DETECTION OF CHRONICAL KIDNEY
DISEASES

GALGOTIAS
‘ UNIVERSITY

Made by:

Ashish Kumar 19SCSE1010857

Pawan Kumar 19SCSE1010869

Guided by:

Dr Naresh Kumar(Professer)

708

Table of Contents:

Contents
Title

Candidates Declaration
Acknowledgement
Abstract
Contents
List of Table
List of Figures
Acronyms
Chapter 1 Introduction

1.1 Introduction

1.2 Formulation of Problem

1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design
Chapter 3 Functionality/Working of Project
Chapter 4 Results and Discussion
Chapter 5 Conclusion and Future Scope

5.1 Conclusion

5.2 Future Scope
Reference

709

Page
No.

1T
I
1A%

VI
\ 41!

11

41
41
42
43

Publication/Copyright/Product 45

Abstract - The objective of this paper is to build a CKD prediction model using
machine learning techniques that can predict the risk of chronic kidney disease
(CKD) in patients with Cardiovascular Disease (CVD) or at high risk of CVD.
CVD is associated with worsening of renal functions. But patients with CVD
remains often underdiagnosed and undertreated for CKD because mostly the
clinical diagnosis and treatment are single organ centered in earlier stages.
Machine learning algorithms have been widely used to predict and classify
diseases in healthcare. Healthcare data is often imbalanced. In this analysis, the
CKD prediction model is built using CVD data with imbalanced distribution of
positive and negative cases. The analysis involves three stages: Stage I involves
selecting the best model based on performance metrics that support imbalanced
class distribution without applying any resampling techniques. Stage II involves
oversampling the training data of the minority class using Synthetic Minority
Oversampling Technique (SMOTE) and stage III involves randomly under-
sampling the training data of the majority class to solve the class imbalance. The
experimental results show that the MLP (Multi-Layer Perceptron)-SMOTE
model performs better in predicting CKD with a better F-score, recall, precision,
G-mean, balanced accuracy and RUC-AUC when compared to other models.

Keywords: Chronic kidney disease; class imbalance; machine learning; sampling
techniques.

Introduction

CKD is one of the leading causes of morbidity and mortality for individuals with
CVD. A precise CKD risk prediction model developed from CVD patient data is
critical for secondary prevention of CKD. Artificial Intelligence (Al) is enhancing
the astuteness of medical professionals in diagnosis and prognosis in the field of
nephrology. Early diagnosis of kidney disease by Al will help the health
practitioners to screen potential kidney disease patients according to their risk
levels. The availability of a huge volume of data and also with high quality is the
greatest challenge in building an accurate and most efficient machine predictive
model .

Various classifiers are deployed to create classification models for classifying the
clinical CKD data. Supervised learning algorithms like logistic regression (LR),
neural network (NN) and support vector machine (SVM) are used for creating
classification models in. Classification and association rule mining techniques

710

are unified and utilized to paradigm a system for predicting and diagnosing CKD
and its roots. Among, naive bayes (NB), decision tree (DT), SVM, k-nearest
neighbor (K-NN) and JRip experimented on the medical data, K-NN achieved
the highest accuracy. Apriori algorithm is applied to selected attributes of CKD
data to extract strong rules based on the lift matrix.

Statistical method like multivariable cox's proportional hazards analysis is
applied in over the high-risk CVD patients to determine the independent risk
aspects like older age, history of coronary heart disease (CHD), diabetes mellitus,
and smoking associated with developing CKD stages 3 to 5. Machine learning
methods like multivariate regression model, classification and regression tree
(CART), NB, bagged trees, ada boost and random forest are used in to build a
prediction model for CVD disease. The CVD prediction model provided a three-
year risk assessment of CVD. The prediction performance becomes
unsatisfactory when prediction models are deployment into the local population.
A knowledge-enhanced localized risk model is developed by to solve the
localization issue. [Niehaus and Clifton , (2016)] proposed an extreme value
theory (EVT) that can be applied to better quantify severity and risk in chronic
disease.

The increasing research importance on novel machine learning approaches
recommends that the modeling of chronic disease will continue to yield valuable
discoveries for patients and doctors . Machine learning algorithms perform better
when there is an equal number of records collected for all the target classes . But
in reality, medical data for disease prediction cannot always be collected with
equal distributions for diseased and non-diseased target classes. In the case of
binary classification problem, one target class may have many instances than
another, thus leading to an imbalance in the dataset . This problem is referred to
as class imbalance.

The rest of the paper is organized as follows: section 2 elucidates the related work.
Section 3 presents the materials and methods. Section 4 describes the results and
discussions. Finally, section 5 presents the conclusion and outlines future work.
. PROPOSED MODEL
In this section, the classifiers were first established by different machine learning
algorithms to diagnose the data samples. Among these models, those with better
performance were selected as potential components. By analyzing their
misjudgments, the component models were determined. An integrated model was
then established to achieve higher performance.

A. ESTABLISHING AND EVALUATING INDIVIDUAL MODELS
The following machine learning models have been obtained by using the
corresponding subset of features or predictors on the complete CKD data sets for
diagnosing CKD.
1) Regression-based model: LOG
2) Tree-based model: RF

711

3) Decision plane-based model: SVM
4) Distance-based model: KNN
5) Probability-based model: NB
6) Neural network: FNN

Generally, in disease diagnosis, diagnostic samples are distributed in a
multidimensional space. This space comprises predictors that are used for data
classification (ckd or notckd). Samples of data in the space are clustered in different
regions due to their different categories. Therefore, there is a boundary between the
two categories, and the distances between samples in the same category are smaller.
According to the effectiveness of classification, we choose the aforementioned
methods for disease diagnosis. LOG is based on linear regression, and it obtains the
weight of each predictor and a bias. If the sum of the effects of all predictors exceeds
a threshold, the category of the sample will be classified as ckd or notckd. RF
generates a large number of decision trees by randomly sampling training samples
and predictors. Each decision tree is trained to find a boundary that maximises the
difference between ckd and notckd. The final decision is determined by the
predictions of all trees in the disease diagnosis. SVM divides different kinds of
samples by establishing a decision surface in a multidimensional space that comprises
the predictors of the samples. KNN finds the nearest training samples by calculating
the distances between the test sample and the training samples and then determines
the diagnostic category by voting. Naive Bayes classifier calculates the conditional
probabilities of the sample under the interval by the number of ckd and notckd
samples in each different measurement interval. FNN can analyse non-linear
relationships in the data sets due to its complex structure, and the sigmoid activation
function was used in the hidden layer and the output layer.

To evaluate model performance comprehensively, in the case of retaining the
sample distribution in the original data, a complete data set was divided into four
subsets evenly. For all of the above models, each subset was utilized once for testing,
and other subsets were utilized for training, the overall result was taken as the final
performance. With the exception of RF, the rest of the models were established using
the selected variables by feature extraction. RF does not require prior feature
extraction, because predictors are selected randomly when each decision tree is
established. In addition, when using KNN and FNN, all the categorical variables were
converted into numeric types: categories 0 and 1 were converted to values 0 and 1,
respectively, and the complete data sets were then normalised with the mean that is
equal to 0 and the standard deviation that is equal to 1. Details of all are as follows:

1) The output of LOG was the probability that the sample belongs to notckd, and
the threshold was set to 0.5.

