
A Project Report

on

YouTube Transcript Summarizer

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of Mr.

Arvindhan M

Assistant Professor

Department of Computer Science and Engineering

Submitted By

19SCSE1140019 – PREMANSHU SINHA

19SCSE1010053 – VISHWANG GOYAL

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING GALGOTIAS UNIVERSITY, GREATER

NOIDA, INDIA

DECEMBER - 2021

ABSTRACT

In this project, we will be creating a Chrome Extension which will make a request to

a backend REST API where it will perform NLP and respond with a summarized

version of a YouTube transcript. Enormous number of video recordings are being

created and shared on the Internet throughout the day. It has become really difficult

to spend time watching such videos which may have a longer duration than expected

and sometimes our efforts may become futile if we couldn't find relevant information

out of it. Summarizing transcripts of such videos automatically allows us to quickly

lookout for the important patterns in the video and helps us to save time and effort to

go through the whole content of the video. This project will give us an opportunity to

have hands-on experience with state of the art NLP technique for abstractive text

summarization and implement an interesting idea suitable for intermediates and a

refreshing hobby project for professionals.

INTRODUCTION

Enormous variety of video recordings area unit being created and shared on the net

throughout the day. It’s become extremely tough to pay time in look such videos

could which can have an extended period than expected and generally our efforts

may become futile if we tend to couldn’t notice relevant info out of it. Summarizing

transcripts of such videos mechanically permits USA to quickly look out for the

necessary patterns within the video and helps USA to avoid wasting time and efforts

to travel through the complete content of the video.

The number of YouTube users in two020 was more or less 2.3 billion, and has been

increasing once a year. Each minute, three hundred hours of YouTube videos area

unit uploaded. Nearly tierce of the YouTube viewers in Asian country access videos

on their mobiles and pay over forty eight hours a month on the web site, a Google

study aforementioned [11]. It’s frustrating and time intense to look for the videos that

contain the data we tend to are literally trying to find. As an example, there are units

several tough guy speak videos out there on-line within which the speaker talks for a

protracted time on a given topic, however it's exhausting to seek out the content the

speaker is principally that specialize in unless we tend to watch the whole video.

several machines learning primarily based video account techniques area unit gift

however they need devices with massive process powers, this is often as a result of

every video contains thousands of frames and process all frames takes an awfully

very long time. During this paper we tend to propose to use the LSA tongue process

rule, which needs less process power and no coaching knowledge needed to coach

the rule.

This project can enable us to own active expertise with progressive IP techniques for

theoretic text account and implement a remarkable plan appropriate for intermediates

and a refreshing hobby project for professionals.

High-Level Approach

• Get transcripts/subtitles for a given YouTube video Id using a Python API.

• Perform text summarization on obtained transcripts using HuggingFace

transformers.

• Build a Flask backend REST API to expose the summarization service to the

client.

• Develop a chrome extension which will utilize the backend API to display

summarized text to the user.

Applications

• Meetings and video-conferencing - A system that could turn voice to text and

generate summaries from your team meetings.

• Patent research - A summarizer to extract the most salient claims across patents.

LITERATURE REVIEW

TASK 1 - BACKEND:

APIs changed the way we build applications, there are countless examples of APIs in

the world, and many ways to structure or set up APIs. Here we are going to create a

back-end application directory and structure it to work with the required files. We

will isolate the back-end of the application to avoid conflicting dependencies from

other parts of the project.

Requirements:

 Create back-end application directory containing files named as app.py and

requirements.txt.

 Initialize app.py file with basic Flask RESTful BoilerPlate.

 Create a new virtual environment with pip installed which will act as an isolated

location (a directory) where everything resides.

 Activate the newly installed virtual environment and install the following

dependencies:

1. Flask

2. youtube_transcript_api

3. transformers[torch]

 Execute pip freeze and redirect the output to the requirements.txt file. This file is

used for specifying what python packages are required to run the project

References

• Creating a Virtual Environment in Python

• Building RESTful APIs with Flask in Python BoilerPlate

• HuggingFace Transformer Python Installation

Expected Outcome

You are expected to initialize the back-end portion of your application with the

required boiler plate as well as the dependencies.

https://realpython.com/lessons/creating-virtual-environment/
https://atmamani.github.io/blog/building-restful-apis-with-flask-in-python/
https://huggingface.co/transformers/installation.html

TASK 2 – GET TRANSCRPT FOR A VIDEO:

.

