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ABSTRACT 

 
 
 

 

In the context of the brain tumors, these are the most common and aggressive disease, 

leading to a short life prospect in their uppermost grade. So, treatment planning is a vital 

stage to refine the quality of life of cases. Generally, various image techniques resembling 

as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound image 

are used to evaluate the tumor in a brain, lung, liver, inside, prostate … etc. Especially, in 

thiswork MRI images are used to diagnose tumor in the brain. 

 

 

Notwithstanding the huge volume of data generated by MRI check thwarts automatic set of 

tumor vs non-tumor in a particular time. But it is having some limitation (i.e.) accurate 

quantitative measures is handed for limited number of images. Hence trusted and automatic 

set scheme are essential to prevent the death rate of natural. The automatic brain tumor set 

is really challenging task in large spatial and structural variability of surrounding region of 

brain tumor. 



 

In this, automatic brain tumor finding is proposed by using an algorithm Known as VGG-16 

which is a part of Convolutional Neural Networks (CNN) classification and Deep Learning. 

The deeper shell design is performed by using small kernels. The weight of the neuron is 

given as small. Experimental results show that the CNN libraries rate of 97.5 accuracy with 

low complexity and compared with all other state of arts methods. 
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Chapter-1 
 

Introduction 

 

 

Brain tumor is one of the vital organs in the natural body, which consists of billions of cells. 

The abnormal group of cells is formed from the abandoned division of cells, which is also 

called as lump. Brain tumors are divided into two types matching low grade (grade1 and 

grade2) and high grade (grade3 and grade4) tumor. Low grade brain tumor is called as 

benign. Likewise, the high-grade tumor is also called as malignant. Benign tumor isn't 

cancerous tumor. Hence it doesn’t spread other region of the brains. Notwithstanding the 

malignant tumor is a cancerous tumor. So, it spreads fast with indefinite boundaries to other 

region of thebody freely. It leads to immediate death. 

 

 

Brain MRI image is generally used to dig out the tumor and tumor progress modeling 

process. This information is generally used for growth spotting and treatment processes. 

MRI image gives farther information about given medical image than the CT or ultrasound 

image. MRI image provides detailed information about brain structure and anomaly 

spotting in brain tissue. Scholars offered unlike automated strategies for brain growths 

finding and type cataloging using brain MRI images from the time when it ran possible to 

overlook and freight medical images to the computer. Conversely, Neural Networks (NN) 

and Support Vector Machine (SVM) are the 



usually used techniques for their good enactment over the most recent untold years. Not 

with standing new, Deep Learning (DL) models fixed a stirring trend in machine learning 

as the underground architecture can efficiently represent complex relationships without 

wanting many nodes like in the superficial skeletons e.g., K- Nearest Neighbor (KNN) 

and Support Vector Machine (SVM). Therefore, theygrew fast to become the state of the 

art in other health informatics areas for example medical image analysis, medical 

informatics and bioinformatics. 

 

A convolutional neural network (CNN) is a class of artificial neural 

network, uttermost ordinarily applied to analyze visual imagery. They're also known as 

shift steady or space steady artificial neural networks (SIANN), based on the participated-

weight architecture of the convolution kernels or filters that slide along input features and 

feed translation equivariant responses known as feature charts. 

 

VGG16 is a simple and widely used Convolutional Neural Network (CNN) Architecture 

used for ImageNet, a large visual database project used in visual object recognition 

software research. The VGG16 model achieved 92.7% top-5 test accuracy in ImageNet, 

which is a dataset of over 14 million images belonging to 1000 classes. 



VGG16 is used in many deep learning image classification techniques and is popular due 

to its ease of implementation. VGG16 is extensively used in learning applications due to 

the advantage that it has. 

 

VGG16 is a CNN Architecture, which was used to win the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2014. It is still one of the best vision architectures to 

dates. 

 

During training, the input to the convnets is a fixed-size 224 x 224 RGB image. 

Subtracting the mean RGB value computed on the training set from each pixel is the only 

pre-processing done here. The image is passed through a stack of convolutional (conv.) 

layers, where filters with a very small receptive field: 3 × 3 (which is the smallest size to 

capture the notion of left/right, up/down, center and has the same effective receptive field 

as one 7 x 7), is used. It is deeper, has more non-linearities, and has fewer parameters. In 

one of the configurations, 1 × 1 convolution filters, which can be seen as a linear 

transformation of the input channels (followed by non-linearity), are also utilized. The 

convolution stride and the spatial padding of conv. layer input is fixed to 1 pixel for 3 x 3 

convolutional layers, which ensures that the spatial resolution is preserved after 

convolution. Five max-pooling layers, which follow some of the convolutional layers, 

helps in spatial pooling. Max-pooling is performed over a 2×2-pixel window, with stride 2. 