2) RF was established using all variables. Two strategies were used to determine
the number of decision trees generated. One is to use the default 500 trees and the
other is to use the number of trees corresponding to the minimum error in the training
stage. The RF was established using both strategies and evaluated on the data sets
obtained by KNN imputation. The same random number seed 1234 was used to

712

divide data and establish model, and the accuracy is shown in Table 4. It can be seen
that the default number of trees is a better choice, therefore we selected the default
500 trees to establish RF.

TABLE 4. The accuracy of two types of RF after the KNN imputation was run.

Number K=3 K=5 K=7 K=9 K=11
of trees
default 99.75% 99.75% 99.50% 99.75% 99.50%
error 99.50% 98.75% 99.00% 99.75% 99.25%
minimum
3) The models of SVM were generated by using the RBF kernel function, and the
function is described as follow:

Khx1,x2i = e-ykx1-x2k2

where y was set to [0.1, 0.5, 1, 2, 3, 4]. Parameter C represents the weight of
misjudgment loss, and it was set to [0.5, 1, 2, 3]. In each calculation of the model
training, the algorithm selects the best combination of parameters to establish the
model by grid search. 4) For the NB, the value of Laplace was equal to 1. 5) For
the KNN, due to the nearest Euclidean distance with the detected sample, when
the number of samples that are selected in training data set is an even number, the
algorithm randomly selects a category as the output result of the detected sample
in the situation wherein the number of selected samples belonging to ckd and
notckd are the same. To avoid this in the work, the nearest neighbor parameter
was set to [1,3,5,...,19]. In each calculation of model training, the algorithm
selected the best parameter to establish the model by grid search.

6) For the FNN, the network had a hidden layer. Presently, there is no clear theory
in determining the best number of hidden layer nodes in a neural network. A
method proposed in the previous study that was used to evaluate the performance
of neural networks by increasing the number of hidden layer nodes one by one
[35] was used in this study. The number of hidden layer nodes was increased one
by one from 1 to 30. Then, the best result was selected.

To ensure the repeatability and comparability of the results, in the division of data,
the establishment of RF with FNN, and the selection of the best parameters of SVM
with KNN, the same seed of 1234 was used. For the random imputation, the step of
feature extraction was run on the complete data set obtained. Then, the models were
established and evaluated by using the extracted features. Because of the randomness
of the random imputation, the whole process was repeated five times to get the
average result. For the KNN imputation and the mean and mode imputation, due to
the certainty of data, the evaluation of models was executed once. After the feature
extraction methods of optimal subset regression and RF were run, the accuracy of the
basic models on the complete data sets are shown in Table 5 and Table 6, respectively.

TABLE 5. The accuracy (%) of the basic models after the optimal subset

regression.
713

Imputation LOG RF SVM NB FNN KNN
KNN with 98.75 99.75 99.50 94.25 98.75 97.75

K=3
KNN with 98.75 99.75 99.50 93.75 98.50 98.00
K=5
KNN with 98.00 99.50 99.50 94.00 98.25 98.25
K=7
KNN with 98.75 99.75 99.50 93.75 98.75 98.00
K=9
KNN with ~ 99.00 99.50 99.50 93.75 98.50 97.75
K=11
Mean and 95.25 98.75 98.50 96.75 98.25 98.25
mode

Random 96.25 97.85 97.00 95.00 97.40 95.60

For the FNN, we selected the model with the highest accuracy. For the RF, the
model was established using all variables.

TABLE 6. The accuracy (%) of the basic models after the features extraction
of RF was run.

Imputation LOG RF SVM NB FNN KNN
KNN with 96.25 99.75 98.25 88.75 99.00 99.00

K=3
KNN with 96.00 99.75 99.00 88.75 99.00 98.50
K=5
KNN with 96.50 99.50 98.00 88.75 99.00 98.50
K=7
KNN with 97.00 99.75 98.50 88.50 99.00 99.00
K=9
KNN with ~ 97.00 99.50 98.25 88.25 99.50 99.25
K=11
Mean and 96.50 98.75 99.25 95.75 98.75 99.25
mode

Random 95.60 97.90 97.65 93.90 97.45 96.90
For the FNN, we selected the model with the highest accuracy. For the RF, the
model was established using all variables.

It can been seen from Tables 5 and 6 that the optimal subset regression is more
suitable for LOG and SVM when the KNN imputation is used, and the feature
extraction method of RF is more suitable for FNN and KNN. When the KNN
imputation is used, the accuracy of LOG and SVM is significantly improved (Table
5). In Table 6, the accuracy of LOG and SVM is relatively low, which might be due

714

to the fact that there are too many redundant variables compared to the optimal subset
regression. The accuracy of FNN is slightly improved and RF shows better
performance when the KNN imputation is used both in Tables 5 and 6. For the NB
and the KNN, the performance of the models when using KNN imputation is not very
ideal compared to using random imputation or mean and mode imputation in Tables
5 and 6. The above result also proves the validity of the KNN imputation, since KNN
imputation does improve the accuracy of some models, such as LOG, RF and SVM
(Table 5). From Tables 5 and 6, LOG and SVM with the use of optimal subset
regression, KNN and FNN with the use of the feature extraction of random forest and
RF have better performance. Therefore, they are selected as the potential component
models.

B. MISJUDGMENT ANALYSIS AND SELECTING COMPONENT MODELS

After evaluating the above models, the potential component models were
extracted for misjudgment analysis to determine which would be used as the
components. The misjudgment analysis here refers to find out and compare the
samples misjudged by different models, and then determine which model is
suitable to establish the final integrated model. The misjudgment analysis was
performed on the extracted models. The prerequisite for generating an integrated
model is that the misjudged samples from each component model are different.
If each component model misjudges the same samples, the generated integrated
model would not make a correct judgement for the samples either. When the data
were read, each sample was given a unique number ranging from 1 to 400. The
numbers of misjudgments for the extracted models on each complete data are
shown in Table 7, and the black part indicates that the samples were misjudged
by other models except FNN.

In Table 7, for the FNN, it can be seen that most of the misjudgments are
simultaneously misjudged by other models. In addition, the performance of FNN is
affected by the number of nodes in the hidden layer. It is not easy to establish a unified
model for different data. Therefore, the FNN was excluded firstly. For the best model
(RF), when K equaling to 7, only one misjudgment is simultaneously misjudged by
the LOG. In other cases, all the samples that are misjudged by RF can be correctly
judged by the rest of the models. Hence, the combinations of the RF with the rest of
the models could be used to establish an integrated model. Next, we investigate which
specific model combination could generate the best integrated model for diagnosing
CKD. From Tables 5 and 6, it can be seen that there is no significant difference
between LOG, SVM and KNN. In the case where the performance of the models is
similar, the models are evaluated by the complexity of the algorithm, the running time
and the computational resources consumed. LOG, RF, SVM and KNN were run five
times on each complete data,

TABLE 7. The numbers of misjudgments of the extracted models.

