the training process

which is impractical for stylization due to the challenge of obtaining such

corresponding image sets.

To address this fundamental limitation, CycleGAN was recently proposed, which is

a framework able to per- form image translation with unpaired training data. To

achieve this goal, it trains two sets of GAN models at the same time, mapping from

class A to class B and from class B to class A respectively. The loss is formulated is

based on the combined mapping that the map images to the same class. However,

simultaneously training two GAN models often converges slowly, resulting in a time

– consuming training process. This method also produces poor results for cartoon

.Stylization due to the characteristics(i.e., high-levelabstrac- tion and clear edges) of

cartoon images. As a comparison, our method utilizes a GAN model to learn the

mapping be- tween photo and cartoon manifolds using unpaired training data.

Thanks to our dedicated loss functions, our method is able to synthesize high quality

cartoon images, and can be trained much more efficiently.

2.4. Network architectures

Many works show that although deep neural networks can potentially improve the

ability to represent complex functions, they can also be difficult to train because of

the notorious vanishing gradient problem. The re- cently introduced concept of

residual blocks is a pow- erful choice to simplify the training process. It designs an

“identity shortcut connection” which relieves the vanishing gradient issue while

training. Models based on residual blocks have shown impressive performance in

generative networks .

Another common way to ease the training of deep CNNs batch normalization , which

is designed to counteract the internal covariate shift and reduce the oscillations when

approaching the minimum point. In addition, Leaky ReLu (LReLU) is a widely used

activation function in deep CNNs for efficient gradient propagation which increases

the performance of networks by allowing a small, non-zero gra- dient when the unit

is not active. We integrate these tech- niques in our cartoonization deep architecture.

17

CartoonGAN

We design the generator and discrimina- tor networks to suit the particularity of

cartoon images; see Figure 2 for an overview. We formulate the process oflearning

to transform real- world photos into cartoon images as a mapping function which

maps the photo manifold P to the cartoon mani- fold C.

A GAN framework consists of two CNNs. One is the generator G which is trained

to produce output that fools the discriminator. The other is the discriminator D which

classifies whether the image is from the real target mani- fold or ing data Sdata(p) =

{pi |i = 1 ...N } P and Sdata(c) = {ci |i = 1 ...M } C, where N and M are the numbers

of photo and cartoon images in the training set, respectively. Like other GAN

frameworks, a discriminator function D is trained for pushing G to reach its goal by

distinguishing images in the cartoon manifold from other images and pro- viding the

adversarial loss for G. Let L be the loss function,

G* and D* be the weights of the network. Our objective is to solve the min

max problem:

(G*,D*) = argmin max L(G,D)

G D

We present the detail of our network architecture in Section 3.1 and propose two loss

functions for G and D in Sec- tion 3.2. To further improve the network convergence,

we propose an initialization phase and incorporate it into Car- toonGAN, which is

summarized in Section 3.3.

CartoonGAN architecture

Refer to Figure 2. In CartoonGAN, the generator net- work G is used to map input

images to the cartoon manifold. Cartoon stylization is produced once the model is

trained. G begins with a flat convolution stage followed by two down- convolution

blocks to spatially compress and encode the images. Useful local signals are

extracted in this stage for downstream transformation. Afterwards, eight residual

blocks with identical layout are used to construct the content and manifold feature.

We employ the residual block layout proposed in . Finally, the output cartoon style

images are reconstructed by two up-convolution blocks which

contain fractionally strided convolutional layer with stride 1/2 and a final

convolutional layer with 7 × 7 kernels.

18

Figure 8. Architecture of the generator and discriminator networks in the proposed CartoonGAN, in which k is

the kernel size, n is the number of feature maps and s is the stride in each convolutional layer, ‘norm’ indicates a

normalization layer and ‘ES’ indicates elementwise sum.

