
1

“ Identification/Detection Of Malicious Activities Through Internet ’’

BACHELOR OF ENGINEERING
IN

COMPUTER SCIENCE & ENGINEERING

Under the Supervision of :-
“Mr. Himanshu Sharma Sir”

Assistant Professor

Submitted by:-

S.
N
o

Enrollment
Number

Admission
Number Student Name Degree /Branch Sem

1 19021260008 19SCSE1260012 KRISHNA B.TECH IN CSE WITH SPECIALIZATION IN
CSDF

v

2. 19021260002 19SCSE1260006 ADARSH KUMAR SINGH BTECH IN CSE WITH SPECIALIZATION IN
CSDF

v

SCHOOL OF COMPUTING SCIENCE & ENGINEERING,

Galgotias University, Greater Noida,

Fall 2021-22

2

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“Identification/Detection Of Malicious Activities Through Internet” in partial fulfillment of the

requirements for the award of the project review in the School of Computing Science and

Engineering of Galgotias University, Greater Noida, is an original work carried out during the period

of Oct, 21 to Dec, 21 under the Mr. Himanshu Sharma, Department of Computer Science and

Engineering/Computer Application and Information and Science, of School of Computing Science

and Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by us for the award of any other degree

of this or any other places.

Adarsh Kumar Singh, 19SCSE1260006

Krishna, 19SCSE1260012

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Mr. Himanshu Sharma
(Assistant Professor)

3

CERTIFICATE
The Final Thesis/Project/ Dissertation Viva-Voce examination of Adarsh Kumar Singh

(19SCSE126006) & Krishna (19SCSE1260006) has been held on _________________ and his/her

work is recommended for the award of Project Review.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021
Place: Greater Noida

4

Acknowledgement

In performing our assignment, we had to take the help and guidance of some respected
person, who deserves our greatest gratitude. The completion of this assignment gives us
much Pleasure. We would like to show our gratitude toMr. Himanshu Sharma Sir,
Project Guide, Galgotias University who introduced us to the Methodology of work,
and whose passion for the “underlying structures” had a lasting effect and for giving us
a good guideline for assignment throughout numerous consultations. We would also
like to expand our deepest gratitude to all those who have directly and indirectly guided
us in writing this assignment.
Many people, especially our classmates and team members, have made valuable
comment suggestions on this proposal which gave us inspiration to improve our
assignment. We thank all the people for their help directly and indirectly to complete
our assignment.

5

Table Of Content

Acknowledgement……………………………………..…....2
1. Abstract……………………………….…….………..……...4
2. Introduction…………………………….…..…………...…...5
3. Literature Survey………………………………………….....7
4. Use Case Diagram…………………………………………..8
5. Aws Honeypot…………………………………………….....9
6. Malicious and Benign Websites-Neural Network…………..10
7. Malicious URL Detection using MLP…………………...…11
8. Anomaly Detection - Credit Card Fraud Analysis………….12
9. Phishing Sites Detector & Complete info…………………..13
10.Merits & Demerits Of Proposed Methods………………….14
11. References……………………………………………….15

6

Abstract

Data and application security is most essential in today's environment due to the advancement as well
as exchange of information and communication techniques that generate new value added services by
different network threats. As a result, they developed diverse online services. However, cyber
security threats are also growing as the contact points to the Internet are increasing. The world wide
web is more vulnerable for malicious activities. Spam–advertisements, Sybil attacks, Rumour
propagation, financial frauds, malware dissemination and Sql injection are some of the malicious
activities on the web. It is very difficult to trace the impression of malicious activities on the web.
Many researches are under development to find a mechanism to protect web users and avoid
malicious activities. The aim of the survey is to provide a study on recent techniques to find
malicious activities on the web. Detection of malicious activities and identification of threat types are
critical to thwart these attacks. Knowing the type of a threat enables estimation of severity of the
attack and helps adopt an effective countermeasure. Existing methods typically detect malicious
activities of a single attack type. In this paper, we propose a method using machine learning to detect
malicious activities of all the popular attack types and identify the nature of attack and malicious
activities attempts to launch. Here, we use Machine learning, which has a variety of discriminative
features including textual properties, link structures, webpage contents, DNS information, and
network traffic. Many of these features are novel and highly effective. Recently, Machine learning
(ML) is a widespread technique offered to feed the Intrusion Detection System (IDS) to detect
malicious network activities. The core of ML models' detection efficiency relies on the dataset’s
quality to train the model. This research proposes a detection framework with an ML model for
feeding IDS to detect network traffic anomalies. This detection model uses a dataset constructed from
malicious and normal traffic. This research’s significant challenges are the extracted features used to
train the ML model about various attacks to distinguish whether it is an anomaly or regular traffic.