K Model The numbers of
value misjudgments

715

LOG 189, 225,42, 193, 212

RF 166
K=3 SVM 225,118
FNN 90, 189, 225, 210
(23)
KNN 193, 106, 103, 210
LOG 189, 225, 193, 212, 267
RF 166
K=5 SVM 225,118
FNN 90, 225, 229, 210
(27)
KNN 183, 193, 229, 132, 103,
210
LOG 90,92, 189, 225, 193, 212,
RF 267,340
SVM 90, 166
K=7 225,118
FNN 90, 225, 229, 210
(27
KNN 183, 193, 229, 132, 103,
210
LOG 92, 189, 225, 193, 212
RF 166
K=9 SVM 225,118
FNN 90, 225, 229, 210
(23)
KNN 183, 132, 103, 210
LOG 189, 225, 193, 212
RF 90, 166
K=11 SVM 225,118
FNN (5) 225,229
KNN 183,132, 103

For the FNN, the best model is selected, and the number in bracket represents
the number of nodes in the hidden layer.
TABLE 8. The time spent by RF, LOG, SVM and KNN on the complete data.

KNN RF LOG SVM KNN
imputation (s) (s) (s) (s)

with K
3 0.382 0.138 16.114 2.796
5 0.376 0.144 15.836 2.788
7 0.386 0.140 16.222 2.864
9 0.396 0.128 16.276 2.822

11 0.394 0.132 16.104 2.766

and the average time taken are summarized in Table 8. It can be seen that the
SVM and KNN take more time than the LOG and RF. In addition, SVM and
KNN are also effected by their respective model parameters, so the parameters

716

need to be adjusted before the models are established, which means more manual
intervention is needed. For the LOG, there was no additional parameter that need
to be adjusted. For the RF, the default parameters of the model were used. Hence,
a combination of the LOG and the RF was selected to generate the final integrated
model.

C. ESTABLISHING THE INTEGRATED MODEL

LOG and RF were selected as underlying components to generate the integrated
model to improve the performance of judging. The probabilities that each sample
was judged as notckd in LOG and RF were used as the outputs of underlying
components. These two probabilities of each sample were obtained and could be
expressed in a two-dimensional plane. In the complete CKD data sets, the
probability distributions of the samples in a two-dimensional plane are similar.
Therefore, the probability distribution of samples when K equaling to 11 is shown
in Fig. 3.

T T T T I
.2 0.4 0.6 OB 1.0

= s =
— o — ey
A cled - - x]

i ¥ notclkd “u
! = Sl
= =
B
5
=
>
= e o
o]
=
£ Y
= i
= == _|
= =
o e
=2
= rFs
: &
2 2 {faa “
=" F

=

= |

I
0.0

The probability obtained by LOG

FIGURE 3. The probability distribution of the samples in the complete CKD
data set (at K = 11), the horizontal axis and the vertical axis represent the
probabilities that the samples were judged as notckd by the LOG and the RF,
respectively.

It can be seen from Fig. 3 that the samples have different aggregation regions in the

two-dimensional plane due to the different categories (ckd or notckd). In general,
samples with ckd are concentrated in the lower left part, while the notckd samples are
distributed in the top right part. Due to the fact that the results in the two models are
different, some samples are located at the top left and lower right, and one of the two
models makes the misjudgments. Perceptron can be used to separate samples of two
categories by plotting a decision line in the two-dimensional plane of the probability
distribution. Ciaburro and Venkateswaran defined perceptron as the basic building
block of a neural network, and it can be understood as anything that requires multiple

717

inputs and produces an output [36]. The perceptron used in this study is shown in Fig.

1
R

E T}H Signum

Proba/? =
FIGURE 4. The structure of the perceptron used in this study.

In Fig. 4, prob: and prob: are the probabilities that a sample was judged as notckd
by LOG and RF, respectively. wo, w1 and w; are the weights of input signals. wo
corresponds to 1, wi corresponds to prob: and wz corresponds to prob:, respectively.
y is calculated according to (7):

Y =wo+ wyx pr0b1 + W2 X PrObZ- (7)

The input signal corresponding to the weight wois 1, which is a bias. The function
of Signum is used to calculate output by processing the value of y as follows: If
y >0, then the output = 1, whereas if y < 0, then the output = -1. For the output, 1
corresponds to notckd, whereas -1 corresponds to ckd. A single perceptron is a
linear classifier that can be used to detect binary targets. The weights are the core
of the perceptron and adjusted in the training stage. y = 0 is the decision line, and

this line can be described as (8):
proby = fiprubl — 1
wWo

(8)

In the training stage, the models of LOG and RF were established by the training
data at first. Then, a new training data set was generated though combining the
probabilities of output of the two component models on the training data and the
labels of the samples. This new training data set was used to establish the
perceptron. For the binary classification, the samples have two types of labels, i.e. Y
= +1. The output of perceptron is calculated according to (7),

we use g(X) to represent the matrix form of this calculation, where W = [w,w;], X =
[proby,probz]T, and b = wo. When the g(X) > 0, the output = 1, whereas the g(X) <
0, then the output = -1. Therefore, for all samples correctly judged by the model, the
following equation is valid:

Yxg(X)=Y(WX+b)>0. (9)

718

For all misjudgments, the value of (9) is less than zero, and the large the absolute
value, the more serious the model misjudges the samples. Hence, for a misjudged
sample (X;Y;), the loss of the perceptron can be expressed as (10):

L = -Y{(WX;+ b). (10)

The perceptron is trained by the gradient descent method to adjust the weight and
bias. The partial derivative of the weight and bias of the loss function are expressed
as follows:

oL ,

g = VX!
oL _
ob

(11)

(12)
Therefore, in the training stage, for each misjudgment, the weight and bias are
updated by (13) and (14):
V=W +nYiX] (13)
b=>b+nY; (14)
where the 7 is the learning rate.