Complementary to the generator network, the discrimi- nator network D is used to

judge whether the input image is a real cartoon image. Since judging whether an

image is cartoon or not is a less demanding task, instead of a reg- ular full-image

discriminator, we use a simple patch-level discriminator with fewer parameters in

D. Different from object classification, cartoon style discrimination relies on local

features of the image. Accordingly, the network D is designed to be shallow. After

the stage with flat layers, the network employs two strided convolutional blocks to

re- duce the resolution and encode essential local features for classification.

Afterwards, a feature construction block and a 3 × 3 convolutional layer are used to

19

obtain the classifica- tion response. Leaky ReLU (LReLU) with α = 0.2 is used after

each normalization layer.

Loss function

The loss function L(G,D) in Eq.(1) consists of two parts: (1) the adversarial loss Ladv

(G,D) (Section 3.2.1), which drives the generator network to achieve the de- sired

manifold transformation, and (2) the content loss Lcon(G,D) (Section 3.2.2), which

preserves the image content during cartoon stylization. We use a simple addi- tive

form for the loss function:

L(G,D)= Ladv (G,D) + ωLcon(G,D),

where ω is the weight to balance the two given losses. Larger ω leads to more content

information from the in- put photos to be retained, and therefore, results in stylized

images with more detailed textures. In all our experiments, we set ω = 10 which

achieves a good balance of style and content preservation.

Adversarial loss Ladv (G,D)

The adversarial loss is applied to both networks G and D, which affects the cartoon

transformation process in the gen- erator network G. Its value indicates to what

extent the out- put image of the generator G automatically generate a set of images

Sdata(e) = {ei |i = 1 ...M } ⊂ E by remov- ing clear edges in Sdata(c), where C and

E are the cartoon manifold and the manifold of cartoon-like images without clear

edges, respectively. In more detail, for each image ci ∈ Sdata(c), we apply the

following three steps: (1) detect edge pixels using a standard Canny edge detector

[2], (2) di- late the edge regions, and (3) apply a Gaussian smoothing in the dilated

edge regions.

Figure 3 shows an example of a cartoon image and a modified version with edges

smoothed out. Recall that for each photo pk in the photo manifold P, the generator

G out- puts a generated image G(pk). In CartoonGAN, the goal of training the

discriminator D is to maximize the probability of assigning the correct label to looks

like a cartoon image. In previous GAN frameworks , the task of the dis- criminator

D is to figure out whether the input image is syn- thesized from the generator or from

the real target manifold. However, we observe that simply training the discriminator

D to separate generated and true cartoon images is not suf- ficient for transforming

photos to cartoons. This is because the presentation of clear edges is an important

characteris- tic of cartoon images, but the proportion of these edges is usually very

small in the whole image. Therefore, an out- put image without clearly reproduced

edges but with correct shading is likely to confuse the discriminator trained with a

20

standard loss. To circumvent thisoblem, from the training cartoon images Sdata(c)

⊂ C, we G(pk), the cartoon images without clear edges (i.e., ej ∈ Sdata(e)) and the

real car- toon images (i.e., ci ∈ Sdata(c)), such that the generator G can be guided

correctly by transforming the input to the correct manifold. Therefore, we define the

edge-promoting adversarial loss as:

La d v (G, D) = Ec i∼ S data (c)[log D (c i)] + E ej ∼ S data(e)[log(1 − D (ej))] + E pk ∼ S data (p)[log(1 − D (G (p k)))].

21

(a) A cartoon image ci b) The edge-smoothed version ei

. Figure9

Figure 9. By removing clear edges in a cartoon image c ∈ Sdata(c), we generate a corresponding image

ei ∈ Sdata(e).