Types of Tumors: 
 
 

Benign Tumor 

Malignant Tumor 

 

 Benign Tumor:
- 

- 

  

Not Grow 
 

Non-Cancerous (Easily remove) 

 
 

 

 Malignant 
Tumor: Spread 
Cancerous



 
 

1.2.1 Tool and Technology Used 

 
 

 

Dataset- 

 

This study uses four different data sets that are available in publicly accessible 

databases. The first data set is called the Reference Image Database for Assessing 

Response to Therapy [14] The total number of images in this data set is 70,220. The 

second data set is called The Repository of Molecular Brain Neoplasia Data 

(REMBRANDT) (Lisa et al. 2015). The REMBRANDT data set contains a multi-

sequential magnetic resonance imaging of 130 patients with gliomas grade II, grade III and 

grade IV. The total number of images in this data set is 110,020. The third set of data is 

called Cancer Genome Atlas Low- Grade Glioma (TCGALGG) (Pedano et al. The 

TCGALGG data set contains 241,183 magnetic resonance images of 199 patients with 

low- grade gliomas (Grade I and Grade II). These three sets of data are from the Cancer 

Imaging Archive Project (TCIA) (Clark et al. 2013). Each case was multimodal with 

contrast enhanced T1 and FLAIR images. Another data set used in this study (Cheng et al. 

2015) contains 3064 contrasts weighted T1 images of 233 patients with three types of 

brain tumors: glioma (1426 sections), meningioma (708 sections) and pituitary gland (930 

sections). Total of 2990 images are collected, including 1640 tumor and 1350 non-tumor 

images. A total of 3950 



images are collected for the classification2 task, including 850 normal images, 950 

gliomas, 700 meningiomas, 700 pituitary glands and 750 metastases. For the 

classification3 task, a total of 4,570 images are collected, including 1,676 grade II, 1,218 

grade III and 1,676 grade III. 

 
 
 

 

Convolutional Neural Network With VGG-16 

 
 
 
 

The most widely used deep learning model among neural networks is the CNN model. 

A typical model consists of two parts: feature extraction and classification. The CNN 

architecture generally has five main layers: input layer, convolution layer, grouping layer, 

fully connected layer, and classification. layer. CNN performs feature extraction and 

classification through trainable layers that are placed sequentially one behind the other. The 

feature extraction part of CNN generally includes the folding and grouping layers, the 

classification part includes the fully connected and classification layers. Although CNN has 

focused on picture classification and accepts pictures as input data in recent years, it has been 

widely used in many other fields such as audio and video whose input data can be anysignal.  

 

There are three Fully Connected (FC) layers that follow a stack of convolutional layers 

(these have different depths in different architectures): the first two have 4096 channels each, 

the third performs 1000-way ILSVRC classification and thus contains 1000 channels (one 



for each class). The final layer is the soft-max layer. The configuration of the fully connected 

layers is the same in all networks. 
 

The 16-layer VGG architecture was the best performing, and it achieved a top-5 error 

rate of 7.3% (92.7% accuracy) in ILSVRC — 2014, as mentioned above. VGG16 had 

significantly outperformed the previous generation of models ILSVRC — 2012 and ILSVRC 
 

— 2013 competitions. 
 

 

The VGG16 architecture is depicted in figure 1-2, shown below: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 – Showing CNN Architecture  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2 – Showing VGG-16 Architecture 



 

Chapter 2 
 

Literature Survey/Project Design 

 
 

 

In recent years, several studies have applied data mining algorithms on different medical 

datasets to classify Brain Tumor. These algorithms show good classification results and 

encourage many researchers to apply these kinds of algorithms to solve challenging tasks. 

In this VGG-16 which is a part of convolutional neural network (CNN) was used to predict 

and classify the invasive ductal carcinoma in brain histology images with an accuracy of 

almost 88%. Moreover, data mining is used widely in medical fields to predict and classify 

abnormal events to create a better understanding of any incurable diseases such as cancer. 

The outcomes of using data mining in classification are promising for Brain Tumor 

detection. Therefore, data mining approach is used in this work. 



 
 
 

 

Proposed System 

 
 

The human mind is modeled by way of using layout and implementation of 

neural network. The neural network is especially used for vector 

 

quantization, approximation, statistics clustering, pattern matching,optimization 

capabilities and classification techniques. The neural network 

 

is split into three kinds based totally on their inter connections. Threetype neural 

networks are comments, feed forward and recurrent community. The  

 

Feed Forward Neural network is in addition divided into unmarried layer community and 

multilayer community. In the single layer network, the hidden layer is not supplied. But it 

carries best input and output layer. However, the multilayer includes enter layer, hidden 

layerand output layer. The closed loop primarily based remarks community is called as 

recurrent network. IN the everyday neural community, photocannot scalable. But in 

convolution neural network, photograph can scalable (I. E) it'll take 3-D input quantity to 3-

d output quantity (length,width, top). The VGG-16 with (CNN) includes input layer, 

convolution layer, Rectified Linear Unit (Re LU) layer, pooling 

 

layer and completely related layer. In the convolution layer, the given 



enter picture is separated into numerous small areas. Element sensibleactivation 

function is finished in ReLU layer. Pooling layer is non- compulsory. We can use or 

skip. However, the pooling layer is mainlyused for down sampling. In the final layer 

(i.e.) completely related layer is used to generate the elegance rating 

 

or label rating price based totally at the possibility in among zero to one. The block 

diagram of mind tumor type primarily based on convolution neural community is proven in 

fig.1. The CNN based mind tumor 

 

classification is split into levels along with education and testing stages. The quantity 

of photographs is split into exceptional class byusing the use of labels name along 

with tumor and non-tumor mind picture…and many others. In the schooling segment, 

preprocessing,characteristic 

 

exaction and class with Loss feature is performed to make a prediction version. Initially, 

label the schooling picture set. In the preprocessing image resizing is applied to change 

length of the photo. 
 