However, for the bias, when the updating method of (14) was used, the obtained
decision line could classify the samples, but the line was located at the edge of the
solution area, so it is not reliable. To solve this problem, a new bias adjustment
strategy proposed in chapter 4 of the previous literature [36] was referred and used,
which is expressed in (15):

b =b + nYiR? (15)

1.0

1.0

cled - 4 dd
. ckd . ® notckd

0.8
0.8
|

0.6

0.4

The probability obtained by KF
0.4

The probability obtained by RF

0.2
|

L 3

[

F Y & FY Y
(=]] AA & o ! ‘A &
) o ¥
I I I I I I T T I I T T
0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0
The probability obtained by LOG The probability obtained by LOG
(@ (b)

where the R 1s the maximum of the L2 norm of the eigenvectors in all training
samples. When the (15) was used, the obtained decision line could correctly classify
the samples, and the line was located in the middle of the solution area, so it is more
reliable than (14). When the second subset was utilized for testing (at K = 11), the
above phenomenon was obvious. Figs. 5(a) and (b) plot the decision line

719

constructed by the perceptron on the training data set when the updating strategies
of (14) and (15) were used, respectively. It can be seen that the updating strategy of
(15) in Fig. 5(b) 1is more reliable than (14) in Fig. 5(a). Therefore, (13) and (15)
were used as the updating strategies of the perception. The pseudo code of the
model is described as follows:

2. Related Work
1.Data collection

In machine learning, the quality and quantity of input data that is used for training
the classifiers are very important. Most algorithms perform well when the prior
probabilities of the target classes are similar. Data is said to be imbalanced if at
least one of the target variable values has a significantly smaller number of
instances when compared to the other values. Class imbalance is one of the vital
issues in machine learning classification tasks. Machine learning algorithms
trained on imbalanced data emphasize exploiting the total accuracy over the entire
dataset leading to more attention being paid to the majority class samples . Due
to this scenario, the minority class samples are poorly projected by the learning
model.

proposed a two-phase classification model to solve the class imbalance problem
for predicting type II diabetes. SMOTE was used to rebalance the data. The pre-
processed data was then trained using a DT classifier. The DT showed increased
performance by reducing class imbalance. Class imbalance causes difficulties for
classifiers. studied data-driven methods and the algorithm-driven approaches for
dealing with class imbalance problems for the autism diagnosis. The approaches
on data fine-tune the class proportion in the input data to generate a balanced
dataset. In algorithm-driven approaches the classification algorithm is fine- tuned
to create a model that learns more from the minority class. Thus, the dataset will
remain as imbalanced. In this approach, no changes are made to the input data
distribution. proposed a concordant partial area under the receiver operating
characteristic (ROC) for measuring the performance of the machine learning
algorithms on imbalanced data with low prevalence.

experimented with SMOTE, borderline SMOTE (BLSMOTE), majority
weighted minority oversampling technique (MWMOTE), and k-means SMOTE
(KMSMOTE) to handle the class imbalance issue in the prediction of injury

severity using machine learning techniques. tackled class imbalance with
720

SMOTE for predicting diabetes. Experiments were conducted with NB, SVM-
radial basis function, C4.5 and repeated incremental pruning to produce error
reduction (RIPPER). SMOTE sampled data applied to C4.5 DT produced better
results than the other three classifiers.

developed an active balancing mechanism for the biomedical data under-
sampling. Gaussian NB and entropy were used to evaluate sample information
and retain valuable samples of the majority class to achieve under-sampling.
proposed a reduced universum twin SVM for dealing with class imbalance
learning. The model makes a balanced environment for the classification by
incorporating prior information from the universum data points.

esigned an affinity and class probability based fuzzy SVM (ACFSVM) approach
for imbalanced datasets classification tasks. The proposed technique gives more
importance to majority class samples with higher affinities and class probabilities
ultimately skewing the final classification boundary toward the majority class.
But the minority class samples are dispensed with high memberships to promise
their importance for the learning. resolved the problem of imbalance by under-
sampling the training neuro imaging data during their work to analyze
Alzheimer’s disease. proposed a trainable under sampling method that applies
evaluation metric optimization into the data sampling procedure. By using such
an optimization, the method learns the instances to be discarded and the instances
to be preserved.

Previous researches on class imbalance have focused on a few diseases but
not on predicting CKD. In this work, a CKD predictive model is built by
balancing the imbalanced CVD data by applying SMOTE over minority class and
then training with MLP (Multi-layer Perceptron) classifier.

2. Data source

Table introduce Imbalanced class distribution of CVD dataset

lass

No Yes
Count 435 56
Percentage 88.6 11.4

The data for analysis is an electronic medical record (EMR) collected by during
their research on CKD. The CVD dataset has 23 features of CVD or at- risk CVD
patient and 491 instances. The target class “EVENTCKD35” has two values
“Yes” and “No”. CKD cases are represented as “Yes” and normal cases are
represented as “No”. Table 1 shows the number of positive cases for CKD in
CVD patients’ data (class 1) is lesser than the number of negative cases for CKD

721

(class 0). This makes it clear that the dataset that is taken for experimentation has
class imbalance problem.

3. Proposed CKD prediction experimental framework

Data
CVD data Pre-processing
N
Partition
data
-+ Testing data
1 L
Training
data

| ! }

Stage |
Mo-Sampling

tage || Stage Il
MOTE RUS

W

r h k.

Supervised Learners
LR, SWM, MLP, K-NN

CKD model

Fy

b

CKD prediction

Fig. 1. Proposed CKD prediction experimental framework

The proposed CKD prediction experimental framework on class imbalanced
CVD data is shown in Figure 1. The proposed framework involves steps like data
pre-processing, solving class imbalance problem using sampling techniques,
building the model using supervised learners and selecting the best models that
outperforms others in terms of performance metrics. The framework also involves
in applying the imbalanced data in building the model. Results obtained on
predictions using no sampling and sampling techniques are compared.

4. Data pre-processing

The dataset is pre-processed before feeding it to a classification algorithm. The
features in the CVD dataset consist of patient history details like gender, age, age-
categories (split into three age groups) and the presence or absence of health

722

conditions like diabetes mellitus (DM), CHD, vascular disease, smoking status,
hypertension (HTN), dyslipidemia (DLD), obesity. It also includes the history of
intake of medicine for DLD, DM, HTN and angiotensin-converting enzyme
inhibitors/angiotensin II receptor blockers (ACEI/ARB). Laboratory values
includes cholesterol, triglycerides, HgbA1C (glycosylated Hemoglobin, type
A1C), Creatinine, sBP (Systolic blood pressure), dBP (Diastolic blood pressure),
eGFR (estimated Glomerular Filtration Rate), BMI (Body mass index). Further,
it includes the patient observation time in months and the target class label
‘EventCKD35’ [Shamsi et al., (2018)]. The input features age-categories and age
represent the same information about age. So, the age-categories feature is
removed. Also, the feature ‘eGFR’ calculated using standard formulas may
determine CKD directly [6]. This may create a hindrance to learn about the other
features that may contribute to detect CKD. So, it was removed. The dataset
contains a few missing values for the features ‘triglycerides’ and ‘HgbA1C’.
Since the count of missing values is very less, the instance with missing values is
ignored. After removing missing values, 460 instances were representing the
medical records of CVD patients.