Content loss Lcon(G,D)

In addition to transformation between correct manifolds, one more important goal in

cartoon stylization is to ensure the resulting cartoon images retain semantic content

of the input photos. In CartoonGAN, we adopt the high-level fea- ture maps in the

VGG network [30] pre-trained by [27], which has been demonstrated to have good

object preser- vation ability. Accordingly, we define the content loss as:

Lcon(G,D) = Epi∼Sdata(p)[||V GGl(G(pi)) − V GGl(pi)||1]

where l refers to the feature maps of a specific VGG layer.Unlike other image

generation methods , we de- fine our semantic content loss using the ℓ1 sparse

regular- ization of VGG feature maps between the input photo and the generated

cartoon image. This is due to the fact that car- toon images have very different

characteristics (i.e., clear edges and smooth shading) from photos. We observe that

even with a suitable VGG layer that intends to capture the image content, the feature

maps may still be affected by the massive style difference. Such differences often

concen- trate on local regions where the representation and regional characteristics

change dramatically. ℓ1 sparse regulariza- tion is able to cope with such changes

much better than the standard ℓ2 norm. As we will show later, this is crucial to

reproduce the cartoon style. We use the feature maps in the layer ‘conv4 4’ to

compute our semantic content loss.

22

(a) Original photo (b) Image after initialization

Figure 10. For an original photo (a), the image (b) is the result after the initialization phase. See the main text

for details.

Initialization phase

Since the GAN model is highly nonlinear, with random initialization, the

optimization can be easily trapped at sub- optimal local minimum. To

help improve its convergence, we propose a new initialization phase.

Note that the tar- get of the generator network G is to reconstruct the

input photo in a cartoon style while keeping the semantic content. We

start the adversarial learning framework with a generatorwhich only

reconstructs the content of input images. For this purpose, in the

initialization phase, we pre- train the generator network G with only the

semantic content loss loss Lcon(G,D). Figure 4 shows an example of the

recon- structed image after 10 epochs of this initialization training phase,

which already produces reasonable reconstruction. Our experimental

results show that this simple initialization phase helps CartoonGAN fast

converge to a good configu- ration, without premature convergence.

Similar observation is made in which uses the content image to initialize

the result image to improve style transfer quality.

4. Experiments

We implemented our CartoonGAN in Torch and Lua language. The trained models

in our experiments are available Able to facilitate evaluation of future methods. All

experi- ments were performed on an NVIDIA Titan Xp GPU CartoonGAN is able

to produce high-quality cartoon stylization using the data of individual artists for

23

training, which are easily obtained from cartoon videos, since our method does not

require paired images. Different artists have their unique cartoon styles, which can

be effectively learned by CartoonGAN. Some results of different artistic styles

generated by CartoonGAN are shown in Figure 5.

To compare CartoonGAN with state of the art, we col- lected the training and test

data as presented in Section 4.1. In Section 4.2, we present the comparisonbetween

the pro- posed method and representative stylization methods. In Section 4.3, we

present a further ablation experiment to an- alyze the effectiveness of each

component in our Cartoon- GAN model.

Figure 11Some results of different artistic styles generated by Car- toonGAN. (a) Input real-world photos. (b)

Makoto Shinkai style. (c) Miyazaki Hayao style.

Data

The training data contains real-world photos and cartoon images, and the test data

only includes real-world photos. Allthetrainingimagesareresizedandcroppedto

256×256.

Photos. 6,153 photos are downloaded from Flickr, in which 5,402 photos are for

training and others for testing.

24

Cartoon images.

Different artists have different styles when creating cartoon images of real-world

scenes. To ob- tain a set of cartoon images with the same style, we use the key frames

of cartoon films drawn and directed by the same artist as the training data. In our

experiments, 4,573 and 4,212 cartoon images from several short cartoon videos are

used for training the Makoto Shinkai and Mamoru Hosoda

Figure 12. Details of edge generation. (a) The result of NST [6] using all the images in the training set as

the style image. (b) CycleGAN with the identity loss. (c) Our result.

Comparison with state of the art

We first compare Cartoon GAN with two recently pro- posed methods in CNN-

based stylization, namely NST and Cycle GAN . Note that the original NST takes

one style image Is and one content image Ic as input, and trans- fers the style from

Is to Ic. For fair comparison, we apply two adaptations of NST. In the first

adaptation, we manually choose a style image which has close content to the input

photo. In the second adaptation, we extend NST to take all the cartoon images for

training, similar to the comparative experiment in. We also compare two versions of

Cycle- GAN, i.e., without and with the identity loss Lidentity . The incorporation of

this loss tends to produce stylized images with better content preservation. 200

epochs were trained for both Cycle GAN and our Cartoon GAN.

