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Abstract

Financial fraud is an ever-growing menace with far consequences in the financial industry. Data
mining had played an imperative role in the detection of credit card fraud in online transactions.
Credit card fraud detection, which is a data mining problem, becomes challenging due to two major
reasons - first, the profiles of normal and fraudulent behaviour change constantly and secondly,
credit card fraud data sets are highly skewed. The performance of fraud detection in credit card
transactions is greatly affected by the sampling approach on dataset, selection of variables and
detection technique(s) used. This investigates the performance of naive bayes, k-nearest neighbor
and logistic regression on highly skewed credit card fraud data. Dataset of credit card transactions
is sourced from European cardholders containing 284,807 transactions. A hybrid technique of
under-sampling and oversampling is carried out on the skewed data. The three techniques are
applied on the raw and preprocessed data. The work is implemented in Python. The performance
of the techniques is evaluated based on accuracy, sensitivity, specificity, precision, Matthew's
correlation coefficient and balanced classification rate. The results show of optimal accuracy for
naive bayes, k-nearest neighbor and logistic regression classifiers are 97.92%, 97.69% and 54.86%
respectively. The comparative results show that k-nearest neighbour performs better than naive

bayes and logistic regression techniques.

Keywords : Credit  Card Fraud Detection Using Machine Learning




1. Introduction

‘Fraud’ in credit card transactions is unauthorized and unwanted usage of an account by someone
other than the owner of that account. Necessary prevention measures can be taken to stop this
abuse and the behaviour of such fraudulent practices can be studied to minimize it and protect
against similar occurrences in the future. In the other words, Credit Card Fraud can be defined as
a case where a person uses someone else’s credit card for personal reasons while the owner and

the card issuingauthorities are unaware of the fact that the card is being used.

Fraud detection involves monitoring the activities populations of users in order to estimate,

perceive or avoid objectionable behaviour, which consist of fraud, intrusion, and defaulting.

This is a very relevant problem that demands the attention of communities such as machine

learning and data science where the solution to this problem can be automated.

This problem is particularly challenging from the perspective of learning, as it is characterized by
various factors such as class imbalance. The number of valid transactions far outnumber
fraudulent ones. Also, the transaction patterns often change their statistical properties over the
course of time.These are not only challenges in the implementation of a real-world fraud detection
system, however. In real world examples, the massive stream of payment requests is quickly
scanned by automatic tools that determine which transactions to authorize. Credit card frauds are
easy targets. Without any risks, a significant amount can be withdrawn without the owner’s
knowledge, in a short period. Fraudsters always try to make every fraudulent transaction

legitimate, which makes fraud detection very challenging and difficult task to detect.




2. Formulation of Problem

Machine learning algorithms are employed to analyses all the authorized transactions and report
the suspicious ones. These reports are investigated by professionals who contact the cardholders

to confirm if the transaction was genuineor fraudulent.

The investigators provide a feedback to the automated system which is used to train and update

the algorithm to eventually improve the fraud-detection performance over time.

Fraud detection methods are continuously developed to defe6nd criminals in adapting to their

fraudulent strategies. These frauds are classified as:

e Credit Card Frauds: Online and Offline
e Card Theft

e Account Bankruptcy

e Device Intrusion

e Application Fraud

e Counterfeit Card

e Telecommunication Fraud

With different frauds mostly credit card frauds, often in the news for the past few years, frauds are
in the top of mind for most the world’s population. Credit card dataset is highly imbalanced because
there will be more legitimate transaction when compared with a fraudulent one. As advancement,

banks are moving to EMV cards, which are smart cards that store their data on integrated circuits




rather than on magnetic stripes, have made some on-card payments safer, but still leaving card-

not-present frauds on higher rates.
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Fraud detection methods are continuously developed to defend criminals in adapting to their

fraudulent strategies. These frauds are classified as:

e Credit Card Frauds: Online and Offline
e Card Theft

e Account Bankruptcy

e Device Intrusion

e Application Fraud

e Counterfeit Card

e Telecommunication Fraud




Some of the currently used approaches to detection of such fraud are:
o Artificial Neural Network
e Fuzzy Logic
e Genetic Algorithm
e Logistic Regression
e Decision tree
e Support Vector Machines
e Bayesian Networks

e Hidden Markov Model
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3. Literature Survey