0 1
EventCKD35

Fig. 2. Class distribution

The class distribution is shown in Figure 2. There are 415 class 0 records and
54 class 1 records. The dataset has 21 input features and one target feature named
as ‘EventCKD35’. Among the 21 input features, 9 features are numerical in
nature and 12 features are categorical with values “yes” and “no”. The values for
categorical features are encoded to numerical 1 or 0 using label and one hot
encoding technique. The range in the distribution of numerical features varies
widely. To normalize the values of features, all numerical feature is scaled
between values -1 and 1 using the min-max scaler as shown in Figure 3. After
data pre-processing, the imbalanced data is divided as 70% training data and 30%
testing data.
5. Class imbalance

Imbalanced classification problems represent a classification model created with
data in which the distribution of class values across the classes is not equal . A
classification problem gets skewed because of the nature of class imbalance . In

this analysis 88.6% of the class values belong to the majority class “No” and
723

11.4% of the class values belong to the minority class “Yes”. But the prediction
model is intended to create a model to predict the CKD patients from the CVD or
high-risk CVD patient’s data. In this case, classification accuracy (A) can
mislead to select the best performing model. Techniques to select the best model
for data with class imbalance are: Choosing the performance metrics those that
focus on the minority class, oversampling the minority class using SMOTE to
rebalance the class, undersampling the majority class to rebalance the class and
selecting classification algorithms such as those that penalize misclassification
errors differently. The classification algorithms such as LR, SVM, MLP and K-
NN are used for creating classification model.

Numerical Features

] —— AgeBaseline
CholesterolBaseline
~ TriglyceridesBaseline
- HgbA1C
CreatnineBaseline
sBPBaseline
dBPBaseline
BMiBGaseline
TimeToEventMonths

o

Fig. 3. Numerical features distribution

6. Oversampling using SMOTE

In this oversampling approach, the minority class is over-sampled by creating
“synthetic” instances rather than by over-sampling with replacement [Chawla et
al., (2001)]. Oversampling encompasses accumulating samples to the minority
class in an exertion to reduce the skew in the class distribution [Pan et al.,(
2019)]. The minority class “Yes” is over-sampled, which means the number of
samples is increased. SMOTE iterates through the existing minority instance. At
each iteration, one of the ‘X’ closest minority class neighbors are chosen. A new
minority instance is synthesized at some point between the minority instance and
that neighbor. Synthetic examples are inserted along the line segments joining
any of the X minority class nearest neighbor or all of the X minority class nearest
neighbors. Depending upon the amount of over-sampling, N neighbors are
chosen. Synthetic samples are created by taking the difference between the
feature vector under consideration and its nearest neighbor. The difference is then
multiplied by a random number between 0 and 1. The obtained result is then

724

added to the feature vector under consideration. This causes the selection of a
random point along the line segment between two specific features .

8. Under sampling using random under sampling

Under-sampling techniques eliminate instances from the training dataset that
belong to the majority class in order to reduce the skew in class distribution . The
instances can be removed in the ration 1:1, 1:2, 1:100 or any ratio according to
requirements. There are different techniques in under-sampling such as random
majority under sampling, near miss, cluster centroid and Tomek link. In this
work, random under sampling (RUS) is used. The samples of the majority class
“No” of the training data are randomly removed such that a balanced 1:1 class
distribution is created. Classifiers are trained on this balanced dataset.

9. Stages of Analysis

To build an efficient CKD prediction model, the experiment is done in three
stage’s as shown in Figure 1.

Stage I: Building a classification model with the imbalanced data (No
Sampling).

Stage II: Building a classification model by oversampling the minority class
using SMOTE to rebalance the class.

Stage III: Building a classification model by under-sampling the majority class
using RUS to rebalance the class.

In stage 1 the training data is fed to classifiers. The classification algorithms
such as LR, K-NN, SVM, MLP were fit on the training data. The training data
was validated with 10-fold cross-validation. The models obtained were evaluated
using various performance metrics that support the minority class 1 to choose the
best model. Stage II aims in building a classification model by oversampling the
minority class using SMOTE to rebalance the class. The minority class “1” is
oversampled using SMOTE to balance the class distribution. The training data is
fed to SMOTE sampler to oversample the minority class 1. Class 1 is
oversampled with instances equal to the number of majority class 0. After this
pre-processing stage the data becomes balanced. The balanced training data is fed
to classifiers and classification model is created. The test data is then fed to the
models to predict the risk of CKD.

Stage III intends to build a classification model by under sampling the
majority class using RUS to rebalance the class distributions. The majority class
“0” 1n the training data is under-sampled randomly by deleting instances in the
class”0”. By deleting the instances of majority class, the information that
classifiers can learn is lost [Koziarski, (2020)]. But now the class becomes
balanced. With equal distributions in both the class, the classifiers build the

balanced model. The imbalanced test data is fed to the models to predict CKD.
725

4. Results and Discussion

Predicted Predicted
Total samples No Yas
Actual ™ FP
No “Don't have CKD" “Have CKD"
Actual FN TP
Yes “Don't, have CKD" “Have CKD"

Fig. 4. Confusion matrix

Performance metrics that focus on the minority class are sensitivity or recall (R),
precision (P), F-score, balanced accuracy (BA) and geometric mean (G-Mean).
The confusion matrix shown in Figure.4 is a valuable tool in analyzing the
predicted and actual values and supports to measure the performance of the
predictive model [He and Garcia, (2009)]. True positive (TP) gives the number
of observations correctly predicted as CKD, false positives (FP) gives the number
of observations that are incorrectly predicted as CKD which are not CKD. True
negative (TN) tells the number of observations predicted correctly as not having
CKD and false negative (FN) gives the number of observations incorrectly
predicted as not having CKD.
TP R1
TP FN
TP P2
TP FP

R is the True Positive Rate (TPR). It gives the information about how well
the positive class “Yes” is predicted as shown in Eq. (1). P states the information
about the fraction of observations that are really positive out of all the
observations that are predicted as positive as in Eq. (2). F-score in Eq. (3) gives
the balance between P and R. True negative rate (TNR) in Eq. (4) can be
measured to know how well TN is predicted.

2PR
F — score = m 3
_ TN
TNR = (TN + FP) 4
(TPR + TNR)
BA = —m———

2

G mean VTPR TNR 6

726

The BA metric in Eq. (5) is a more suitable metric to measure the performance
of classifiers on imbalanced data. [Luquea et al.,(2019)]. The G-mean in Eq. (6).
shows a balance in classification performance in terms of R and TNR [Wang e?
al., (2018)]. The performance of classifiers in phase I analysis is evaluated. Table
2 shows that the classifiers LR, SVM, MLP and K-NN perform with A>=90%.
Among the four classification algorithms, MLP has the highest A - 93%. But R
and F-score are very less. It is clear that the accuracy is biased by the majority
class value 0. This is because the CVD data collected for predicting CKD suffers
from severe class imbalance problem. If A alone be used as a metric to select the
best model, it can mislead the classification task. So, the focus must be on the
other performance metrics that can be used to evaluate the CVD data which has
class imbalance issues. The evaluation metrics that can be used on the balanced
data treat all classes with equal importance. But in imbalanced classification task
classification errors with the minority class are more important than those with
the majority class.