We will utilize a python API which allows transcripts/subtitles for a given YouTube

video. It also works for automatically generated subtitles, supports translating

subtitles, and does not require a headless browser like other Selenium-based solutions

do.

Requirements:

In app.py,

 - Create a function which will accept YouTube video id as input parameter and

return parsed full transcript as output.

 - The response from the Transcript API will return a list of dictionaries.

References

• YouTube Transcript API Documentation

• Read, Write and Parse JSON using Python

Expected Outcome

You should be able to fetch the transcripts with the help of a function created which

we will later utilize as a feed input for the NLP processor in the pipeline.

TASK 3 – PERFORM TEXT SUMMARIZATION:

Text summarization is the task of shortening long pieces of text into a concise

summary that preserves key information content and overall meaning.

There are two different approaches that are widely used for text summarization:

 Extractive Summarization: This is where the model identifies the important

https://pypi.org/project/youtube-transcript-api/
https://www.geeksforgeeks.org/read-write-and-parse-json-using-python/

sentences and phrases from the original text and only output those.

 Abstractive Summarization: The model produces a completely different text

that is shorter than the original; it generates new sentences in a new form, just

like humans do. Here we’ll use transformers for this approach.

We will use HuggingFace’s transformers library in Python to perform abstractive text

summarization on the transcript previously obtained.

Requirements:

In app.py,

 -Create a function which will accept YouTube transcript as an input parameter

and return summarized script as output.

 -Instantiate a tokenizer and a model from the checkpoint name.

 -Summarization is usually done using encoder-decoder model, such as BART or

T5.

 -Define the transcript that should be summarized.

 -Add the T5 specific prefix “summarize:”

 -Use the PreTrainedModel.generate() method to generate the summary.

NOTE: The transformer model used for the above project can take input size of

maximum up to 1024 words. So the transcript size with more than 1024 words may

throw Exception regarding the length of the transcript passed to it.

References

• How to Perform Text Summarization using Transformers in Python

• Transformers official documentation

Note

• The Transformer model used for the above project can only take text input

size of maximum up to 1024 words. So the transcript size with more than

1024 words may throw Exception regarding the length of the transcript

passed to it.

Expected Outcome

You should be able to verify that the model generates a completely new

summarized text that is different from the original text.

https://www.thepythoncode.com/article/text-summarization-using-huggingface-transformers-python
https://huggingface.co/transformers/task_summary.html

TASK 4 – CREATE REST API ENDPOINT:

The next step is to define the resources that will be exposed by this

backend service. This is an extremely simple application, we only have

single endpoint, so our only resource will be summarized text.

Requirements: In app.py,

 Create a Flask API Route with GET HTTP Request method with a

URI, http://[hostname]/api/summarize?youtube url=<url>.

 Extract the YouTube from YouTube URL which is obtained from the

query params.

 Generate the summarized transcript by executing the transcript

generation function following the execution of the transcript

summarizer function.

 Return the summarized transcript with HTTP Status OK and handle

HTTP exception if applicable.

 Run the Flask Application and test the endpoint in Postman to verify

the appropriate results.

References

• Designing a RESTful API with Python and Flask

• Parsing REST API Payload and Query Parameters With Flask

Expected Outcome

You should be able to create an endpoint to summarize YouTube

video transcripts and test the response with different video URLs.

TASK 5 – CHROME EXTENSION:

Extensions are small software programs that customize the browsing

experience. They enable users to tailor Chrome functionality and

behaviour to individual preferences. They are built on web technologies

such as HTML, CSS and JavaScript. In this task we will see how to create

a recommended Chrome extension application directory and structure it

to work with the required files.