Literature Survey Multiple Supervised and Semi-Supervised machine learning techniques are
used for fraud detection, but we aim is to overcome three main challenges with card frauds
related dataset i.e., strong class imbalance, the inclusion of labelled and un-labelled samples, and
to increase the ability to process a large number of transactions. Different Supervised machine
learning algorithms like Decision Trees, Naive Bayes Classification, Least Squares Regression,
Logistic Regression and SVM are used to detect fraudulent transactions in real-time
datasets. Two methods under random forests are used to train the behavioural features of normal
and abnormal transactions. They are Random-tree-based random forest and CART-based.
Even though random forest obtains good results on small set data, there are still some
problems in case of imbalanced data. The future work will focus on solving the above-mentioned
problem. The algorithm of the random forest itself should be improved. Performance of Logistic
Regression, K-Nearest Neighbour, and Naive Bayes are analysed on highly skewed credit card
fraud data where Research is carried out on examining meta-classifiers and meta-learning
approaches in handling highly imbalanced credit card fraud data. Through supervised learning
methods can be used there may fail at certain cases of detecting the fraud cases. A model of deep
Auto-encoder and restricted Boltzmann machine (RBM) that can construct normal transactions
to find anomalies from normal patterns. Not only that a hybrid method is developed with a

combination of Adaboost and Majority VVoting methods.




Char shows mereass @ fraesds same CONF transsctioms
e

r e

, e

. 2 OO0

3 e
32 M) JUIA 2015 016 MI17 M

- 53

iN

Fig.2. Frauds Using Card Not Present Transactions

With different frauds mostly credit card frauds, often in the news for the past few years, frauds are
in the top of mind for most the world’s population. Credit card dataset is highly imbalanced
because there will be more legitimate transaction when compared with a fraudulent one. As
advancement, banks are moving to EMV cards, which are smart cards that store their data on
integrated circuits rather than on magnetic stripes, have made some on-card payments safer, but

still leaving card-not-present frauds on higher rates

4. Proposed Model

Card transactions are always unfamiliar when compared to previous transactions made
thecustomer.This unfamiliarity is a very difficult problem in real-world when are called concept

drift problems . Concept drift can be said as a variable which changes over time and in unforeseen
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ways. These variables cause a high imbalance in data. The main aim of our research is to overcome

the problem of Concept drift to implement on real-world scenario.

Select credit
card as method
for payiment

| Enter credit card
informmtion

Authergicate
credit card

.

[ Reerter credit | No _—Credit card ~_
card informmation | € ~Acceptable? ~

Transaction
receipt by ermil

Transaction
error message

l Yes

Transfer the

transaction to

Procuring Bank

Welcome the

transaction

- —

Conyplets

A

transaction

balance

Deduct amowrs of
money fomthe o

o

Decline

A

transaction

customer

Decline transaction
and SMS alert to

Request
customes's data

Get customer's

A

profile

v

| Erter customer’'s profile
to K-Star predictive
model

Process incomins
trancaction by usins
customer transaction

history

+

_Ararsactionis_

Transaction

Yes T

Fraudhident ‘

. Faud?

e | Yes

Decline transaction
and SMS alert to
customer

o

Fig.3. Model of Work

Fraud act as the unlawful or criminal deception intended to result infinancial or personal benefit.

It is a deliberate act that is against the law, rule or policy with an aim to attain unauthorized

financial benefit.

Numerous literatures pertaining to anomaly or fraud detection int this domain have been published

already and are available for public usage. A comprehensive survey conducted by Clifton Phua
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and his associates have revealed that techniques employed in this domain include data mining
applications, automated fraud detection, adversarial detection. In another paper, Suman, Research

Scholar, GJUS&T at Hisar HCE presented techniques like Supervised and Unsupervised

Learning for credit card fraud detection. Even though these methods and algorithms fetched an
unexpected success in some areas, they failed to provide a permanent and consistent solution to

fraud detection.

A similar research domain was presented by Wen-Fang YU and Na Wang where they used Outlier
mining, Outlier detection mining and Distance sum algorithms to accurately predict
fraudulant-transaction in an emulation experiment of credit card transaction data set of one certain
commercial bank. Outlier mining is a field of data mining which is basically used in monetary
and internet fields. It deals with detecting objects that are detached from the main system l.e., the
transactions that aren’t genuine. They have taken attributes of customer’s behaviour and based on
the value of those attributes they’ve calculated that distance between the observed value of that

attribute and its predetermined value.

Unconventional techniques such as hybrid data mining/complex network classification algorithm
is able to perceive illegal instances in an actual card transaction data set, based on network
reconstruction algorithm that allows creating representation of the deviation of one instance from

a reference group have proved efficient typically on medium sized online transaction.

There have also been efforts to progress from a completely new aspect. Attempts have been made

to improve the alert-feedback interaction in case of fraudulent transaction.

In case of fraudulent transaction, the authorized system would be alerted and feedback would be

sent to deny the ongoing transaction.
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Artificial Genetic Algorithm, one of the approaches that shed new light in this domain, countered

fraud a different direction.