Qualitative results. , which clearly demonstrate that NST and Cycle GAN cannot

deal with cartoon styles well. In comparison, by reproducing the necessary clear

edges and smooth shading while retaining the content of the input photo, our

Cartoon- GAN model produces hight- quality results .

25

More specifically, NST using only a style image may not be able to fully learn the

style, especially for areas in the target image whose content is different from the style

image (Figure 13b). When NST is extended to take more training data, rich styles

can be better learned. However, the styl- ized images tend to have local regions

stylized differently, causing inconsistency artifacts (Figure 13c).

Figure13

The stylization results of CycleGAN do not capture the cartoon styles well. Without

the identity loss, the output images do not preserve the content of the input photos

well (Figure 6d). The identity loss is useful to avoid this prob- lem, but the stylization

results are still far from satisfactory (Figure 6e). In comparison, Cartoon GAN

produces high- quality cartoonization which well follows individual artist’s style.

Figure 7 shows close-up views of an example in Figure 6, demonstrating that our

26

Cartoon GAN generates thees- sential edges which are very important for the cartoon

style.

Our CartoonGAN has the same property of not requiring paired images for training

as CycleGAN. However, Car- toonGAN takes much less training time. For each

epoch, CycleGAN and CycleGAN with Lidentity take 2291.77s and 3020.31s,

respectively, whereas CartoonGAN only takes 1517.69s, about half compared with

CycleGAN + Lidentity . This is because CycleGAN needs to train two GAN models

for bidirectional mappings, which seriously slows down the training process. For

image cartoonization, mapping back from cartoons to photos is not necessary. By

using the VGG feature maps rather than a cycle architec- ture to restrain the content,

CartoonGAN can learn cartoon stylization moreefficiently.

We also compare our method with CNNMRF and Deep Analogy , with Paprika and

Mamoru Hosoda

Roles of components in loss function

We perform the ablation experiment to study the role of each part in CartoonGAN.

Figure 9 shows the examples of ablations of our full loss function, in which all the

results are trained by Makoto Shinkai style’s data. The follow- ing results show that

each component plays an important role in CartoonGAN. First, the initialization

phase helps the generator G quickly converge to a reasonable manifold. As shown in

Fig. 9b, without initialization, although some key features are shown, the styles are

far from expectation. Second, even with a suitable VGG layer, large and often local-

ized differences in feature maps of input and cartoon style images are still needed

due to massive style differences. Us- ing the ℓ1 sparse regularization (instead of ℓ2)

of high-level VGG feature maps helps cope with substantial style differ- ences

between cartoon images and photos. Last, the elabo- rately designed edge loss guides

the generator G to produce clear edges in results, leading to better cartoon style

images.

The majority of photo editing websites offer the so-called Cartoon Effect. The main

advantages of online photo to cartoon effect apps are simplicity and quickness.

You’ll have to upload a photo from your computer or from the web, find Cartoon

Effect in the tool set or choose between styles or variants of this funny photo effect

(like in case of www.picturetopeople.org, Kuso Cartoon) and press the button Apply

(or Go). The image processing varies from several seconds up to 1-2 minutes.

However, as all quick online solutions these apps have drawbacks. A lot of photo

online photo editing tools are rather humdrum because they are deprived of

enhancement features. In these apps cartoonization is limited to 1-click operation.

http://www.picturetopeople.org/
http://kusocartoon.com/
http://kusocartoon.com/
http://kusocartoon.com/

27

Besides, sometimes colors may become blurred and it leads to an unsatisfactory

result. Such apps as www.convert to cartoon.com, Photo.to, Any Making and others

belong to this group. At the same time there are online photo editors with more

advanced tools. They have a variety of adjustment options. For example, Be Funky

helps you modify sketch brightness, contrast, smoothness and other details.

