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ABSTRACT 

 

 

The DeepSIM, a generative model for conditional image manipulation 

based on a single image. Here, extensive augmentation is key for enabling 

single image training, and incorporate the use of thin-plate spline (TPS) as an 

effective augmentation. Our network learns to map between a primitive 

representations of the image to the image itself. 

The choice of a primitive representation has an impact on the ease and 

expressiveness of the manipulations and can be automatic (e.g. edges), manual 

(e.g. segmentation) or hybrid such as edges on top of segmentations. At 

manipulation time, our generator allows for making complex image changes 

by modifying the primitive input representation and mapping it through the 

network. Our method is shown to achieve remarkable performance on image 

manipulation tasks. 
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CHAPTER-1 

      INTRODUCTION 
 

 

1.1 Basic Introduction 

 

Deep neural networks have significantly boosted performance on image 

manipulation tasks for which large training datasets can be obtained, such as, 

mapping facial landmarks to facial images. In practice, however, there are 

many settings in which the image to be manipulated is unique, and a training 

set consisting of many similar input-output samples is unavailable. 

Moreover, in some cases using a large dataset might even lead to 

unwelcome outputs that do not preserve the specific characteristics of the 

desired image. Training generative models on just a single image, is an 

exciting recent research direction, which may hold the potential to extend the 

scope of neural-network-based image manipulation methods to unique 

images. 

 

1.2 DeepSIM 

 In this project, we introduce - DeepSIM, a simple-to-implement yet 

highly effective method for training deep conditional generative models from 

a single image pair. 

Our method is capable of solving various image manipulation tasks including: 

 

(i) shape warping (ii) object rearrangement (iii) object removal (iv) object 



7  

addition (v) creation of painted and photorealistic animated clips. 

                 Given a single target image, first, a primitive representation is 

created for the training image. This can either be unsupervised (i.e. edge map, 

unsupervised segmentation), supervised (i.e. segmentation map, sketch, 

drawing), or a combination of both. We use a standard conditional image 

mapping network to learn to map between the primitive representation and the 

image. Once training is complete, a user can explicitly design and choose the 

changes they want to apply to the target image by manipulating the simple 

primitive (serving as a simpler manipulation domain). The modified primitive 

is fed to the network, which transforms it into the real image domain with the 

desired manipulation. This process is illustrated in Figure. 

                   Several papers have explored the topic of what and how much can 

be learned from a single image. Two recent seminal works SinGAN and 

InGAN propose to extend this beyond the scope of texture synthesis. SinGAN 

tackles the problem of single image manipulation in an unconditional manner 

allowing unsupervised generation tasks. InGAN, on the other hand, proposes a 

conditional model for applying various geometric transformations to the image. 

Our paper extends this body of work by exploring the case of supervised 

image-to-image translation allowing the modification of specific image details 

such as the shape or location of image parts. We find that the augmentation 

strategy is key for making DeepSIM work effectively. Breaking from the 

standard practice in the image translation community of using a simple crop-
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and-flip augmentation, we found that using a thin-plate-spline (TPS) 

augmentation method is essential for training conditional generative models 

based on a single image-pair input. The success of TPS is due to its exploration 

of possible image manipulations, extending the training distribution to include 

the manipulated input. Our model successfully learns  the internal statistics of 

the target image, allowing both professional and amateur designers to explore 

their ideas while preserving the semantic and geometric attributes of the target 

image and producing high fidelity results. 

 

Our contributions in this project: 

• A general purpose approach for training conditional generators supervised by 

merely a single image-pair. 

• Recognizing that image augmentation is key for this task, and the remarkable 

performance of thin-platespline (TPS) augmentation which was not previously 

used for single image manipulation. 

• Achieving outstanding visual performance on a range of image manipulation 

applications. 
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Related images and animations 

 

 

Figure : 1 Image shape manipulation. 

 

 

 

Figure : 2 Image shape manipulation. 
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Top row - primitive images. Left - original pair used for training. Center- switching 

the positions between the two rightmost cars. Right- removing the leftmost car and 

in painting the background. 

 

 

 

Figure : 3 Image shape manipulation.  

 

On the left is the training image pair, in the middle are the manipulated primitives 

and on the right are the manipulated outputs- left to right: dress length, strapless, 

wrap around the neck. 

 

 



11  

 

 

 
Figure: 4 Animated video -1 

 
 
 

 
 

Figure: 5 Animated video – 2. 
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Figure: 6 Animated video – 3. 