7

Introduction
Malware or malicious code is harmful code injected into legitimate programs to perpetrate illicit
intentions. With the rapid growth of the Internet and heterogeneous devices connected over the
network, the attack landscape has increased and has become a concern, affecting the privacy of users.
The primary source of infection, causing malicious programs to enter the systems without users’
knowledge. Mostly freely downloadable software’s are a primary source of malware, which include
freeware consisting of games, web browsers, free antivirus, etc. Largely financial transactions are
performed using the Internet, these have caused huge financial losses for organizations and
individuals. Malware writing has transformed into profit-making industries, thus attracting a large
number of hackers. Current malware is broadly classified as polymorphic or metamorphic, and it
remains undetected by a signature-based detector.

Malware writers employ diverse techniques to generate new variants that commonly include (a)
instruction permutation, (b) register re-assignment, (c) code permutation using conditional
instructions, (d) no-operation insertion, etc. Malware analysis is the process aimed to inspect and
understand malicious behavior. Normally malware are analyzed by extracting strings, opcodes,
sequence of bytes, APIs/system call, and the network trace.

While the World Wide Web has become a killer application on the Internet, it has also brought in an
immense risk of cyber attacks. Adversaries have used the Web as a vehicle to deliver malicious
attacks such as phishing, banking frauds, spamming and malware infection. For example, phishing
typically involves sending an email seemingly from a trustworthy source to trick people to click a
URL (Uniform Resource Locator) contained in the email that links to a counterfeit webpage.

To address Web-based attacks, a great effort has been directed towards detection of malicious
Activities. A common countermeasure is to use a blacklist of certain malicious activities, which can
be constructed from various sources, particularly human feedback that are highly accurate yet time-
consuming. Blacklisting incurs no false positives, yet is effective only for known malicious Activities.
It cannot detect unknown malicious activities. The very nature of exact matches in blacklisting
renders it easy to be evaded.

This weakness of blacklisting has been addressed by anomaly-based detection methods designed to
detect unknown malicious activities. In these methods, a classification model based on discriminative
rules or features is built with either knowledge a priori or through machine learning. Selection of
discriminative rules or features plays a critical role for the performance of a detector. Existing
methods were designed to detect malicious activities or URLs of a single attack type, such as
spamming, phishing, or malware.

8

Identification of attack types is useful since the knowledge of the nature of a potential threat allows
us to take a proper reaction as well as a pertinent and effective countermeasure against the threat. One
experimental study reports that the Sasser worm located a PC running a vulnerable operating system
and successfully compromised the machine in less than four minutes from when the machine was
connected to the Internet.

The speed and prevalence of automated attacks render ineffective any legacy defenses that rely on the
manual inspection of each case. It is necessary to deploy an automated defense system that
continuously monitors network traffic, determines whether the traffic from a particular source reveals
a certain malicious activity, and then triggers an alarm when it finds such traffic. In this dissertation,
we investigate the problem of designing efficient detection mechanisms for malicious network
activity that are suitable for practical deployment in a real-time automated network defense system.

Recently, ML techniques were used to train Intrusion detection system (IDS) to capture malicious
network traffic. The main idea of IDS based on ML analysis is finding patterns and building an IDS
based on the dataset. The IDS can detect adequately. We need to have a real network traffic dataset
and proper feature selection to learn enough. Therefore, we aim to propose a detection framework
with an ML model to detect malicious traffic that relies on a dataset consisting of network traffic
attributes to feed IDS. The presented model is prepared, constructed, fitted, and evaluated by the
Python language. Our attractive model should construct and fit in memory, so it listens to the
extracted features from network traffic to predict anomalies in real-time.

Figure 1:- This Shows working Of this proposed Methods

9

Literature Survey
Several research and techniques have been proposed on detection of malicious activities, spread of
malware, etc., by making datasets and analyzing them with the help of ML. Frank Van Tienhoven et
al.,have proposed a method to detect malicious URLs as a binary classification problem and studied
the performances of machine learning methods like Naïve Bayes, support vector machine(SVM),
Multi-layer perceptron, Decision trees, Random forest(RF), and K–nearest neighbours. The blacklist
services are an array of techniques which combine manual reporting, honey pots, and web crawlers
with site heuristics.