Table 2. Performance of classifiers on imbalanced training data

Model | A P R | F- ROC-
score | AUC

LR 1090 |0.67|025| 0.36 | 0.62
SVM | 091 | 1.00 | 0.25 | 0.40 | 0.62
MLP | 091 | 0.67 | 0.50 | 0.57 | 0.73

K-NN | 0.87 | 1.00 | 0.12 | 0.22 | 0.56
Table 3. Predictions on imbalanced testing data (No sampling)

Model | A P R F- ROC-
score | AUC

LR |0.90|0.67]|0.25| 0.36 | 0.62
SVM | 091 | 1.00| 0.25 | 0.40 | 0.62
MLP | 091 0.67| 0.50 | 0.57 | 0.73

K-NN | 0.87| 1.00| 0.12 | 0.22 0.56
Table 4. Comparison of predictions of imbalanced models

Model| TN | FP| FN| TP| TPR| FPR| TNR| FNR| BA | G-
mean

LR | 123 2 |12 | 4 [025]0.02| 098 | 0.75 | 0.62 | 0.50
SVM | 125 0 | 12 | 4 | 0.25]0.00 | 1.00 | 0.75 | 0.63 | 0.50
MLP | 121 | 4 | 8 8 1050 (0.03 097 0501073 0.70
K-NN | 125 0 | 14 | 2 | 0.12] 0.00 | 1.00 | 0.88 | 0.56 | 0.35

Table 5. Performance of classifiers on SMOTE balanced training data

727

Model A P R | F- ROC-
score | AUC
LR- 092 1 0.75 | 0.93 | 0.51 0.91
SMOTE
SVM- 093 1091 | 0.96 | 0.94 0.94
SMOTE
MLP - 091 1 0.90 | 0.98 | 0.94 0.93
SMOTE
K-NN- 0.90 | 0.63 | 0.97 | 0.38 0.77
SMOTE
Table 6. Performance of SMOTE models on testing data
Model A P R | F-score | ROC-
AUC
LR- 0.87 | 0.43 | 0.56 0.49 0.73
SMOTE
SVM- 0.89 | 0.53 | 0.62 0.57 0.78
SMOTE
MLP - 0.93 | 0.64 | 0.56 0.60 0.76
SMOTE
K-NN- 0.81 | 0.31 | 0.56 0.40 0.70
SMOTE

Table 7. Comparison of predictions of SMOTE models

Model | TN | FP| FN| TP| TPR| FPR| TNR | FNR | BA l(l;l;an
LR- 113 12 | 7 9 1056 |0.10 | 090 | 0.44 | 0.73| 0.71

SMOTE

SVM- 116 9 6 | 10 [0.62 | 0.07 | 0.93 | 0.38 | 0.76| 0.76

SMOTE

MLP - 120 5 7 9 1056 |0.04 | 09 | 044 | 0.76| 0.73

SMOTE

K-NN- | 105} 20 | 7 9 1056 |0.16 | 0.84 | 0.44 | 0.70| 0.69

SMOTE

Table 8. Performance of classifiers on RUS balanced
training data

728

Model A P R F- ROC-
score | AUC

LR- 0.75 1 078 | 0.77 | 0.74 0.88
RUS

SVM- 0.77 |1 0.76 | 0.82 | 0.78 0.83
RUS

MLP- 0.79 |1 0.82 | 0.81 | 0.78 0.90
RUS

K-NN- | 0.73 | 0.78 | 0.66 | 0.71 0.77
RUS
Table 9. Performance of RUS model on testing data

F- ROC-
score AUC
LR-RUS 0.84 | 0.38 | 0.62 0.48 0.75

SVM- 0.83 | 036 | 0.75 | 0.49 0.79
RUS

MLP- 0.85 | 0.42 | 0.81 0.55 0.83
RUS

K-NN- 0.83 | 034 | 0.75 | 0.47 0.78

Model A P R

Table 10. Comparison of predictions of RUS models

Model | TN | FP| FN| TP| TPR| FPR| TNR| FNR| BA | G-
mean

LR- [10916 | 6 | 10 | 0.62 | 0.13 | 0.87 | 0.38 | 0.75 | 0.87

RUS

SVM- | 106 | 19 | 5 | 11 | 0.69 | 0.15 | 0.85 | 031 | 0.77 | 0.88

RUS

MLP- | 107 | 18 | 3 | 13 | 0.81 | 0.14 | 0.86 | 0.19 | 0.84 | 0.92

RUS

K-NN-| 107 | 18 | 6 | 10 | 0.62 | 0.14 | 0.86 | 0.38 | 0.74 | 0.86

RUS

Table 11. Comparison of imbalanced and balanced models

Classifier

Imbalanced model | SMOTE model RUS model
F-score G- BA |F-score G- BA |F-score G- BA
mean mean mean

729

LR 036 | 0.50 |0.62| 049 | 0.71 |0.73| 0.48 | 0.87 |0.75
SVM 0.40 0.50 [0.63| 0.57 0.76 |0.76 | 0.49 0.88 |0.77
MLP | 057 | 0.70 |0.73| 0.60 | 073 |0.76| 0.55 | 0.92 |0.84
K-NN 0.22 0.35 [0.56| 0.40 0.69 [0.70| 047 0.86 |0.74
0.7
0.6
0.5
v 0.4
§ 0.3
<02
0.1
0
e N &S Q7 St
N o & &
Model

Fig.5. F-score of imbalanced and balanced models

Training data

-
™

Data Pre-processing

v

Apply SMOTE

!

MLP Classifier

Testing data

MLP-SMOTE
model

l

CKD prediction

Fig. 6. Proposed CKD prediction model

The challenge is to choose the metric that focuses on the minority class where
we dearth observations required to train an effectual classification model. P, R,
F-score are the metrics that can measure the effectiveness of the model created
when there is a skew in the class distribution. Based on this, MLP produces the
highest R of 79%, P of 69% and F-score of 70%. The classification model build

730

is fed with the testing data to observe how it performs on the test data. Table 3
shows that the MLP classifier has a better R and F-score when compared with the
other models. MLP and SVM performed better than LR and KNN classifiers by
achieving 69% P, 79% R and 70% F-score. SVM and LR attained 25% R. MLP
and LR reached 67% P. But SVM has the highest P of 100% with a low R of
25%. The reason for the very low R rate in all classifiers is due to the skew
distribution of the class. MLP performed better than other classifiers in terms of
area under the receiver operating characteristic curve (ROC-AUC) in phase .
Table 4 shows that the MLP also achieved the highest BA -73% and G-mean —
70 % when compared with the other three models.