 
 

 

Figure: 7 Animated video – 4. 
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CHAPTER-2 

LITERATURE SURVEY 

 

2.1 Semantic Image Manipulation 
 
In 2018, Understanding, reasoning, and manipulating semantic concepts of images have 

been a fundamental research problem for decades. Previous work mainly focused on direct 

manipulation on natural image manifold through color strokes, key points, textures, and 

holes-to-fill. In this work, we present a novel hierarchical framework for semantic image 

manipulation. Key to our hierarchical framework is that we employ structured semantic 

layout as our intermediate representation for manipulation. Initialized with coarse-level 

bounding boxes, our structure generator first creates pixel-wise semantic layout capturing 

the object shape, object-object interactions, and object-scene relations. Then our image 

generator fills in the pixel-level textures guided by the semantic layout. Such framework 

allows a user to manipulate images at object-level by adding, removing, and moving one 

bounding box at a time. Experimental evaluations demonstrate the advantages of the 

hierarchical manipulation framework over existing image generation and context hole-

filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework 

are further demonstrated in applications such as semantic object manipulation, interactive 

image editing, and data-driven image manipulation. 

 

Learning to perceive, reason and manipulate images has been one of the core research 

problems in computer vision, machine learning and graphics for decades. Recently the 

problem has been actively studied in interactive image editing using deep neural networks, 

where the goal is to manipulate an image according to the various types of user-controls, 

such as color strokes, key-points, textures, and holes-to-fill (in-painting). While these 

interactive image editing approaches have made good advances in synthesizing high-

quality manipulation results, they are limited to direct manipulation on natural image 

manifold. The main focus of this paper is to achieve semantic-level manipulation of 

images. Instead of manipulating images on natural image manifold, we consider semantic 

label map as an interface for manipulation. By editing the label map, users are able to 

specify the desired images at semantic-level, such as the location, object class, and object 
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shape. Recently, approaches based on image-to image translation have demonstrated 

promising results on semantic image manipulation. However, the existing works mostly 

focused on learning a style transformation function from label maps to pixels, while 

manipulation of structure of the labels remains fully responsible to users. The requirement 

on direct control over pixel-wise labels makes the manipulation task still challenging since 

it requires a precise and considerable amount of user inputs to specify the structure of the 

objects and scene. Although the problem can be partly addressed by template-based 

manipulation interface (e.g. adding the objects from the pre-defined sets of template masks, 

blind pasting of the object mask is problematic since the structure of the object should be 

determined adaptively depending on the surrounding context. 

 

 

2.2 Realistic Image Manipulation 

 
In 2019, Realistic image manipulation is challenging because it requires modifying the 

image appearance in a user-controlled way, while preserving the realism of the result. 

Unless the user has considerable artistic skill, it is easy to "fall off" the manifold of natural 

images while editing. In this paper, we propose to learn the natural image manifold directly 

from data using a generative adversarial neural network. We then define a class of image 

editing operations, and constrain their output to lie on that learned manifold at all times. 

The model automatically adjusts the output keeping all edits as realistic as possible. All our 

manipulations are expressed in terms of constrained optimization and are applied in near-

real time. We evaluate our algorithm on the task of realistic photo manipulation of shape 

and color. The presented method can further be used for changing one image to look like 

the other, as well as generating novel imagery from scratch based on user's scribbles. 

 

In 2020, We present an interactive method that manipulates perceived object shape from a 

single input color image thanks to a warping technique implemented on the GPU. The key 

idea is to give the illusion of shape sharpening or rounding by exaggerating orientation 

patterns in the image that are strongly correlated to surface curvature. We build on a 

growing literature in both human and computer vision showing the importance of 

orientation patterns in the communication of shape, which we complement with 
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mathematical relationships and a statistical image analysis revealing that structure tensors 

are indeed strongly correlated to surface shape features. We then rely on these correlations 

to introduce a flow-guided image warping algorithm, which in effect exaggerates 

orientation patterns involved in shape perception. We evaluate our technique by 1) 

comparing it to ground truth shape deformations, and 2) performing two perceptual 

experiments to assess its effects. Our algorithm produces convincing shape manipulation 

results on synthetic images and photographs, for various materials and lighting 

environments. 