R.V. Bhor and H.K. Khanuja has developed a security mechanism and attack detection technique to
avoid sql injection attacks. Sql injection and Denial of service (DOS) are the threats found in web
applications. Sql injection attack is the process of altering a Sql statement by the use of web forms.

K. Srividya and A.Mary Sowjanya have developed a method for the analysis of internet messaging
and detection of malicious activity. The authors have discussed the adverse effect of internet
messaging in social networking sites like Facebook and Whatsapp. The methodology of the research
is based on the Latent semantic analysis (LSA). The text messages were processed and alarm if
malicious activity were following the emotion analysis technique rather than proper attention to
internet messaging.

Pedro Marques has proposed a method to detect web scraping activity using diverse detectors. Robots
were employed to extract content and data from a website. Search engine bots, and price comparison
bots are considered as legitimate web scraping robots. Copyrighted content scraping and Boosting
sale robots are illegitimate robots.

Devan Gol and Nisha Shah have discussed the detection of web application vulnerabilities based on
Rational Unified Process (RUP). The authors argued that the existing vulnerable detection tools are
failed to detect the latest attacks on the web. The research has demonstrated the vulnerabilities in web
applications. Vulnerabilities were occurring from improper codes, computer viruses, or a cross sided
script (XSS) and SQL injection attack (SQLIA). SQLIA is against a database driven application. It
will inject invalid input strings into the database and modify them for deliberate usage. A successful
attack will pass a SQL attack code into the back – end system and execute the vulnerable application.

10

Use Case Diagram

11

Some Of the Malicious activities their detection and Preventions are as follows:-

1. AWS honeypot
In computer terminology, a honeypot is a computer security mechanism set to detect, deflect, or, in some
manner, counteract attempts at unauthorized use of information systems. Generally, a honeypot consists of
data (for example, in a network site) that appears to be a legitimate part of the site and contains information or
resources of value to attackers. It is actually isolated, monitored, and capable of blocking or analyzing the
attackers. This is similar to police sting operations, colloquially known as "baiting" a suspect.
In human words(source: AWS AWF(web Application WireFall)): because of being online, companies face
continual security threats and challenges, like :

● HTTP flood attacks,
● distributed denial of service (DDoS) attacks,
● malicious activity in off hours and access attempts by bad IP addresses,
● SQL-injection attacks designed to extract data,
● cross-site scripting attacks (XSS) that could insert malicious code into web pages, designed to take

down its online activity.
Data Preparation
df<-read.csv('../input/AWS_Honeypot_marx-geo.csv',sep=',',stringsAsFactors=F)

Cleaning Feature Creation
● there are several missing values that need to be removed because longitude and latitude are missing,

since these are crucial features for the geolocation.
● maybe an imputation by IP.adress is possible
● at first I thought that the last column X was useless but it appears that it contains the correct values for

few rows having a wrong latitude(value is over 20000)

https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Information_systems
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Sting_operations
https://aws.amazon.com/solutions/case-studies/evitamins/

12

Geolocation Of attacks
● map + histogram of the top 10 locations
● custom color palette
● remove the size and color legend
● add the histogram of the top 10 bad IP.adresses, it will give the scale of the number of bad IP.adresses

attacks

13

Time line of the top 10 attackers

● decode year/month/day from datetime and convert to As.Date
● filter the top 10 bad IP.adresses
● set limit in time and y-axis free
● all_threats_locations$month<-sapply(all_threats_locations$datetime,function(x)

as.numeric(strsplit(strsplit(x,' ')[[1]][1],'/')[[1]][1]))
● all_threats_locations$day<-sapply(all_threats_locations$datetime,function(x)

as.numeric(strsplit(strsplit(x,' ')[[1]][1],'/')[[1]][2]))
● all_threats_locations$year<-2000 + sapply(all_threats_locations$datetime,function(x)

as.numeric(strsplit(strsplit(x,' ')[[1]][1],'/')[[1]][3]))
● all_threats_locations$hour<-sapply(all_threats_locations$datetime,function(x)

as.numeric(strsplit(strsplit(x,' ')[[1]][2],':')[[1]][1]))
● all_threats_locations$min<-sapply(all_threats_locations$datetime,function(x)

as.numeric(strsplit(strsplit(x,' ')[[1]][2],':')[[1]][2]))
● all_threats_locations$DateTS<-as.POSIXct(
● paste0(all_threats_locations$year,'-',
● all_threats_locations$month,'-',