In phase II, classifiers are applied to the SMOTE oversampled CVD data. The
balanced data is 10-fold crossvalidated. In the training phase SVM -SMOTE
model produced the highest A- 93%, P-91%, F score - 94% and ROC-AUC 94%.
Table 5 shows the performance of the classifiers on the oversampled training data.
In all the four classifiers R rate has increased when compared with model
performance on imbalanced data in Table 2. This is because the data is now
balanced. MLP-SMOTE achieved the highest R rate. These models were applied
to the test data and evaluated as shown in Table 6. The test data is not balanced.
On the test data, MLP attained better performance than the other classifiers in
terms of P and F-score. Table 7 shows that SVM -SMOTE produced the highest
G-mean of 76%. But MLP-SMOTE has better TNR and BA. In phase III,
classifiers were trained with under- sampled data. Table 8 shows that the
accuracy of all the RUS models on training data has decreased when compared
with no-sampling and SMOTE models. But the MLP-RUS performs better than
other RUS models in terms of A, P, R, F-score and ROC- AUC as shown in Table
9.

Table 10 shows that the G-mean of MLP-RUS has increased which shows that
the performance is validated with equal importance to both TPR and TNR. The
BA of MLP-RUS is also higher when compared with all other models. MLP
classifier performs better when oversampled or under-sampled when compared
with other classifiers as shown in Table 11. But when the class 0 data is under-
sampled for sake of balancing with class 1, the classifiers miss the opportunity to
learn from more data. The F-score of MLP- RUS model has decreased when
compared with imbalanced models as shown in Figure. 5. But in MLP-SMOTE
model the F-score has increased when compared with imbalanced models.

The proposed methodology offers MLP - SMOTE as the better classifier for
predicting CKD from imbalanced CVD as illustrated in Figure. 6. The MLP
model is trained with SMOTE balanced data to create an MLP-SMOTE model.
The created model is fed with the testing data which is not balanced. By

oversampling the imbalanced data, the MLP classifier performance increases. The
731

MLP-SMOTE predicts whether the patient has CKD or not. This prediction result
may help the health care practitioners and the patients for the earlier identification
of CKD from CVD data.

5. Conclusion

In this work, the CKD prediction model is built using imbalanced CVD data.
Initially, the models LR, SVM, MLP and KNN build on imbalanced data,
performed with good accuracy in predicting the CVD test data. But R and F-
score were low. The low values are due to the fact that the number of CKD
positive cases is too low. On the imbalanced data, the MLP model performed
better than other models. The CVD training data is then balanced by applying
resampling techniques like SMOTE and RUS. On the test data, MLP-SMOTE
performed better with the highest and increased F-score when compared with
other models. The proposed MLP-SMOTE model can predict CKD better by
solving the imbalanced distribution of CVD data. This can help the medical
practitioners and patients for the early prediction of CKD and save a life. In the
future, the model can be further tuned by applying feature selection methods to
increase the performance in prediction

SOURCE CODE:

#Import the libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.model_selection import train_test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.matrics import roc_curve,aue,confusion_matrix, classification_report,accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

from Sklearn.neighbors import kNeighborsClassifier

Reading the dataset

kidney = pd.read_csv(" ")

kidney.head()

#information about the dataset

kideny.info()

#Description of the dataset

kideny.describe()

To see what are the columan name in our dataset
print(kideny.columan)

Mapping the text to 1/0 and cleaning the dataset
732

kidney[['htn','dm','cad', 'pe',"ane']] = kidney[['htn','dm',"'cad', 'pe’, 'ane']].
replace(to_replace={'yes':1,'no":0})

kidney[['rbc',"'pc']] = kidney[['rbc', 'pc']].replace(to_replace={"'abnormal’:1,"
normal':0})

kidney[['pcc', 'ba"']] = kidney[['pcc','ba']].replace(to_replace={'present':1,"'n
otpresent':0})

kidney[['appet']] = kidney[['appet']].replace(to_replace={'good':1, 'poor':0,"'n
o':np.nan})

kidney["classification'] = kidney['classification’].replace(to_replace={'ckd":
1.0, 'ckd\t':1.0, 'notckd':0.0,'no':0.0})
kidney.rename(columns={"'classification':'class"'},inplace=True)

kidney['pe'] = kidney['pe'].replace(to_replace="good',value=0) # Not having pe
dal edema is good
kidney["appet'] = kidney['appet'].replace(to_replace="'no',value=0)
kidney['cad'] = kidney['cad'].replace(to_replace="\tno',value=0)
kidney['dm'] = kidney['dm'].replace(to_replace={"'\tno':0, '\tyes':1,"' yes':1, '
':np.nan})
kidney.drop('id',axis=1,inplace=True)
kidney.head()
This helps us to count how many NaN are there in each column
len(kidney)-kidney.count()
This shows number of rows with missing data
kidney.isnull().sum(axis = 1)
#This is a visualization of missing data in the dataset
sns.heatmap(kidney.isnull(),yticklabels=False,cbar=False,cmap="viridis")
This shows number of complete cases and also removes all the rows with NaN
kidney2 = kidney.dropna()
print(kidney2.shape)
Now our dataset 1is clean
sns.heatmap(kidney2.isnull(),yticklabels=False,cbar=False,cmap="viridis")
sns.heatmap(kidney2.corr())
Counting number of normal vs. abnormal red blood cells of people having chronic
kidney disease
print(kidney2.groupby('rbc").rbc.count().plot(kind="bar"))
#This plot shows the patient's sugar Level compared to their ages
kidney2.plot(kind="scatter', x="age',y='su');
plt.show()
Shows the maximum blood pressure having chronic kidney disease
print(kidney2.groupby(‘class"').bp.max())
print(kidney2['dm'].value_counts(dropna=False))
X_train, X_test, y_train, y_test = train_test_split(kidney2.iloc[:,:-1], kidney2['
class'], test_size=0.33, random_state=44, stratify= kidney2['class'])

In [19]:
linkcode
print(X_train.shape)

X_train, X_test, y_train, y_test = train_test_split(kidney2.iloc[:,:-1], kidney2['
class'], test_size=0.33, random_state=44, stratify= kidney2['class'])

In [19]:
linkcode
print(X_train.shape)
y_train.value_counts()
rfc = RandomForestClassifier(random_state = 22)
rfc_fit = rfc.fit(X_train,y_train)
rfc_pred = rfc_fit.predict(X_test)
In [23]:

733

linkcode
print(confusion_matrix(y_test,rfc_pred))

print(classification_report(y_test,rfc_pred))
accuracy_score(y_test, rfc_pred)
knn = KNeighborsClassifier(n_neighbors=1)

In [27]:
linkcode
knn.fit(X_train,y_train)

pred = knn.predict(X_test)

In [29]:
linkcode
print(confusion_matrix(y_test,pred))

print(classification_report(y_test,pred))
accuracy_score(y_test,pred)
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)

predictions = logmodel.predict(X_test)

In [34]:
linkcode
print(classification_report(y_test,predictions))

print(confusion_matrix(y_test,predictions))
accuracy_score(y_test, predictions)
feature_importances = pd.DataFrame(rfc.fit(X_train,y_train).feature_importances_,
index = X_train.columns,
columns=["importance']).sort_values('importance