 

 

2.3 Video Image Manipulation 

 
Over the past few years, huge steps forward in the field of automatic video editing 

techniques have been made. In particular, great interest has been shown towards methods 

for facial manipulation. Just to name an example, it is nowadays possible to easily perform 

facial reenactment, i.e., transferring the facial expressions from one video to another one . 

This enables to change the identity of a speaker with very little effort. Systems and tools 

for facial manipulations are now so advanced that even users without any previous 

experience in photo retouching and digital arts can use them. Indeed, code and libraries that 

work in an almost automatic fashion are more and more often made available to the public 

for free. On one hand, this technological advancement opens the door to new artistic 

possibilities (e.g., movie making, visual effect, visual arts, etc.). On the other hand, 

unfortunately, it also eases the generation of video forgeries by malicious users. Fake news 

spreading and revenge porn are just a few of the possible malicious applications of 

advanced facial manipulation technology in the wrong hands. As the distribution of these 

kinds of manipulated videos indubitably leads to serious and dangerous consequences (e.g., 

diminished trust in media, targeted opinion formation, cyber bullying, etc.), the ability of 

detecting whether a face has been manipulated in a video sequence is becoming of 

paramount importance. Detecting whether a video has been modified is not a novel issue 

per se. Multimedia forensics researchers have been working on this topic since many years, 

proposing different kinds of solutions to different problems. For instance, in the authors 
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focus on studying the coding history of videos. The authors of focus on localizing copy-

move forgeries with block-based or dense techniques. In different methods are proposed to 

detect frame duplication or deletion. All the above-mentioned methods work according to a 

common principle: each non-reversible operation leaves a peculiar footprint that can be 

exposed to detect the specific editing. However, forensics footprints are often very subtle 

and hard to detect. This is the case of videos undergoing excessive compression, multiple 

editing operations at once, or strong down sampling. This is also the case of very realistic 

forgeries operated through methods that are hard to formally model. For this reason, 

modern facial manipulation techniques are very challenging to detect from the forensic 

perspective. As a matter of fact, many different face manipulation techniques exist (i.e., 

there is not a unique model explaining these forgeries). Moreover, they often operate on 

small video regions only (i.e., the face or part of it, and not the full frame).  
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CHAPTER-3 

               FUNCTIONALITY & WORKING 

 

3.1 Functionality 

 
Our method learns a conditional generative adversarial network (cGAN) using just a single 

image pair consisting of the main image and its primitive representation. To account for the 

limited training set, we augment the data by using thin-plate-spline (TPS) warps on the 

training pair. The proposed approach has several objectives: 

 i) single image training ii) fidelity - the output should reflect the primitive representation  

iii) appearance - the output image should appear  to come from the same distribution as the 

training image. We will next describe each component of our method:- 

Our model design follows standard practice for cGAN models (particularly Pix2PixHD). 

Let us denote our training image pair (x, y) where y ∈ Rdx×dy×3 is the input image (dx 

and dy are the number of rows and columns) and x ∈ Rdx×dy×dp is the corresponding 

image primitive (dp is the number of channels in the image primitive). We learn a 

generator network G: Rdx×dy×dp → Rdx×dy×3, which learns to map input image 

primitive x to the generated image G(x). The fidelity of the result is measured using the 

VGG perceptual loss ℓperk : (Rdx×dy×3,Rdx×dy×3) → R , which compares the 

differences between two images using a set of activations extracted from each image using 

a VGG network pre-trained on the Image Net dataset (we follow the implementation in). 

We therefore write the reconstruction loss:- 

 

Conditional GAN loss: Following standard practice, we add an adversarial loss which 

measures the ability of a discriminator to differentiate between the (primitive, generated 

image) pair (x, G(x)) and the (primitive, true Figure 6: TPS Visualisation. A random TPS 

warp of the primitive-image pair. Also see SM. image) pair (x, y). The conditional 

discriminator D :(Rdx×dy×dp ,Rdx×dy×3) → [0, 1] is implemented using a deep classifier 

which maps a pair of primitive and corresponding image into the probability of the two 

being a ground truth primitive-image pair. D is trained adversarial against G. The loss of 

the discriminator (ℓadv) is: 
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The combined loss ℓtotal is the sum of the reconstruction and adversarial losses, weighted 

by a constant α: 

 

 
 

3.2 Working of project 

 

 Collecting Data 

 
The first and very important part of this project is to collect data then we 

have to make it in proper format using some built-in libraries in python. 

 Creating a Dataset of Collected data 

    

After making the data in proper format we will create a dataset of 

collected data using pandas. 