14

● all_threats_locations$day,' ',
● all_threats_locations$hour,':',
● all_threats_locations$min,':00'),format= "%Y-%m-%d %H:%M:%S")
● #all_threats_locations$DateTS<-as.Date(paste0(all_threats_locations$year,'-

',all_threats_locations$month,'-',all_threats_locations$day,))
●

● top10.ip.adress<-top10$srcstr
● attackers<- data.frame(all_threats_locations %>% dplyr::filter(srcstr %in% top10.ip.adress))

for this plot the grouping is by day

lims <- as.POSIXct(strptime(c("2013-03-01 00:00:00","2013-10-01 23:59:59"), format = "%Y-%m-
%d %H:%M:%S"))

attackers %>%

dplyr::select(year, month, day, srcstr) %>%

mutate(dd = as.POSIXct(as.Date(paste0(year,'-',month,'-',day), format= "%Y-%m-%d"))) %>%

dplyr::group_by(srcstr,dd) %>%

dplyr::summarize(count=n()) %>%

ggplot(aes(x=dd,y=count,group=1)) + geom_histogram(stat='identity',aes(group=1)) +

theme_fivethirtyeight() +

scale_x_datetime(limits =lims) + facet_wrap(~srcstr, ncol=2, scales='free')

15

Detection by Host
There are several host, ie honey pot location, in the world. Grouping the data by Date and Host will show if they have
detected a common attack

Hide
all_threats_locations %>% dplyr::select(year, month, day, host) %>% mutate(dd = as.POSIXct(as.Date(paste0(year,'-
',month,'-',day), format= "%Y-%m-%d"))) %>% dplyr::group_by(host,dd) %>% dplyr::summarize(count=n()) %>%

ggplot(aes(x=dd,y=count,group=host,fill=host)) + geom_histogram(stat='identity',aes(group=host)) +
scale_fill_brewer(name='',palette='Paired') +

theme_fivethirtyeight() + facet_wrap(~host,scales='free',ncol=1) +
theme(legend.position='right',legend.direction='vertical',strip.text.x = element_text(size=0)) + labs(title='Detection by Hosts')

16

17

UML Diagram:-

18

2. Malicious and Benign Websites - Neural Network
Web Security is a challenging task amidst ever rising threats on the Internet. With billions of websites active
on the Internet, and hackers evolving newer techniques to trap web users, machine learning offers promising
techniques to detect malicious websites. The dataset described in this manuscript is meant for such machine
learning-based analysis of malicious and benign webpages. The data has been collected from the Internet
using a specialized focused web crawler. The dataset comprises various extracted attributes, and also raw
webpage content including JavaScript code. It supports both supervised and unsupervised learning. Malicious
websites are of great concern due it is a problem to analyze one by one and to index each URL in a black list.
Unfortunately, there is a lack of datasets with malicious and benign web characteristics.
This is an important topic and one of the most difficult thing to process, according to other articles and
another open resource, we used three black list:

● machinelearning.inginf.units.it/data-andtools/hidden-fraudulent-urls-dataset
● malwaredomainlist.com
● zeuztacker.abuse.ch

OVERVIEW

Data Analysis and Preparation

19

dataset.drop('URL', axis =1, inplace=True)
In [5]:

linkcode
Look for null values
print(dataset.isnull().sum())

20

There are null values each for the DNS_QUERY_TIMES and SERVER columns, so we could easily drop these records /
place a dummy value instead without affecting the data too much. The CONTENT_LENGTH column is a bit more
concerning, we can't afford to drop that many records (almost half the dataset) and interpolating might distort the data
somewhat. Given that there are plenty of other features, I'm choosing to drop the column.

dataset.drop(['TCP_CONVERSATION_EXCHANGE','URL_LENGTH','APP_BYTES','SOURCE_APP_PACKETS','REMO
TE_APP_PACKETS','SOURCE_APP_BYTES','REMOTE_APP_BYTES'], axis = 1, inplace=True)
corr = dataset.corr()
corr.style.background_gradient(cmap='coolwarm')

import seaborn as sns
sns.distplot(dataset.loc[dataset['Type'] == 1]['NUMBER_SPECIAL_CHARACTERS'], bins = 50, color='red')
sns.distplot(dataset.loc[dataset['Type'] == 0]['NUMBER_SPECIAL_CHARACTERS'], bins = 50, color='blue')

21

sns.distplot(dataset.loc[dataset['Type'] == 1]['DIST_REMOTE_TCP_PORT'], bins = 50, color='red')

Let's have a play with the parameters to see if this can be improved.