Figure14

3. The Workflow

• The input is first passed through Surface representation where Structural and

Textural features are removed, once we imitate cartoon painting style and

smooth surfaces, the output is passed through guided filters in order to retain

28

smooth edges. A discriminator Ds is proposed to verify whether result and

paired cartoon images have similar surfaces, and regulate the generator G to

learn the information stored in the extracted surface representation.

• The structural features are then passed through Structural representation that

clear boundaries in the cellular style framework and then we implement

Felzenszwalb algorithm to segment the areas. The algorithm assists us in

coloring each segment with an average pixel value. To impose a spatial

constraint on global content between outputs and provided paired cartoons we

use pre-trained VGGNetwork.

• As discussed earlier the variation of luminance and color information are non-

trivial issues to the model, therefore, we choose a random color shift algorithm

to convert three-channel input to single-dimension outputs that cling to high-

quality features. A discriminator Dt is then proposed to verify textual features

from the result and paired cartoon image, and regulates generator G to learn

the information stored in extracted texture representation.

Figure15

29

4. SOURCE CODE

import cv2 #for image processing

import easygui #to open the filebox

import numpy as np #to store image

import imageio #to read image stored at particular path import

sys

import matplotlib.pyplot as plt

import os import tkinter as tk

from tkinter import filedialog

from tkinter import * from PIL

import ImageTk, Image

""" fileopenbox opens the box to choose file

and help us store file path as string """

30

def upload():

ImagePath=easygui.fileopenbox()

cartoonify(ImagePath) #read the

image

originalmage = cv2.imread(ImagePath)

originalmage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2RGB)

#print(image) # image is stored in form of numbers

confirm that image is chosen if originalmage is None:

print("Can not find any image. Choose appropriate file")

sys.exit()

ReSized1 = cv2.resize(originalmage, (960, 540))

#plt.imshow(ReSized1, cmap='gray') #converting

an image to grayscale

grayScaleImage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2GRAY)

ReSized2 = cv2.resize(grayScaleImage, (960, 540))

#plt.imshow(ReSized2, cmap='gray') #applying median

blur to smoothen an image smoothGrayScale =

cv2.medianBlur(grayScaleImage, 5)

ReSized3 = cv2.resize(smoothGrayScale, (960, 540))

#plt.imshow(ReSized3, cmap='gray')

#retrieving the edges for cartoon effect #by using

thresholding technique getEdge =

cv2.adaptiveThreshold(smoothGrayScale, 255,

cv2.ADAPTIVE_THRESH_MEAN_C,

cv2.THRESH_BINARY, 9, 9)

ReSized4 = cv2.resize(getEdge, (960, 540))

#plt.imshow(ReSized4, cmap='gray')

#applying bilateral filter to remove noise #and

keep edge sharp as required

colorImage = cv2.bilateralFilter(originalmage, 9, 300, 300)

ReSized5 = cv2.resize(colorImage, (960, 540))

#plt.imshow(ReSized5, cmap='gray')

#masking edged image with our "BEAUTIFY" image

cartoonImage = cv2.bitwise_and(colorImage, colorImage, mask=getEdge)

ReSized6 = cv2.resize(cartoonImage, (960, 540))

#plt.imshow(ReSized6, cmap='gray')

Plotting the whole transition images=[ReSized1, ReSized2, ReSized3,

ReSized4, ReSized5, ReSized6]

fig, axes = plt.subplots(3,2, figsize=(8,8), subplot_kw={'xticks':[], 'yticks':[]},

31

gridspec_kw=dict(hspace=0.1, wspace=0.1)) for

i, ax in enumerate(axes.flat):

ax.imshow(images[i], cmap='gray')