  

 Training the Data 

We use DeepSIM to train the dataset for our model. 

 

 Testing the Data 
We use our model built in one step above to test the model. 
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CHAPTER-4 

      ANALYSIS 

 
Input primitives:- As segmentations capture high-level aspects of the image while 

edge maps capture the low-level of the image better, we analyse the primitive that 

combines both. This choice is uncommon, e.g. Pix2PixHD proposed combining instance 

and semantic segmentation maps, however, this does not provide low-level details 

compares the three primitives. The edge representation is unable to capture the eye, 

presumably as it cannot capture its semantic meaning. The segmentation is unable to 

capture the details in the new background regions creating a smearing effect. The 

combined primitive is able to capture the eye as well as the low-level textures of the 

background region. In Fig. we present more manipulation results using the combined 

primitive. In the centre column, we switched  the positions of rightmost cars. As the objects 

were not of the same size, some empty image regions were filled using small changes to 

the edges. A more extreme result can be seen in the rightmost column, the car on the left 

was removed, creating a large empty image region. By filling in the missing details using 

edges, our method was able to successfully complete the background (see SM for an 

ablation).  

Runtime: Our runtime is a function of the neural architecture and the number of 

iterations. When running all experiments on the same hardware (NVIDIA RTX-2080 Ti), a 

256x256 image e.g. the ”face” image (Fig.) takes SinGAN 72 minutes to train, and 180 

minutes for TuiGAN while DeepSIM (ours) takes 49 minutes. As was discussed 

previously, TuiGAN requires a new training process for each new manipulation whereas 

our DeepSIM does not.  

Is the cGAN loss necessary? We evaluated removing the cGAN loss, keeping just 

the VGG perceptual loss on the Cars image (see SM). For such high-res images the cGAN 

was a better perceptual loss. At lower resolutions, the VGG results were reasonable but still 

blurrier than the cGAN loss. 

Can methods trained on large datasets generalize to rare images? We present 

examples where this is not the case. Fig. showed that BicycleGAN did not generalize as 
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well as Pix2PixHD-MI for new (in-distribution) shoes. We show that in the more extreme 

case, where the image lies further from the source distribution used for training, current 

methods fail completely. See SM for further analysis.  

Augmentation in deep single image methods: Although we are the first to propose 

single-image training for manipulation using extensive non-linear augmentations, we see 

SinGAN as implicitly being an augmentation-based unconditional generation approach. In 

its first level it learns an unconditional low-res image generator, while latter stages can be 

seen as an upscaling network. Critically, it relies on a set of “augmented” input low-res 

images generated by the first stage GAN. Some other methods e.g. Deep Image Prior do 

not use any form of augmentation. 

Failure modes: We highlight three main failure modes of DeepSIM : i) generating 

unseen objects - when the manipulation requires generating objects unseen in training, the 

network can do so incorrectly. ii) background duplication - when adding an object onto 

new background regions, the network can erroneously copy some background regions that 

originally surrounded the object. iii) interpolation in empty regions - as no guidance is 

given in empty image regions, the network hallucinates details, sometimes incorrectly.  
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CHAPTER-5 

REQUIREMENTS & IMPLEMENTATION 

 

5.1 Requirements 
 

 
Following are the tools we are using in this project to accomplish it: 

 

1. certify 

2. charset-normalizer 

3. cycler 

4. dominate 

5. idna 

6. imageio 

7. jsonpatch 

8. jsonpointer 

9. kiwisolver 

10. matplotlib 

11. networkx 

12. numpy 

13. Pillow 

14. pyparsing 

15. python-dateutil 

16. PyWavelets 

17. pyzmq 

18. requests 

19. scikit-image 

20. scipy 

21. tifffile 

22. torch 

23. torchaudio 

24. torchvision 

25. typing-extensions 

26. urllib3 

27. imageio-ffmpeg 
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5.2 Implementation 

 

Source Code for training the model: 
 

import time 

import os 

import numpy as np 

import torch 

from torch.autograd import Variable 

from collections import OrderedDict 

from subprocess import call 

import fractions 

 

 

def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 

 

 

from options.train_options import TrainOptions 

from data.data_loader import CreateDataLoader 

from models.models import create_model 

import util.util as util 

from util.visualizer import Visualizer 

import torchvision.utils as vutils 

 