22

In [29]:
def predict(X_train, y_train, **kwargs):
mlp = MLPClassifier(**kwargs, random_state=1)
mlp.fit(X_train, y_train)
return mlp.predict(X_test)

In [30]:
def calculateScoresNoOutput(y_test, predictions):
accuracy = 100*accuracy_score(y_test, predictions)
precision = 100*precision_score(y_test, predictions)
recall = 100*recall_score(y_test, predictions)
f1 = 100*f1_score(y_test, predictions)
return {'Accuracy':accuracy, 'F1': f1}

In [31]:
linkcode
Let's try the different solvers
solvers = ['lbfgs', 'sgd', 'adam']
results = []
for solver in solvers:
result_dict = calculateScoresNoOutput(y_test, predict(X_train, y_train, solver=solver))
result_dict['Solver'] = solver
results.append(result_dict)

df = pd.DataFrame(results, columns = ['Solver','Accuracy', 'F1'])
df

Out[31]:

Solver Accuracy F1

0 lbfgs 88.700565 52.380952

1 sgd 87.947269 17.948718

2 adam 88.323917 38.000000

def try_different_values(values, column_name, X_train, y_train, **kwargs):
results = []
for value in values:
kwargs[column_name] = value
result_dict = calculateScoresNoOutput(y_test, predict(X_train, y_train, **kwargs))
result_dict[column_name] = value
results.append(result_dict)

23

df = pd.DataFrame(results, columns = [column_name,'Accuracy', 'F1'])
return df

In [33]:
activations = ['identity', 'logistic', 'tanh', 'relu']
try_different_values(activations, 'activation', X_train, y_train, solver='lbfgs')

Out[33]:

activation Accuracy F1

0 identity 86.440678 16.279070

1 logistic 90.207156 57.377049

2 tanh 89.077213 55.384615

3 relu 88.700565 52.380952

UML Diagram:-

24

25

3. Malicious URL Detection using MLP

Currently, the risk of network information insecurity is increasing rapidly in number and level of danger. The
methods mostly used by hackers today are to attack end-to-end technology and exploit human vulnerabilities.
These techniques include social engineering, phishing, pharming, etc. One of the steps in conducting these
attacks is to deceive users with malicious Uniform Resource Locators (URLs). As a result, malicious URL
detection is of great interest nowadays. There have been several scientific studies showing a number of
methods to detect malicious URLs based on machine learning and deep learning techniques. In this paper, we
propose a malicious URL detection method using machine learning techniques based on our proposed URL
behaviors and attributes. Moreover, big data technology is also exploited to improve the capability of
detecting malicious URLs based on abnormal behaviors. In short, the proposed detection system consists of a
new set of URLs, features and behaviors, a machine learning algorithm, and big data technology. The
experimental results show that the proposed URL attributes and behavior can help improve the ability to
detect malicious URL significantly. This is suggested that the proposed system may be considered as an
optimized and friendly used solution for malicious URL detection.

DATA PREPROCESSING

26

27

FEATURE ENGINEERING

28

Data Visualization

plt.figure(figsize=(15,5))
sns.countplot(x='label',data=urldata)
plt.title("Count Of URLs",fontsize=20)
plt.xlabel("Type Of URLs",fontsize=18)
plt.ylabel("Number Of URLs",fontsize=18)

29

plt.figure(figsize=(15,5))
plt.title("Use Of IP In Url",fontsize=20)
plt.xlabel("Use Of IP",fontsize=18)

sns.countplot(urldata['use_of_ip'])
plt.ylabel("Number of URLs",fontsize=18)

plt.figure(figsize=(15,5))
plt.title("Use Of IP In Url",fontsize=20)
plt.xlabel("Use Of IP",fontsize=18)
plt.ylabel("Number of URLs",fontsize=18)
sns.countplot(urldata['use_of_ip'],hue='label',data=urldata)
plt.ylabel("Number of URLs",fontsize=18)