Finally, the convolution neural network is used for computerized braintumor category. 

The mind image dataset is taken from photo internet. Image internet is a one of the pre-

skilled versions. If 

 

you need to train from the starting layer, we've to train the entire layer (i.e.) up to finishing 

layer. So, time intake may be very excessive. It willinfluence the performance. To keep away 

from this type of 



trouble, 
 

pre-educated version-based brain dataset is used for category steps. 
 

Inthe proposed CNN, we can teach best final layer in python 

implementation. We don’t need to train all the layers. So, 

 

computation time is low meanwhile the performance is excessive inthe proposed 

automated brain tumor category scheme. The loss characteristic is calculated by 

using gradient descent set of rules. 

 

The uncookedimage pixel is mapping with class scores by using a score 

function. The satisfactory of precise set of parameters  

 

is measured by loss function. It is based totally on how properly the caused ratings 

accredited with the ground truth labels within the training statistics. The loss function 

calculation may be very essential to enhance the accuracy. If the loss characteristic is 

excessive, whilst the accuracy is low. Similarly, the accuracy is high, while the loss 

feature is low. The gradient fee is calculated for loss feature to compute gradient descent 

set of rules. Repeatedly compare the gradient 

 

value to compute the gradient of loss characteristic. 
 

In this research, we applied Image Processing and Data Augmentationtechniques on a 

small dataset of 253 brain MRI images. We trained them through a simple 8 Convolutional 

layers CNN model and compared our scratched CNN model accuracy with pre-trained 

VGG- 16, ResNet-50, and Inception-v3 models using transfer learning 

 

approach. The dataset includes 155 images of malignant cancer and 98  



of benign non-cancerous tumors. We split our dataset into 3 separatesegments for 

training, validation, and testing. 

 

The training data is for model learning, validation data is sample data for model evaluation 

andmodel parameters tuning. Test data is for the final evaluation of our model. Our 

proposed method is composed of various phases 



Chapter 3 

 

Functionality/Working of Project 

 
 

Convolution Layers- There are 3 types of layers that make up the CNN, namely the folding layers, 

the grouping layers, and the fully connected (FC) layers. When these layers are stacked, a CNN 

structure could form. In addition to these 3 layers, there are additional critical parameter layers 

which are the dropout layer and the activation characteristic, which are described below. 

 
 
 
 
 

 

1. Convolutional Layer- 

 
 

 

This layer is the first layer used to extract the various properties from the input images. In this 

layer the mathematical convolution operation is carried out between the input image and a filter of 

a certain size MxM. By moving the filter over the input image, the dot product between the filter 

and the parts of the input image in relation to the filter size (MxM) is formed.  



 

 

2. Pooling Layer- 

 
 

 

In most cases, a folding layer is followed by a grouping layer. The main goal of this layer is 

to reduce the size of the folded feature map in order to reduce computational costs. It does 

this by reducing the connections between the layers and working independently in each of 

them. Feature Map There are different types of grouping operations depending on the 

method used. 

 

3. Fully Connected Layer- 

 
 

 

The input image from the previous levels is flattened and fed to the FC level. The flattened 

vector then undergoes a few additional FC layers, where the operations of the mathematical 

functions normally take place.In this phase the classification process begins. 4. Dropout-

When all functions are connected to the FC layer, there can usually be an overfitting in the 

training data set. Overfitting occurs when a particular model performs so well on training 

data, which has a negative impact on model performance when used with new data. 
 

To overcome this problem a demolition layer is used where some neurons are removed 

from the neural network during the training process, resulting in a reduced model size.  



 

5. Activation Functions- 

 
 

 

Finally, one of the most important parameters of the CNN model is the activation function, 

it is used to know and approximate any kind of continuous and complex relationship 

between variables of the network, in simple terms, it decides what information should be 

triggered in the model. in the forward direction and which are not at the end of the network. 

Adds non-linearity to the network. 
 

color shift (Krizhevsky et al., 2012). Algorithm for 

CNN based Classification 

 

1. Apply convolution filter out in first layer 

 

2. The sensitivity of clear out is reduced with the aid of smoothing the convolution 

filter (i.e.) subsampling 

 

3. The sign transfers from one layer to every other layer is 

managed by activation layer 

 

4. Fasten the schooling period by means of the usage of rectified linear unit 

(RELU) 

 

5. The neurons in proceeding layer are hooked uptoeach 

neuron in next layer 

 

6. During training Loss layer is brought on the end todeliver 

feedback to neural network. 



 

How to train VGG16 from scratch? 