 

opt = TrainOptions().parse() 

iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') 

if opt.continue_train: 

    try: 

        start_epoch, epoch_iter = np.loadtxt(iter_path, delimiter=',', dtype=int) 

    except: 

        start_epoch, epoch_iter = 1, 0 

    print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) 

else: 

    start_epoch, epoch_iter = 1, 0 

 

opt.print_freq = lcm(opt.print_freq, opt.batchSize) 

if opt.debug: 

    opt.display_freq = 1 

    opt.print_freq = 1 

    opt.niter = 1 

    opt.niter_decay = 0 

    opt.max_dataset_size = 10 

 

data_loader = CreateDataLoader(opt) 
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dataset = data_loader.load_data() 

dataset_size = len(data_loader) 

print('#training images = %d' % dataset_size) 

 

model = create_model(opt) 

visualizer = Visualizer(opt) 

if opt.fp16: 

    from apex import amp 

    model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, 

model.optimizer_D], opt_level='O1') 

    model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) 

else: 

    if len(opt.gpu_ids) > 0: 

        optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D 

    else: 

        optimizer_G, optimizer_D = model.optimizer_G, model.optimizer_D 

 

total_steps = (start_epoch - 1) * dataset_size + epoch_iter 

 

display_delta = total_steps % opt.display_freq 

print_delta = total_steps % opt.print_freq 

save_delta = total_steps % opt.save_latest_freq 

 

print("display_delta", display_delta) 

print("print_delta", print_delta) 

print("save_delta", save_delta) 

 

torch.cuda.empty_cache() 

total_time_start = time.time() 

for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): 

    epoch_start_time = time.time() 

    if epoch != start_epoch: 

        epoch_iter = epoch_iter % dataset_size 

    for i, data in enumerate(dataset, start=epoch_iter): 

        if total_steps % opt.print_freq == print_delta: 

            iter_start_time = time.time() 

        total_steps += opt.batchSize 

        epoch_iter += opt.batchSize 

 

        # whether to collect output images 

        save_fake = total_steps % opt.display_freq == display_delta 

 

        a = time.time() 

        losses, generated = model(Variable(data['label']), Variable(data['inst']), 

                                  Variable(data['image']), Variable(data['feat']), infer=save_fake) 
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        # sum per device losses 

        losses = [torch.mean(x).unsqueeze(0) if not isinstance(x, int) else x for x in losses] 

        if len(opt.gpu_ids) > 0: 

            loss_dict = dict(zip(model.module.loss_names, losses)) 

        else: 

            loss_dict = dict(zip(model.loss_names, losses)) 

 

        # calculate final loss scalar 

        loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 

        loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat', 0) + 

loss_dict.get('G_VGG', 0) 

 

        # update generator weights 

        optimizer_G.zero_grad() 

        if opt.fp16: 

            with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: 

                scaled_loss.backward() 

        else: 

            loss_G.backward() 

        optimizer_G.step() 

 

        # update discriminator weights 

        optimizer_D.zero_grad() 

        if opt.fp16: 

            with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: 

                scaled_loss.backward() 

        else: 

            loss_D.backward() 

        optimizer_D.step() 

 

        ### print out errors 

        if total_steps % opt.print_freq == print_delta: 

            errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()} 

            t = (time.time() - iter_start_time) / opt.print_freq 

            visualizer.print_current_errors(epoch, epoch_iter, errors, t) 

            visualizer.plot_current_errors(errors, total_steps) 

            # call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) 

 

        ### display output images 

        if save_fake: 

            visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], 

opt.label_nc)), 

                                   ('synthesized_image', util.tensor2im(generated.data[0])), 

                                   ('real_image', util.tensor2im(data['image'][0]))]) 

            visualizer.display_current_results(visuals, epoch, total_steps) 
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        ### save latest model 

        if total_steps % opt.save_latest_freq == save_delta: 

            print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) 

            if len(opt.gpu_ids) > 0: 

                model.module.save('latest') 

            else: 

                model.save('latest') 

            np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') 

        if epoch_iter >= dataset_size: 

            break 

 

    # end of epoch  

    iter_end_time = time.time() 

    print('End of epoch %d / %d \t Time Taken: %.4f sec\n' % 

          (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) 

 

    ### save model for this epoch 

    if epoch % opt.save_epoch_freq == 0: 

        print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) 

        if len(opt.gpu_ids) > 0: 

            model.module.save('latest') 

            model.module.save(epoch) 

        else: 

            model.save('latest') 

            model.save(epoch) 

        np.savetxt(iter_path, (epoch + 1, 0), delimiter=',', fmt='%d') 