30

plt.figure(figsize=(15,5))
plt.title("Use Of http In Url",fontsize=20)
plt.xlabel("Use Of IP",fontsize=18)
plt.ylim((0,1000))
sns.countplot(urldata['count-http'])
plt.ylabel("Number of URLs",fontsize=18)

31

plt.figure(figsize=(15,5))
plt.title("Use Of WWW In URL",fontsize=20)
plt.xlabel("Count Of WWW",fontsize=18)

sns.countplot(urldata['count-www'],hue='label',data=urldata)
plt.ylim(0,1000)
plt.ylabel("Number Of URLs",fontsize=18)

UML Diagram:-

32

33

4. Anomaly Detection - Credit Card Fraud Analysis
Anomaly detection is a technique that is used to identify unusual or strange patterns that do not match
expected behaviour, preferably known as outliers. It has quite many uses in businesses, from intrusion
detection (detecting strange , unusual patterns in network traffic which could indicate a hack) to monitoring
system health (detecting a malignancy on an MRI) and from detecting fraud in credit card transactions to the
detection of errors in the operation environments.

Anomaly Detection Techniques
1-Simple statistic method:- The most basic method for detecting data irregularities is to mark data points that
differ from typical statistical features of a distribution, such as mean, median, mode, and quantiles.
The challenges of this method could be Because the line between normal and abnormal conduct is often blurry,
the data contains noise that could be mistaken for abnormal behaviour. The exact definition of abnormal or
normal may frequently change, as the malicious adversaries alter regularly. As a result, the moving average
barrier may not always be applicable
2-Machine Learning approach
2.1. Density-based anomaly detection is based on the k-nearest neighbours algorithm.

Assumption: Normal data points occur around a dense neighbourhood and abnormalities are
far away.

2.2. Clustering-Based Anomaly Detection Clustering is one of the most popular concepts in the
domain of unsupervised learning.
Assumption: Data points that are similar tend to belong to similar groups or clusters, as
determined by their distance from local centroids.

2.3.Support Vector Machine-Based Anomaly Detection, a support vector machine is another
successful tool for finding anomalies. Although supervised learning is the most common
application of an SVM, there are variants (such as OneClassCVM) that may be used to
discover anomalies as unsupervised problems .

Isolation Forest Anomaly Detection Algorithm Density-Based Anomaly Detection (Local Outlier Factor)Algorithm Support
Vector Machine Anomaly Detection Algorithm Credit Card Fraud Detection Problem Statement: The Credit Card Fraud
Detection Problem includes modeling past credit card transactions with the knowledge of the ones that turned out to be fraud.
This model is then used to identify whether a new transaction is fraudulent or not. Our aim here is to detect 100 % of the
fraudulent transactions while minimizing the incorrect fraud classifications.

34

#Determine the number of fraud and valid transactions in the entire dataset

count_classes = pd.value_counts(data['Class'], sort = True)

35

count_classes.plot(kind = 'bar', rot=0)
plt.title("Transaction Class Distribution")
plt.xticks(range(2), LABELS)
plt.xlabel("Class")
plt.ylabel("Frequency");

n_outliers = len(Fraud)
for i, (clf_name,clf) in enumerate(classifiers.items()):
#Fit the data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
scores_prediction = clf.negative_outlier_factor_

elif clf_name == "Support Vector Machine":
clf.fit(X)
y_pred = clf.predict(X)

else:
clf.fit(X)
scores_prediction = clf.decision_function(X)
y_pred = clf.predict(X)

#Reshape the prediction values to 0 for Valid transactions , 1 for Fraud transactions
y_pred[y_pred == 1] = 0
y_pred[y_pred == -1] = 1
n_errors = (y_pred != Y).sum()
Run Classification Metrics
print("{}: {}".format(clf_name,n_errors))
print("Accuracy Score :")
print(accuracy_score(Y,y_pred))

36

print("Classification Report :")
print(classification_report(Y,y_pred))

37

Observations :

● Isolation Forest detected 69 errors versus Local Outlier Factor detecting 93 errors vs. SVM detecting
8411 errors

● Isolation Forest has a 99.75% more accurate than LOF of 99.67% and SVM of 70.46

● When comparing error precision & recall for 3 models , the Isolation Forest performed much better than
the LOF as we can see that the detection of fraud cases is around 27 % versus LOF detection rate of just
2 % and SVM of 0

● So overall Isolation Forest Method performed much better in determining the fraud cases which is around
30%.