//save button code plt.show() def save(ReSized6,

ImagePath): #saving an image using imwrite()

newName="cartoonified_Image" path1 =

os.path.dirname(ImagePath)

extension=os.path.splitext(ImagePath)[1] path =

os.path.join(path1, newName+extension)

cv2.imwrite(path, cv2.cvtColor(ReSized6, cv2.COLOR_RGB2BGR))

I = "Image saved by name " + newName +" at "+ path

tk.messagebox.showinfo(title=None, message=I)

top=tk.Tk()

top.geometry('400x400')

top.title('Cartoonify Your Image !')

top.configure(background='white')

label=Label(top,background='#CDCDCD', font=('calibri',20,'bold'))

upload=Button(top,text="Cartoonify an

Image",command=upload,padx=10,pady=5)

upload.configure(background='#364156',

foreground='white',font=('calibri',10,'bold'))

upload.pack(side=TOP,pady=50) save1=Button(top,text="Save cartoon

image",command=lambda:

save(ImagePath, ReSized6),padx=30,pady=5)

save1.configure(background='#364156',

foreground='white',font=('calibri',10,'bold'))

save1.pack(side=TOP,pady=50) top.mainloop()

RESULT

32

Figure16

5. Conclusion and Future Work

In this paper we proposed CartoonGAN, a Generative Adversarial Network to

transform real-world photos to high-quality cartoon style images. Aiming at

33

recreating faithful characteristics of cartoon images, we propose (1) a novel edge-

promoting adversarial loss for clear edges, and

(2) an ℓ1 sparse regularization of high-level feature maps in the VGG network for

content loss, which provides suf- ficient flexibility for reproducing smooth shading.

We also propose a simple yet efficient initialization phase to help improve

convergence. The experiments show that Cartoon- GAN is able to learn a model that

transforms photos of real- world scenes to cartoon style images with high quality and

high efficiency, significantly outperforming the state-of-the- art stylization methods.

In the future work, due to the importance of portrait, we would like to investigate

how to exploit local facial features to improve cartoon stylization for human faces.

Although we design our loss functions to tackle specific nature of cartoon stylization,

similar ideas are useful for other image synthesis tasks, which we will investigate

further. We also plan to add sequential constraints to the training process to extend

our method to handling videos.

6.References

[1] J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep

convolutional sufficient statistics. In International Conference on Learning

Representations (ICLR), 2016.

[2] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, (6):679–698, 1986.

[3] Y. Chen, Y.-K. Lai, and Y.-J. Liu. Transforming photos to comics using

convolutional neural networks. In Interna- tional Conference on Image

Processing, 2017.

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A MATLAB-like

environment for machine learning. In NIPS Workshop on BigLearn, 2011.

[5] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro,

and A. Courville. Adversarially learned in- ference. In International Conference

on Learning Represen- tations (ICLR), 2017.

[6] L. Gatys, A. Ecker, and M. Bethge. Image style transfer using convolutional

neural networks. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2414–2423, 2016.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled

generation of natural stimuli using convo- lutional neural networks. arXiv

preprint arXiv:1505.07376, 12, 2015.

[8] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and

34

E. Shechtman. Controlling perceptual factors in neural style transfer. In IEEE

Conference on Computer Vision and Pat- tern Recognition (CVPR), 2017.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S.Ozair,

A.Courville, andY.Bengio. Gen- erative adversarial nets. In Advances in Neural

Information Processing Systems 27, pages 2672–2680. 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn- ing for image

recognition. In IEEE Conference on Com- puter Vision and Pattern Recognition

(CVPR), pages 770– 778, 2016.

[11] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin.

Image analogies. In ACM SIGGRAPH, pages 327– 340, 1998.

	A Project Report on
	ACKNOWLEDGEMENT
	ABSTRACT

	2. Proposed Approach
	PREPROCESSING
	2.3 Image synthesis with GANs
	2.4. Network architectures

	CartoonGAN
	Content loss Lcon(G,D)
	4. Experiments

	3. The Workflow
	4. SOURCE CODE
	RESULT
	5. Conclusion and Future Work
	6.References