', ascending=False)
print(feature_importances)
kidney3 = kidney.drop(columns=['rbc', ‘pc', 'sod',
kidney3. shape
kidney3.head()
kidney3.isnull().sum()
kidney3.mode()
Fill in the NaNs with the mode for each column.
kidney3_imp = kidney3.apply(lambda x:x.fillna(x.value_counts().index[@]))
kidney3_imp.isnull().sum()

X_train, X_test, y_train, y_test = train_test_split(kidney3_imp.iloc[:,:-1], kidne

y3_imp['class'],

[1

pot', 'pcv', 'wc', 'rc'])

test_size = 0.33, random_state
=44,

)

stratify = kidney3_imp['class']

In [45]:
linkcode
y_train.value_counts()

rfc = RandomForestClassifier(random_state = 22)
rfc_fit = rfc.fit(X_train,y_train)
rfc_pred = rfc_fit.predict(X_test)
print(confusion_matrix(y_test,rfc_pred))
print(classification_report(y_test,rfc_pred))
accuracy_score(y_test, rfc_pred)
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)

predictions = logmodel.predict(X_test)

In [53]:
linkcode
734

print(classification_report(y_test,predictions))

accuracy_score(y_test, rfc_pred)
dtree=DecisionTreeClassifier()

In [57]:
dtree.fit(X_train,y_train)

predictions=dtree.predict(X_test)

In [59]:
linkcode
print(classification_report(y_test,predictions))

from IPython.display import Image

from sklearn.externals.six import StringIO

from sklearn.tree import export_graphviz

import pydot

import os

os.environ["PATH"] += os.pathsep + 'C:\Program Files (x86)/Graphviz2.38/bin/"

features
features
dot_data = StringIO()

export_graphviz(dtree, out_file = dot_data,feature_names = features,filled = True,
rounded=True)

list(kidney3.columns[1:])

graph = pydot.graph_from_dot_data(dot_data.getvalue())
Image(graph[@].create_png())
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train,y_train)

rfc_pred = rfc.predict(X_test)

In [64]:
linkcode
print(confusion_matrix(y_test,rfc_pred))

print(classification_report(y_test,rfc_pred))

accuracy_score(y_test, rfc_pred)
Choosing a K Value.
Let's go ahead and use the elbow method to pick a good k value.
error_rate = []

Will take some time
for i in range(1,40):

knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train,y_train)

pred_i = knn.predict(X_test)
error_rate.append(np.mean(pred_i != y test))

In [68]:
linkcode
plt.figure(figsize=(10,6))
plt.plot(range(1,40),error_rate,color="blue', linestyle="'dashed', marker='o', mark
erfacecolor="red',markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K")
plt.ylabel('Error Rate')

knn = KNeighborsClassifier(n_neighbors=1)

In [70]:
linkcode
knn.fit(X_train,y_train)

735

knn = KNeighborsClassifier(n_neighbors=1)

In [70]:
linkcode
knn.fit(X_train,y_train)

print(classification_report(y_test,pred))
accuracy_score(y_test,pred)

736

=class 'pandas.core.frame.DataFrame’>

RangeIndex: 488 entries, 8 to 399

Data columns (total 25 columns):
Column Non-Null Count
age non-null float64
blood_pressure 388 non-null floattd
specific_gravity 353 non-null floathd
albumin 354 non-null floatb4
sugar non-null floattd
red_blood_cells non-null abject
pus_cell non-null sbject
pus_cell_clumps non=null abject
bacteria non-null sbject
blood_glucose_random non-null floatbd
blood_urea non-null floathd

serum_creatinine non-null floathd

godium : non-null floatsd
potassium 312 non-null float6d
haemoglaobin g non=-null floathd
packed_cell_volume non-null object
white_blood_cell_count 295 non-null object
red_blood_cell _count 278 non-null object
hypertension 398 non-null object
diabetes_mellitus 398 non=-null object
coronary_artery_disease 398 non-null object
appetite 399 non-null object
peda_edema 399 non-null object

aanemia 399 non-null object

class 488 non-null object
dtypes: float64(11), object{14)
memory usage: 78.2+ KB

737

red_blood_cells has [nan 'normal’ ‘abnormal'] values

pus_cell has ['normal’ ‘abnormal’ nan] values

pus_cell_clumps has ['notpresent’ 'present’ nan] values

bacteria has ['notpresent’ ‘present’ nan] values

hypertension has ['yes' 'no" nan] values

diabetes_mellitus has ['yes' 'mo’ ' yes' "\tno' '\tyes' nan] values

coronary_artery_disease has ['no' ‘yes' ‘\tmo' nan] values

appetite has ['good’ ‘poor' nan] values

peda_edema has ['no" ‘yes' nan] values

aanemia has |'no" ‘yes' nan] values

class has ['ckd dit' ‘notckd'] values

diabetes_mellitus has ['yes' 'no’ nan] values

coronary_artery_disease has ['no’ ‘yes' nan] values

class has [8 1] values

Index(['age', 'blood_pressure', 'specific_gravity', 'albumin', 'sugar’,

‘red_blood_cells', 'pus_cell', 'pus_cell_clumps’', 'bacteria’,
‘blood_glucose_random', 'blood_urea', 'serum_creatinine', ‘sodium’,
'potassium', 'haemoglobin', 'packed_cell_volume',

‘white_blood_cell _count', 'red_blood_cell_count', 'hypertension’,
‘diabetes_mellitus', 'coronary_artery_disease', 'appetite’,
‘peda_edema’, 'aanemia’, ‘class’'],

dtype='object’)

738

Index(['age', 'blood_pressure', 'specific_gravity', 'albumin’, 'sugar’,
‘red_blood_cells', 'pus_cell', 'pus_cell_clumps', 'bacteria’,
‘blood_glucose_random', ‘blood_urea’', 'serum_creatinine’, 'sodium’,
‘potassium', 'haemoglobin', 'packed_cell_volume',
‘white_blood_cell_count', 'red_blood_cell_count', 'hypertension',
‘diabetes_mellitus', 'coronary_artery_disease’, ‘appetite’,
‘peda_edema', 'aanemia’, 'class'],

dtype='object’)

specific_gravity

packed cell volume

1.015

[
(=]
(8]

specific_gravity

= o
T =

awnjoA” [jao” paxyoed

ujwng|e

740

m m
5 7
u wn
w [+F]
m =
s (=8
3 B8
3 2
b= 0

(=]
@
"]

o =]
o (=]
j=) (=] - *
M ~

uiqojBGowaey Winjpas sLINjoA |80 paed

red_blood_cells
red_blood_cell_count
white_blood_cell_count
potassium

sodium
packed_cell_volume

pus_cell

haemoglobin

sugar
specific_gravity
albumin
blood_glucose_random
blood_urea
serum_creatinine

blood_pressure

blood_pressure
age

bacteria
pus_cell_clumps
hypertension
diabetes_mellitus
coronary_artery_disease
appetite
peda_edema
aanemin

class

dtype: intb4

152
131
186

742