 
 
 

 

1. The ConvNet training procedure is generally carried out by optimizing the multinomial 

logistic regression objective using mini- batch gradient descent (based on back-propagation) 

with momentum. The batch size was set to 256, and momentum was to 0.9. The training was 

regularized by weight decay (the L2 penalty multiplier set to 5 · 10−4) and dropout 

regularization for the first two fully connected layers (dropout ratio set to 0.5). 

 

 

The learning rate was initially set to 10−2 and then decreased by a factor of 10 when the 

validation set accuracy stopped improving. In total, the learning rate was decreased 3 times, 

and the learning was stopped after 370,000 iterations (74 epochs). It is conjectured that 

despite the larger number of parameters and the greater depth of convolutional networks, 

the nets required fewer epochs to converge due to (a) implicit regularization imposed by the 

greater depth and smaller conv. filter sizes; (b) pre-initialization of certain layers. 

 

2. The initialization of the network weights is important since bad initialization can stall 

learning due to the instability of the gradient in deep nets. To circumvent this problem, the 

training of configuration A (Table 1), which is shallow enough to be trained with the random 



 

initialization, is begun. 
 

Then, when training deeper architectures, the first four convolutional layers and the last 

three fully connected layers with the layers of net A (the intermediate layers were initialized 

randomly) are initialized. 
 

The learning rate for the pre-initialized layers is not decreased, allowing them to change 

during learning. For random initialization (where applicable), the weights from a normal 

distribution with the zero mean and 10−2 variance are sampled. The biases were initialized 

with zero. 

 

3. It is worth noting that after the paper submission of the original work done by Karen 

Simonyan and Andrew Zisserman, it was found to be possible to initialize the weights without 

pre-training by using the random initialization procedure of Glorot. 

 

4. The ConvNet input images were randomly cropped from rescaled training images (one crop 

per image per SGD iteration) to obtain the fixed-size 224 × 224 ConvNet images. To further 

augment the training set, the crops underwent random horizontal flipping and random RGB. 



3.1 PROJECT CODING: 

 

In [61]:  
 
import pandas as pd  
import os 

 

In [62]:  
 
from IPython.display import clear_output  
!pip install imutils  
!pip install cv2  
clear_output() 

 

In [63]:  
 

# !pip install opencv-python 

 

In [64]:  
 
# !pip install plotly==5.4.0 

 

In [65]:  
 
# !pip install Keras 

 

In [66]:  
 

# !pip install tensorflow 

 

In [67]:  
 
import numpy as np  
from tqdm import tqdm  
import cv2  
import os  
import shutil  
import itertools  
import imutils  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import LabelBinarizer from 
sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score, confusion_matrix 

 

import plotly.graph_objs as go  
from plotly.offline import init_notebook_mode, 
iplot from plotly import tools 

 

from keras.preprocessing.image import ImageDataGenerator 
from keras.applications.vgg16 import VGG16, 
preprocess_input from keras import layers  
from keras.models import Model, Sequential  
from tensorflow.keras.optimizers import Adam, RMSprop 
from keras.callbacks import EarlyStopping 

 

init_notebook_mode(connected=True)  
RANDOM_SEED = 123 



In [69]:  
 
pwd 
 
Out[69]: 
 

'C:\\Users\\Abhishek Raj\\Downloads\\archive2' 

 

In [70]:  
 
cd C:\\Users\\Abhishek Raj\\Downloads\\archive2 
 
C:\Users\Abhishek Raj\Downloads\archive2 

 

In [71]:  
 
pwd 
 
Out[71]: 
 

'C:\\Users\\Abhishek Raj\\Downloads\\archive2' 

 

In [81]:  
 
!apt-get install tree  
clear_output()  
# create new folders  
!mkdir TRAIN TEST VAL TRAIN\\YES TRAIN\\NO TEST\\YES TEST\\NO VAL\\YES 
VAL\\NO !tree 
 
Folder PATH listing for volume OS  
Volume serial number is EC44-595E  
C:.  
+---brain_tumor_dataset  
¦ +---no  
¦ +---
yes +---no 
+---TEST  
¦ +---NO  
¦ +---YES  
+---TRAIN  
¦ +---NO  
¦ +---YES 
+---VAL  
¦ +---NO  
¦ +---YES 
+---yes 

 

In [85]:  
 
pwd 
 
Out[85]: 
 
'C:\\Users\\Abhishek Raj\\Downloads\\archive2' 



In [84]:  
 
IMG_PATH = 'brain_tumor_dataset/'  
# split the data by train/val/test 
for CLASS in os.listdir(IMG_PATH):  

if not CLASS.startswith('.'):  
IMG_NUM = len(os.listdir(IMG_PATH + CLASS))  
for (n, FILE_NAME) in enumerate(os.listdir(IMG_PATH + CLASS)): 

img = IMG_PATH + CLASS + '/' + FILE_NAME  
if n < 5:  

shutil.copy(img, 'TEST/' + CLASS.upper() + '/' + FILE_NAME)  
elif n < 0.8*IMG_NUM:  

shutil.copy(img, 'TRAIN/'+ CLASS.upper() + '/' + FILE_NAME)  
else:  

shutil.copy(img, 'VAL/'+ CLASS.upper() + '/' + FILE_NAME) 