 

    ### instead of only training the local enhancer, train the entire network after certain 

iterations 

    if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): 

        if len(opt.gpu_ids) > 0: 

            model.module.update_fixed_params() 

        else: 

            model.update_fixed_params() 

 

    ### linearly decay learning rate after certain iterations 

    if epoch > opt.niter: 

        if len(opt.gpu_ids) > 0: 

            model.module.update_learning_rate() 

        else: 

            model.update_learning_rate() 

 

print('End of training [%s], Time Taken: %.4f sec' % (opt.name, time.time() - 

total_time_start)) 

print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) 

if len(opt.gpu_ids) > 0: 
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    model.module.save('latest') 

else: 

    model.save('latest') 

vutils.save_image(data['image'], '%s/%s/%d_image.png' % (opt.checkpoints_dir, opt.name, 

epoch_iter),normalize=True) 

vutils.save_image(generated.data, '%s/%s/%d_fake.png' % (opt.checkpoints_dir, opt.name, 

epoch_iter),normalize=True) 

vutils.save_image(data['label'], '%s/%s/%d_label.png' % (opt.checkpoints_dir, opt.name, 

epoch_iter),normalize=True) 

np.savetxt(iter_path, (epoch + 1, 0), delimiter=',', fmt='%d') 

print('End of training [%s], Time Taken: %.4f sec' % (opt.name, time.time() - 

total_time_start)) 

 

 

Source Code for testing the model: 
 

 
import os 

from collections import OrderedDict 

from torch.autograd import Variable 

from options.test_options import TestOptions 

from data.data_loader import CreateDataLoader 

from models.models import create_model 

import util.util as util 

from util.visualizer import Visualizer 

from util import html 

import torch 

 

opt = TestOptions().parse(save=False) 

opt.nThreads = 1   # test code only supports nThreads = 1 

opt.batchSize = 1 

opt.serial_batches = True  # no shuffle 

opt.no_flip = True  # no flip 

opt.resize_or_crop = "none" 

 

 

 

 

 

data_loader = CreateDataLoader(opt) 

dataset = data_loader.load_data() 

visualizer = Visualizer(opt) 

# create website 

web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) 

webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % 

(opt.name, opt.phase, opt.which_epoch)) 
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# test 

if not opt.engine and not opt.onnx: 

    model = create_model(opt) 

    if opt.data_type == 16: 

        model.half() 

    elif opt.data_type == 8: 

        model.type(torch.uint8) 

 

    if opt.verbose: 

        print(model) 

else: 

    from run_engine import run_trt_engine, run_onnx 

 

for i, data in enumerate(dataset): 

    if i >= opt.how_many: 

        break 

    if opt.data_type == 16: 

        data['label'] = data['label'].half() 

        data['inst']  = data['inst'].half() 

    elif opt.data_type == 8: 

        data['label'] = data['label'].uint8() 

        data['inst']  = data['inst'].uint8() 

    if opt.export_onnx: 

        print ("Exporting to ONNX: ", opt.export_onnx) 

        assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx" 

        torch.onnx.export(model, [data['label'], data['inst']], 

                          opt.export_onnx, verbose=True) 

        exit(0) 

    minibatch = 1 

    if opt.engine: 

        generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']]) 

    elif opt.onnx: 

        generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']]) 

    else: 

        generated = model.inference(data['label'], data['inst'], data['image']) 

    print(data['label'].shape, data['inst'].shape, data['image'].shape, generated.shape) 

    visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), 

                           ('synthesized_image', util.tensor2im(generated.data[0]))]) 

    img_path = data['path'] 

    print(img_path) 

    print('process image... %s' % img_path) 

    visualizer.save_images(webpage, visuals, img_path) 

 

webpage.save() 
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if opt.vid_mode: 

    util.frames_to_vid(webpage)



29  

 CHAPTER-6 

      CONCLUSION 
 

 

We proposed a method for training conditional generators from a single training 

image based on TPS augmentations. Our method is able to perform complex image 

manipulation at high-resolution. Single image methods have significant potential, they 

preserve image fine-details to a level not typically achieved by previous methods 

trained on large datasets. One limitation of single- image methods (including ours) is the 

requirement for training a separate network for every image. Speeding up training of 

single-image generators is a promising direction for future work. 
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