● We can also improve on this accuracy by increasing the sample size or use deep learning algorithms
however at the cost of computational expense.We can also use complex anomaly detection models to get
better accuracy in determining more fraudulent cases

Uml Diagram

38

39

5. Phishing Sites Detector & Complete info
Phishing is a type of social engineering assault or attack that is frequently used to obtain sensitive
information from users, such as login credentials and credit card details. It happens when a hacker
poses as a trustworthy entity and convinces a victim to open an email, instant message, or text
message.

A mass email, purporting to be from myuniversity.edu, is sent to as many faculty members as
possible. The user's password is due to expire, according to the email. In order to renew their
password, they must go to myuniversity.edu/renewal within 24 hours.

Several Things can occur by clicking the link-
1. The user is sent to myuniversity.edurenewal.com, a fake page that looks identical to the real
renewal page and asks for both new and old passwords. While watching the page, the attacker steals
the original password and uses it to gain access to restricted sections of the university network.
2. The user is forwarded to the password renewal page. While being routed, however, a malicious
script runs in the background, stealing the user's session cookie. As a result of the mirrored XSS
attack, the attacker now has privileged access to the university network.

40

41

def plot_wordcloud(text, mask=None, max_words=400, max_font_size=120, figure_size=(24.0,16.0),
title = None, title_size=40, image_color=False):

stopwords = set(STOPWORDS)
more_stopwords = {'com','http'}
stopwords = stopwords.union(more_stopwords)

wordcloud = WordCloud(background_color='white',
stopwords = stopwords,
max_words = max_words,
max_font_size = max_font_size,
random_state = 42,
mask = mask)

wordcloud.generate(text)

plt.figure(figsize=figure_size)
if image_color:
image_colors = ImageColorGenerator(mask);

42

plt.imshow(wordcloud.recolor(color_func=image_colors), interpolation="bilinear");
plt.title(title, fontdict={'size': title_size,

'verticalalignment': 'bottom'})
else:
plt.imshow(wordcloud);
plt.title(title, fontdict={'size': title_size, 'color': 'green',

'verticalalignment': 'bottom'})
plt.axis('off');
plt.tight_layout()

d = '../input/masks/masks-wordclouds/'
In [25]:

data = good_sites.text_sent
data.reset_index(drop=True, inplace=True)

In [26]:
linkcode
common_text = str(data)
common_mask = np.array(Image.open(d+'star.png'))
plot_wordcloud(common_text, common_mask, max_words=400, max_font_size=120,

title = 'Most common words use in good urls', title_size=15)

Creating Model
Logistic Regression
Scores_ml = {}
Scores_ml['Logistic Regression'] = np.round(lr.score(testX,testY),2)

In [38]:
linkcode
print('Training Accuracy :',lr.score(trainX,trainY))
print('Testing Accuracy :',lr.score(testX,testY))
con_mat = pd.DataFrame(confusion_matrix(lr.predict(testX), testY),

columns = ['Predicted:Bad', 'Predicted:Good'],
index = ['Actual:Bad', 'Actual:Good'])

print('\nCLASSIFICATION REPORT\n')
print(classification_report(lr.predict(testX), testY,

target_names =['Bad','Good']))

print('\nCONFUSION MATRIX')
plt.figure(figsize= (6,4))
sns.heatmap(con_mat, annot = True,fmt='d',cmap="YlGnBu")

43

● About dataset
● Data is containg 5,49,346 unique entries.
● There are two columns.
● Label column is prediction col which has 2 categories A. Good - which means the urls

is not containing malicious stuff and this site is not a Phishing Site. B. Bad - which
means the urls contains malicious stuffs and this site isa Phishing Site.

● There is no missing value in the dataset.

Preprocessing

● Now that we have the data, we have to vectorize our URLs. I used CountVectorizer and gather words
using tokenizer, since there are words in urls that are more important than other words e.g ‘virus’,
‘.exe’ ,’.dat’ etc. Lets convert the URLs into a vector form.