In [86]:  
 
def load_data(dir_path, img_size=(100,100)):  

"""  
Load resized images as np.arrays to workspace  
"""  
X=[]  
y = []  
i = 0  
labels = dict()  
for path in tqdm(sorted(os.listdir(dir_path))):  

if not path.startswith('.'):  
labels[i] = path  
for file in os.listdir(dir_path + path):  

if not file.startswith('.'):  
img = cv2.imread(dir_path + path + '/' + file)  
X.append(img)  
y.append(i)  

i += 1  
X = np.array(X)  
y = np.array(y)  
print(f'{len(X)} images loaded from {dir_path} directory.')  
return X, y, labels 

 
 

 

def plot_confusion_matrix(cm, classes,  
normalize=False,  
title='Confusion matrix',  
cmap=plt.cm.Blues):  

"""  
This function prints and plots the confusion matrix.  
Normalization can be applied by setting `normalize=True`.  
"""  
plt.figure(figsize = (6,6))  
plt.imshow(cm, interpolation='nearest', cmap=cmap)  
plt.title(title)  
plt.colorbar()  
tick_marks = np.arange(len(classes))  
plt.xticks(tick_marks, classes, rotation=90)  
plt.yticks(tick_marks, classes)  
if normalize:  

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 

 

thresh = cm.max() / 2.  
cm = np.round(cm,2)  
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):  

plt.text(j, i, cm[i, j],  
horizontalalignment="center",  
color="white" if cm[i, j] > thresh else "black")  

plt.tight_layout()  
plt.ylabel('True label')  
plt.xlabel('Predicted label')  
plt.show() 



In [87]:  
 
TRAIN_DIR = 'TRAIN/'  
TEST_DIR = 'TEST/'  
VAL_DIR = 'VAL/'  
IMG_SIZE = (224,224) 

 

# use predefined function to load the image data into workspace 
X_train, y_train, labels = load_data(TRAIN_DIR, IMG_SIZE) 
X_test, y_test, _ = load_data(TEST_DIR, IMG_SIZE)  
X_val, y_val, _ = load_data(VAL_DIR, IMG_SIZE) 
 
 
100%|█████████████████████████████████████████████████████████████████████  
███████████████| 2/2 [00:00<00:00, 4.66it/s] 
100%|█████████████████████████████████████████████████████████████████████  
███████████████| 2/2 [00:00<00:00, 70.16it/s] 
100%|█████████████████████████████████████████████████████████████████████ 
███████████████| 2/2 [00:00<00:00, 15.75it/s] 
 

193 images loaded from TRAIN/ directory.  
10 images loaded from TEST/ directory.  
50 images loaded from VAL/ directory. 



In [88]:  
 
y = dict()  
y[0] = []  
y[1] = []  
for set_name in (y_train, y_val, y_test):  

y[0].append(np.sum(set_name == 0))  
y[1].append(np.sum(set_name == 1)) 

 

trace0 = go.Bar(  
x=['Train Set', 'Validation Set', 'Test Set'],  
y=y[0],  
name='No',  
marker=dict(color='#33cc33'),  
opacity=0.7  

)  
trace1 = go.Bar(  

x=['Train Set', 'Validation Set', 'Test Set'],  
y=y[1],  
name='Yes',  
marker=dict(color='#ff3300'),  
opacity=0.7  

)  
data = [trace0, trace1]  
layout = go.Layout(  

title='Count of classes in each set',  
xaxis={'title': 'Set'},  
yaxis={'title': 'Count'}  

)  
fig = go.Figure(data, layout)  
iplot(fig) 
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In [96]:  
 
# from sklearn.metrics import plot_samples 

 

In [99]:  
 
def plot_samples(X, y, labels_dict, n=50):  

"""  
Creates a gridplot for desired number of images (n) from the specified set  
"""  
for index in range(len(labels_dict)):  

imgs = X[np.argwhere(y == index)][:n]  
j = 10  
i = int(n/j) 

 

plt.figure(figsize=(15,6))  
c = 1  
for img in imgs:  

plt.subplot(i,j,c)  
plt.imshow(img[0]) 

 

plt.xticks([])  
plt.yticks([])  
c += 1  

plt.suptitle('Tumor: {}'.format(labels_dict[index]))  
plt.show() 



In [100]:  
 
plot_samples(X_train, y_train, labels, 30)  



In [101]:  
 
RATIO_LIST = []  
for set in (X_train, X_test, X_val):  

for img in set:  
RATIO_LIST.append(img.shape[1]/img.shape[0]) 

 

plt.hist(RATIO_LIST)  
plt.title('Distribution of Image Ratios')  
plt.xlabel('Ratio Value')  
plt.ylabel('Count')  
plt.show() 



In [102]:  
 
def crop_imgs(set_name, add_pixels_value=0):  

"""  
Finds the extreme points on the image and crops the rectangular out of them  
"""  
set_new = []  
for img in set_name:  

gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)  
gray = cv2.GaussianBlur(gray, (5, 5), 0) 