Requirements:

https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
https://medium.com/swlh/parsing-rest-api-payload-and-query-parameters-with-flask-better-than-marshmallow-aa79c889e3ca

 Create a chrome extension application directory containing essential

files required.

 The below diagram indicates the brief role of each of the files for

building a chrome extension.

 Code:

 All we need to do is:

 Just visit chrome://extensions and turn on developer mode from the

top right-hand corner.

 Then click on load unpacked and select the folder containing the

manifest file that we just created.

 There the extension is up and running.

References

• The Ultimate Guide to Building a Chrome Extension

• How to Create Chrome Extensions

https://medium.com/better-programming/the-ultimate-guide-to-building-a-chrome-extension-4c01834c63ec
https://medium.com/coding-in-simple-english/how-to-create-chrome-extension-7dd396e884ef

"page_action": {

"default_popup": "popup.html",

NOTE: We’ll need to reload the extension every time we make a change

in the extension.

Expected outcome

We should be able to create a recommended Chrome extension

application directory and structure it to work with the required files.

Task 6

Build a User Interface for Extension Popup

We need a user interface so that the user can interact with the popups

which are one of several types of user interface that a Chrome extension

can provide. They usually appear upon clicking the extension icon in the

browser toolbar.

Requirements

• Add the line below to page_action in the manifest file which
enables the User Interface for a Popup.

• In the popup.html file,

- Include the popup.css file to make the styles available to the
HTML elements.

- Include the popup.js file to enable user interaction and
behavior with the HTML elements.

- Add a button element named Summarize which when clicked will
emit a click event which will be detected by an event listener to
respond to it.

- Add a div element where summarized text will be displayed
when received from backend REST API Call.

• In popup.css file,

- Provide appropriate CSS styling to the HTML elements
button and div to have a better user experience.

References

• Design the user interface

• What is page_action in a manifest file?

Expected Outcome

The extension user interface should be purposeful and minimal and must

enhance the browsing experience without distracting from it.

Task 7

Display Summarized transcript

We have provided a basic UI to enable users to interact and display the

summarized text but there are some missing links which must be

addressed. In this milestone, we will add functionality to allow the

extension to interact with the backend server using HTTP REST

API Calls.

Requirements

• In popup.js,

- When DOM is ready, attach the event listener with event
type as "click" to the Summarize button and pass the
second parameter as an anonymous callback function.

- In anonymous function, send an action message generate
using chrome.runtime.sendMessage method to notify
contentScript.js to execute summary generation.

- Add event listener chrome.runtime.onMessage to listen message
result from
contentScript.js which will execute the outputSummary callback
function.

- In callback function, display the summary in the div element
programmatically using Javascript.

• Add the line below to content_scripts in the manifest file which will
inject the
content script contentScript.js declaratively and execute the script
automatically on a particular page.

https://developer.chrome.com/docs/extensions/mv2/user_interface/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/page_action

{

.

.

.

"content_scripts":[

{

"matches":["https://www.youtube.com/wat

ch?v=*"], "js": ["contentScript.js"]

}

],

● In contentScript.js,

- Add event listenerchrome.runtime.onMessageto listen
messagegeneratewhich will execute thegenerateSummarycallback
function.

- In call back function, extract the URL of the current tab and make a

GET HTTP request usingXMLHTTPRequestWeb API to the

backend to receive summarized text as a response.

- Send an action messageresultwith summary payload
usingchrome.runtime.sendMessageto notifypopup.js` to display
the summarized text.

References

• Content Scripts

• Message Passing in Chrome

• How to use XMLHttpRequest to issue HTTP requests

.

.

.

}

http://www.youtube.com/watch?v
http://www.youtube.com/watch?v
https://developer.chrome.com/docs/extensions/mv2/content_scripts/
https://developer.chrome.com/docs/extensions/mv2/messaging/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

Expected Outcome

The extension user interface should be able to display the summarized

text upon request from the user.

Task 8

Finalizing

As the basic implementation is all done, for all the curious cats out there,

these are some of the line items which can be implemented to spice up

the existing functionality.

[Note: This is not a mandatory milestone.]