44

Protections

How to Protect Your Computer
Below are some key steps to protecting your computer from intrusion:

1. Keep Your Firewall Turned On: A firewall helps protect your computer from hackers who might try
to gain access to crash it, delete information, or even steal passwords or other sensitive information.
Software firewalls are widely recommended for single computers. The software is prepackaged on
some operating systems or can be purchased for individual computers. For multiple networked
computers, hardware routers typically provide firewall protection.

2. Install or Update Your Antivirus Software: Antivirus software is designed to prevent malicious
software programs from embedding on your computer. If it detects malicious code, like a virus or a
worm, it works to disarm or remove it. Viruses can infect computers without users’ knowledge. Most
types of antivirus software can be set up to update automatically.

3. Install or Update Your Antispyware Technology: Spyware is just what it sounds like—software
that is surreptitiously installed on your computer to let others peer into your activities on the computer.
Some spyware collects information about you without your consent or produces unwanted pop-up ads
on your web browser. Some operating systems offer free spyware protection, and inexpensive software
is readily available for download on the Internet or at your local computer store. Be wary of ads on the
Internet offering downloadable antispyware—in some cases these products may be fake and may
actually contain spyware or other malicious code. It’s like buying groceries—shop where you trust.

4. Keep Your Operating System Up to Date: Computer operating systems are periodically updated to
stay in tune with technology requirements and to fix security holes. Be sure to install the updates to
ensure your computer has the latest protection.

5. Be Careful What You Download: Carelessly downloading e-mail attachments can circumvent even
the most vigilant anti-virus software. Never open an e-mail attachment from someone you don’t know,
and be wary of forwarded attachments from people you do know. They may have unwittingly
advanced malicious code.

6. Turn Off Your Computer:With the growth of high-speed Internet connections, many opt to leave
their computers on and ready for action. The downside is that being “always on” renders computers
more susceptible. Beyond firewall protection, which is designed to fend off unwanted attacks, turning
the computer off effectively severs an attacker’s connection—be it spyware or a botnet that employs
your computer’s resources to reach out to other unwitting users.

Uml Diagram

45

Merits & Demerits Of Proposed Methods

46

Merits
I. These Methods provide a clear view of what's going on within your network. It is a valuable source
of information about suspicious or malicious network traffic.
II. This methods adds a layer of defense to your security profile, providing a useful backstop to some
of your other security measures.
III.Many Of these Methods can also identify or collect evidence regarding an activity, which may
indicate how an attack is going to happen.
IV.When a virus first hits your network, an IDS can tell you which machines it compromised, as
well as how it is propagating through the network to infect other machines. This can be a great help in
slowing or stopping a virus's progress and making sure you remove it.
V. A properly configured IDS can produce data that can form the basis for a civil or criminal case
against someone who misuses your network.

Demerits
I. It requires more maintenance.
II. Technologies are improving, but these methods don't always catch everything.
III. There is a need for Teams of cyber security experts.

47

Reference
1. https://ieeexplore.ieee.org/document/9214121
2. http://sersc.org/journals/index.php/IJAST/article/view/14826
3. https://thesai.org/Downloads/Volume10No2/Paper_26-

A_Survey_on_Techniques_to_Detect_Malicious_Activities.pdf
4. http://nms.lcs.mit.edu/papers/thesis-final.pdf
5. https://thesai.org/Downloads/Volume11No1/Paper_19-

Malicious_URL_Detection_based_on_Machine_Learning.pdf
6. http://ijniet.org/wp-content/uploads/2015/07/2.pdf
7.

https://ieeexplore.ieee.org/document/9214121
http://sersc.org/journals/index.php/IJAST/article/view/14826
https://thesai.org/Downloads/Volume10No2/Paper_26-A_Survey_on_Techniques_to_Detect_Malicious_Activities.pdf
https://thesai.org/Downloads/Volume10No2/Paper_26-A_Survey_on_Techniques_to_Detect_Malicious_Activities.pdf
http://nms.lcs.mit.edu/papers/thesis-final.pdf
https://thesai.org/Downloads/Volume11No1/Paper_19-Malicious_URL_Detection_based_on_Machine_Learning.pdf
https://thesai.org/Downloads/Volume11No1/Paper_19-Malicious_URL_Detection_based_on_Machine_Learning.pdf
http://ijniet.org/wp-content/uploads/2015/07/2.pdf

	CANDIDATE’S DECLARATION
	Preprocessing
	Protections
	How to Protect Your Computer