 

# threshold the image, then perform a series of erosions +  
# dilations to remove any small regions of noise  
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1] 
thresh = cv2.erode(thresh, None, iterations=2) thresh = 
cv2.dilate(thresh, None, iterations=2) 

 

# find contours in thresholded image, then grab the largest one  
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMP  

LE)  
cnts = imutils.grab_contours(cnts)  
c = max(cnts, key=cv2.contourArea) 

 

# find the extreme points  
extLeft = tuple(c[c[:, :, 0].argmin()][0])  
extRight = tuple(c[c[:, :, 0].argmax()][0])  
extTop = tuple(c[c[:, :, 1].argmin()][0])  
extBot = tuple(c[c[:, :, 1].argmax()][0]) 

 

ADD_PIXELS = add_pixels_value  
new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS, extLeft[0]-ADD_PIXELS:  

extRight[0]+ADD_PIXELS].copy()  
set_new.append(new_img) 

 

return np.array(set_new) 



In [104]:  
 
img = cv2.imread('brain_tumor_dataset/yes/Y108.jpg')  
img = cv2.resize(  

img,  
dsize=IMG_SIZE,  
interpolation=cv2.INTER_CUBIC  

)  
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)  
gray = cv2.GaussianBlur(gray, (5, 5), 0) 

 

# threshold the image, then perform a series of erosions +  
# dilations to remove any small regions of noise 
 
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1] 
thresh = cv2.erode(thresh, None, iterations=2) thresh = 
cv2.dilate(thresh, None, iterations=2) 

 

# find contours in thresholded image, then grab the largest one  
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  
cnts = imutils.grab_contours(cnts)  
c = max(cnts, key=cv2.contourArea) 

 

# find the extreme points  
extLeft = tuple(c[c[:, :, 0].argmin()][0])  
extRight = tuple(c[c[:, :, 0].argmax()][0])  
extTop = tuple(c[c[:, :, 1].argmin()][0])  
extBot = tuple(c[c[:, :, 1].argmax()][0]) 

 

# add contour on the image  
img_cnt = cv2.drawContours(img.copy(), [c], -1, (0, 255, 255), 4) 

 

# add extreme points  
img_pnt = cv2.circle(img_cnt.copy(), extLeft, 8, (0, 0, 255), -1)  
img_pnt = cv2.circle(img_pnt, extRight, 8, (0, 255, 0), -1)  
img_pnt = cv2.circle(img_pnt, extTop, 8, (255, 0, 0), -1)  
img_pnt = cv2.circle(img_pnt, extBot, 8, (255, 255, 0), -1) 

 

# crop  
ADD_PIXELS = 0 
 
new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS, extLeft[0]-ADD_PIXELS:extRight 
[0]+ADD_PIXELS].copy() 



In [105]:  
 
plt.figure(figsize=(15,6))  
plt.subplot(141)  
plt.imshow(img)  
plt.xticks([])  
plt.yticks([])  
plt.title('Step 1. Get the original image')  
plt.subplot(142)  
plt.imshow(img_cnt)  
plt.xticks([])  
plt.yticks([])  
plt.title('Step 2. Find the biggest contour')  
plt.subplot(143)  
plt.imshow(img_pnt)  
plt.xticks([])  
plt.yticks([])  
plt.title('Step 3. Find the extreme points')  
plt.subplot(144)  
plt.imshow(new_img)  
plt.xticks([])  
plt.yticks([])  
plt.title('Step 4. Crop the image')  
plt.show() 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In [106]:  
 
# apply this for each set  
X_train_crop = crop_imgs(set_name=X_train)  
X_val_crop = crop_imgs(set_name=X_val)  
X_test_crop = crop_imgs(set_name=X_test) 



In [107]:  
 
plot_samples(X_train_crop, y_train, labels, 30)  



In [108]:  
 
def save_new_images(x_set, y_set, folder_name):  

i = 0  
for (img, imclass) in zip(x_set, y_set):  

if imclass == 0:  
cv2.imwrite(folder_name+'NO/'+str(i)+'.jpg', img)  

else:  
cv2.imwrite(folder_name+'YES/'+str(i)+'.jpg', img)  

i += 1 

 

In [110]:  
 
# saving new images to the folder  
!mkdir TRAIN_CROP TEST_CROP VAL_CROP TRAIN_CROP\\YES TRAIN_CROP\\NO TEST_CROP\\YES TEST  
_CROP\\NO VAL_CROP\\YES VAL_CROP\\NO 

 

save_new_images(X_train_crop, y_train, folder_name='TRAIN_CROP/')  
save_new_images(X_val_crop, y_val, folder_name='VAL_CROP/')  
save_new_images(X_test_crop, y_test, folder_name='TEST_CROP/') 

 

In [111]:  
 
def preprocess_imgs(set_name, img_size):  

"""  
Resize and apply VGG-16 preprocessing  
"""  
set_new = []  
for img in set_name:  

img = cv2.resize(  
img,  
dsize=img_size,  
interpolation=cv2.INTER_CUBIC  

)  
set_new.append(preprocess_input(img))  

return np.array(set_new) 