Requirements

• Try to do the following:

- Can you add functionality to summarize very long transcripts

using the extractive summarization technique (For e.g. using

LSA technique)?

- Can you add functionality to summarize transcripts from a

non-English video and display it in the English language?

- Can you add functionality to adjust the maximum length of the

summarized text?

- Can you add functionality to support transcript summarization

from a video with no subtitles?

References

• Extractive Text Summarization Techniques With sumy

• Language Translator Using Google API in Python

• How to download YouTube video as audio using python

• Transcribing audio files using python

Expected Outcome

You should be able to add more features to your application.

https://miso-belica.github.io/sumy/
https://www.thepythoncode.com/article/translate-text-in-python
https://dev.to/kalebu/how-to-download-youtube-video-as-audio-using-python-33g9
https://pythonbasics.org/transcribe-audio/

PROJECT DESIGN

CONCLUSIONS

The increase in quality of video content on the net needs Associate in

Nursing economical method of representing or managing the video. This

will be done by representing the videos on the premise of their outline.

1. Applying language process on the subtitles. We’ve got a video with

subtitles. We have a tendency to applied Associate in Nursing Automatic

informatics primarily based LSA account rule on the subtitle to come up

with the outline. Basically, we have a tendency to reborn the subtitles of

the video into a text document then applied the account rule. Python

library sumy provides the outline for a text document to the amount of

sentences you specify as argument. There are several account algorithms

that we will use with the assistance of this library. However we've got

used the LSA rule.

2. Fitting the period that user provides. Exploitation the python library

Sumy, it's potential to rank every sentence (or subtitles in our case).

Every subtitle has bound period within the video. So as to suit the user

period, we have a tendency to found the common period of every subtitle

by dividing the full period of the video with the amount of subtitles.

Using this average period we've got found the approximate variety of

sentences that we want to supply the summarized video. This account

technique works in such some way that the highest most hierarchic

subtitles are taken into thought for the ultimate summarized video. If the

full period of the summarized subtitles is additional, then it's potential to

cut back the one that's least hierarchic and the other way around. During

this method, it's potential to suit the video to the time provided by user.

3. Making the ultimate summarized video. Thus currently we have a

tendency to get the outline of the subtitles and currently we've got to

come up with the summarized video. We’ve got used the python module

known as Moviepy. Exploitation the time stamps within the summarized

subtitles we have a tendency to divide the video into many segments and

eventually incorporate to form the ultimate summarized video. Thus by

following the higher than steps we have a tendency to were able to

generate the video account for the given video

REFERENCES

HuggingFace Transformer:

https://huggingface.co/docs/transformers/installation

Flask in Boilerplate:

https://atmamani.github.io/blog/building-restful-apis-with-flask-in-

python/

API Documentation:

https://pypi.org/project/youtube-transcript-api/

Performing Text Summarization:

https://www.thepythoncode.com/article/text-summarization-using-

huggingface-transformers-python

Building Chrome Extension:

https://medium.com/coding-in-simple-english/how-to-create-chrome-

extension-7dd396e884ef

User Interface Design:

https://developer.chrome.com/docs/extensions/mv2/user_interface/

XMLHTTP Request:

https://developer.mozilla.org/en-

US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

https://www.crio.do/projects/python-youtube-transcript/

https://huggingface.co/docs/transformers/installation
https://atmamani.github.io/blog/building-restful-apis-with-flask-in-python/
https://atmamani.github.io/blog/building-restful-apis-with-flask-in-python/
https://pypi.org/project/youtube-transcript-api/
https://www.thepythoncode.com/article/text-summarization-using-huggingface-transformers-python
https://www.thepythoncode.com/article/text-summarization-using-huggingface-transformers-python
https://medium.com/coding-in-simple-english/how-to-create-chrome-extension-7dd396e884ef
https://medium.com/coding-in-simple-english/how-to-create-chrome-extension-7dd396e884ef
https://developer.chrome.com/docs/extensions/mv2/user_interface/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://www.crio.do/projects/python-youtube-transcript/