 

In [112]:  
 
X_train_prep = preprocess_imgs(set_name=X_train_crop, img_size=IMG_SIZE)  
X_test_prep = preprocess_imgs(set_name=X_test_crop, img_size=IMG_SIZE)  
X_val_prep = preprocess_imgs(set_name=X_val_crop, img_size=IMG_SIZE) 

 

In [113]:  
 
# set the paramters we want to change randomly 
demo_datagen = ImageDataGenerator(  

rotation_range=15, 
width_shift_range=0.05, 
height_shift_range=0.05, 
rescale=1./255, 
shear_range=0.05, 
brightness_range=[0.1, 
1.5], horizontal_flip=True, 
vertical_flip=True  

) 



In [114]:  
 
os.mkdir('preview')  
x = X_train_crop[0]  
x = x.reshape((1,) + x.shape) 

 

i = 0 
 
for batch in demo_datagen.flow(x, batch_size=1, save_to_dir='preview', 
save_prefix='aug _img', save_format='jpg'):  

i += 1  
if i > 20:  

break 



In [115]:  
 
plt.imshow(X_train_crop[0])  
plt.xticks([])  
plt.yticks([])  
plt.title('Original Image')  
plt.show() 

 

plt.figure(figsize=(15,6))  
i = 1  
for img in os.listdir('preview/'):  

img = cv2.cv2.imread('preview/' + img)  
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
plt.subplot(3,7,i)  
plt.imshow(img)  
plt.xticks([])  
plt.yticks([])  
i += 1  
if i > 3*7:  

break  
plt.suptitle('Augemented Images')  
plt.show() 



 



In [117]:  
 
TRAIN_DIR = 'TRAIN_CROP/'  
VAL_DIR = 'VAL_CROP/' 

 

train_datagen = ImageDataGenerator(  
rotation_range=15,  
width_shift_range=0.1,  
height_shift_range=0.1,  
shear_range=0.1,  
brightness_range=[0.5, 1.5],  
horizontal_flip=True,  
vertical_flip=True, 

preprocessing_function=preprocess_input  
) 

 

test_datagen = ImageDataGenerator(  
preprocessing_function=preprocess_input  

) 
 

 

train_generator = train_datagen.flow_from_directory( 
TRAIN_DIR,  
color_mode='rgb',  
target_size=IMG_SIZE,  
batch_size=32,  
class_mode='binary',  
seed=RANDOM_SEED  

) 
 

 

validation_generator = 
test_datagen.flow_from_directory( VAL_DIR,  
color_mode='rgb',  
target_size=IMG_SIZE,  
batch_size=16,  
class_mode='binary',  
seed=RANDOM_SEED  

) 
 
 

Found 193 images belonging to 2 classes.  
Found 50 images belonging to 2 classes. 

 

In [120]:  
 
# load base model  
vgg16_weight_path = 'keras-pretrained-
models/vgg16_weights_tf_dim_ordering_tf_kernels_n otop.h5'  
base_model = VGG16(  

weights=vgg16_weight_path,  
include_top=False,  
input_shape=IMG_SIZE + (3,)  

) 



In [145]:  
 
NUM_CLASSES = 1 

 

model = Sequential()  
model.add(base_model)  
model.add(layers.Flatten())  
model.add(layers.Dropout(0.5))  
model.add(layers.Dense(NUM_CLASSES, activation='sigmoid')) 

 

model.layers[0].trainable = False 

 

model.compile(  
loss='binary_crossentropy',  
optimizer=RMSprop(learning_rate=1e-4),  
metrics=['accuracy']  

) 

 

model.summary() 

 

Model: "sequential_1"  
 

Layer (type) Output Shape Param #  
=================================================================  
vgg16 (Functional) (None, 7, 7, 512) 14714688 

flatten_1 (Flatten) (None, 25088) 0 

dropout_1 (Dropout) (None, 25088) 0 

dense_1 (Dense) (None, 1) 25089 

 

=================================================================  
Total params: 14,739,777  
Trainable params: 25,089  
Non-trainable params: 14,714,688  



In [146]:  
 
EPOCHS = 30  
es = EarlyStopping(  

monitor='val_acc',  
mode='max',  
patience=6  

) 

 

history = model.fit(  
train_generator,  
steps_per_epoch=50,  
epochs=EPOCHS,  
validation_data=validation_generator,  
validation_steps=25,  
callbacks=[es] 

) 
 
Epoch 1/30  
7/50 [===>..........................] - ETA: 4:07 - loss: 4.8184 - accura  
cy: 0.6166WARNING:tensorflow:Your input ran out of data; interrupting trai  
ning. Make sure that your dataset or generator can generate at least `step 
s_per_epoch * epochs` batches (in this case, 1500 batches). You may need t o 
use the repeat() function when building your dataset. WARNING:tensorflow:Your 
input ran out of data; interrupting training. Make sure that your dataset or 
generator can generate at least `steps_per_epoch 
 
* epochs` batches (in this case, 25 batches). You may need to use the 
repe at() function when building your dataset.  
WARNING:tensorflow:Early stopping conditioned on metric `val_acc` which is 
not available. Available metrics are: loss,accuracy,val_loss,val_accuracy 
50/50 [==============================] - 83s 1s/step - loss: 4.8184 - accu 
racy: 0.6166 - val_loss: 4.0546 - val_accuracy: 0.6600 
 

 

In [125]:  
 
history.history 
 
Out[125]: 
 
{'loss': [5.365586757659912],  
'accuracy': [0.6113989353179932],  
'val_loss': [2.1493048667907715],  
'val_accuracy': [0.7200000286102295]} 

 

In [142]:  
 
# validate on val set  
predictions = model.predict(X_val_prep)  
predictions = [1 if x>0.5 else 0 for x in predictions] 

 

accuracy = accuracy_score(y_val, predictions)  
print('Val Accuracy = %.2f' % accuracy) 

 

confusion_mtx = confusion_matrix(y_val, predictions)  
# cm = plot_confusion_matrix(confusion_mtx, labels = list(labels.items()), normalize=Fa 
lse) 
 
Val Accuracy = 0.68 



In [143]:  
 
confusion_mtx 
 
Out[143]: 
 

array([[10, 9],  
[ 7, 24]], dtype=int64) 

 

In [144]:  
 
import seaborn as sns 

 

ax = sns.heatmap(confusion_mtx, annot=True, cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with 
labels\n\n'); ax.set_xlabel('\nPredicted Values') 
ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 
ax.xaxis.set_ticklabels(['False','True']) 
ax.yaxis.set_ticklabels(['False','True']) 

 
## Display the visualization of the Confusion Matrix. 
plt.show() 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In [148]:  
 
# validate on test set  
predictions = model.predict(X_test_prep)  
predictions = [1 if x>0.5 else 0 for x in predictions] 

 

accuracy = accuracy_score(y_test, predictions)  
print('Test Accuracy = %.2f' % accuracy) 

 

confusion_mtx = confusion_matrix(y_test, predictions)  
# cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=F 
alse) 
 
Test Accuracy = 0.40 



In [149]:  

 

import seaborn as sns 

 

ax = sns.heatmap(confusion_mtx, annot=True, cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with 
labels\n\n'); ax.set_xlabel('\nPredicted Values') 
ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 
ax.xaxis.set_ticklabels(['False','True']) 
ax.yaxis.set_ticklabels(['False','True']) 

 
## Display the visualization of the Confusion Matrix. 
plt.show()  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In [ ]:  



 
 

 

Chapter-4 

 

Results and Discussion 

 
 
 
 

Our dataset contains tumor and non-tumor magnetic resonance images, and they were 

collected from various online resources containing real patient cases, tumor images were 

obtained from Radiopaedia and Brain Tumor Image Segmentation Benchmark (BRATS) 

2015 test dataset 14. In this thesis an efficient automatic detection of brain tumors using the 

Convolution Neural Network is carried out. The simulation is carried out using the Python 

language. The accuracy is calculated and compared with all other Vanguard methods. 

Training Precision, Validation Precision and Loss of Validation are calculated to determine 

the efficiency of the proposed brain tumor classification scheme.  

 

 

In, the existing technology, the classification based on the Support Vector Machine (SVM), 

was used to detect brain tumors Requires the feature extraction output. Based on the feature 

value, the classification output is generated, and the precision is calculated. The computation 

time is high, and the precision is low in -based tumor and non-tumor detection SVMs. In the 

proposed model system does not require separate feature extraction steps. The value of the 

feature is taken from the VGG-16 itself. In Fig. 4. shows the classified result of the brain 

image of tumor and non-tumor. The result of the precision classification of brain tumor 



based on probability value. The normal brain image of has the lowestprobability score.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 VGG-16 based classified results  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Block diagram of proposed brain tumor 



 

Chapter 5 

 

Conclusion and Future Scope 

 
 
 

 

In this paper, a new approach was presented to classify brain tumors. First, using 

the image edge detection technique, we find the region of interest in MRI images and 

cropped them then, we used the data augmentation technique for increasing the size of our 

training data. Second, we provide an efficient methodology for brain tumor classification 

by proposing a simple vgg-16 network. For sophisticated and accurate results neural 

network requires a largeamount of data to train on, but our experimental result shows that 

even on such a small dataset. 

 

 

Our proposed system can play a prognostic significance in the detection of tumors 

in brain tumor patients. To further boost the modelefficiency, comprehensive hyper-

parameter tuning, and a better preprocessing technique can be conceived. Our proposed 

system is forbinary classification problems, however, in future work, the proposed method 

can be extended for categorical classification problems such as identification of brain 

tumor types such as Glioma, Meningioma, and Pituitary or may be used to detect other 

brain abnormalities. Also, our proposed system can play an effective role in the early 

diagnosis of dangerous disease, 



particularly lung cancer and breast cancer whose mortality rate is very high globally. We 

can prolong this approach in other scientific areas as well where there is a problem in the 

availability of large data, or we canuse the different transfer learning methods with the 

same proposedtechnique. 
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