It proved accurate in finding out the fraudulent transactions and minimizing the number of false
alerts. Even though, it was accompanied by classification problem with variable misclassification

costs.

5. Design and Implementation of Algorithm

The procedure which we followed to predict the result are understanding problem statement and
data by performing statistical analysis and visualization then checking whether the data is balance
or not, In this data set the data is imbalanced, balanced by using oversampling, then scaling the data
using standardization and normalization and testing data with different ML algorithms For any data
science project some package are very important such as Numpy that is numeric python And pandas
and for visualization of the data, matplotlib and seaborn is used which build n matplotlib with some

extra features.

Anaconda navigator is used as it is having several IDEs installed in it python programming
language is used to implement machine learning algorithms as it is easy to learn and implement. In
this project Jupyter notebook is used to process the complete code where the code can be viewed as
block of codes and running each section and identifying the errors is easier. User interface to train
and test the algorithms is implemented using python Tkinter module. Test and train buttons are

given to train or test the data.

Fraud can be committed in different ways and in many industries. The majority of detection
methods combine a variety of fraud detection datasets to form a connected overview of both valid

and non-valid payment data to make a decision. This decision must consider IP address,
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geolocation, device identification, “BIN” data, global latitude/longitude, historic transaction
patterns, and the actual transaction information. In practice, this means that merchants and issuers
deploy analytically based responses that use internal and external data to apply a set of business

rules or analytical algorithms to detect fraud.

A. Machine learning algorithms

1. Logistic Regression:

Logistic regression works with sigmoid function because the sigmoid function can be used to
classify the output that is dependent feature and it uses the probability for classification of the

dependent feature.

This algorithm works well with less amount of data set because of the use of sigmoid function if
value the of sigmoid function is greater than 0.5 the output will 1 if the output the sigmoid function
is less than 0.5 then the output is considered as the 0. But this sigmoid function is not suitable for
deep learning because the if deep learning when we back tracking from the output to input we have
to update the weights to minimize the error in weight update. we have to do differentiation of
sigmoid activation function in middle layer neuron then results in the value of 0.25 this will affect

the accuracy of the module in deep learning.

2. Decision Tree:

Decision tree can be used for the classification and regression problems working for both is same

but some formulas will change. Classification problem uses the entropy and information gain for
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the building of the decision tree model. entropy tell about how the data is random and information

gain tells about how much information we can get from this feature.

Regression problem uses the gini and gini index for the building of the decision tree model. In
classification problems the root node is selected by using information gain that the root node t id
selected by using is having the high information again and low entropy. In Regression problems the
root node is selected by using gini , the feature which is having the less gini is selected as the root

here Depth of the tree can be determined

by using hyper parameter optimization, this can be achieved by Using grid search cv algorithm.

3. Random Forest:

The random forest randomly selects the features that is independent variables and also randomly
selects the rows by row sampling and the number of decision tree can be determined by using hyper
parameter optimization. For classification problem statement the output is the maximum occurrence
outputs from each decision tree models inside the random forest. This is one the widely used
machine learning algorithm in real word scenarios and in deployed models. And in most of the

Kaggle computation challenges this algorithm is used to solve the problem statement.

6. Results and Discussions

Fig.6.1 shows the user interface for test and train the data. Train and Test buttons are given to the

user where using train the algorithms are trained and then o predict the fraud by clicking predict




15

button it will take to another window where the input is given and output is seen as fraud or

nonfraud.
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Fig. 6.1: User interface for train and test dat

The figure 6.2 shows detection of fraud or nonfraud transaction. when predict button is clicked it
will take to another window where it asks for data which is input to the machine learning algorithms
and in the predict it will give output as fraud or nonfraud. comma separated 30 values are given
including amount and time. Predicted result is displayed as fraud after providing the data. These
results along with the classication report for each algorithm is given in the output as follows, where
class 0 means the transaction was determined to be valid and 1 means it was determined as a fraud
transaction.
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Fig. 6.2: Detection of fraud or normal transaction

1) Confusion matrix for Logistic regression Algorithm:

Fig 6.3 represents confusion matrix for Logistic regression algorithm. Which contains True
Positive, True Negative, False Positive, False Negative. False positive value is lesser which shows
fraud not detected cases are low. For logistic regression algorithm accuracy, recall, precision
achieved are 94.84, 92.00, 97.58 respectively.

Fig. 6.3: Confusion matrix for Logistic regression

7. Methodology

Firstly, we use clustering method to divide the cardholders into different clusters/groups

based on their transaction amount, i.e., high, medium and low using range partitioning.

e Using Sliding-Window method, we aggregate the transactions into respective groups, i.e.,
extract some features from window to find cardholder's behavioural patterns. Features
like maximum amount, minimum amount of transaction, followed by the average

amount in the window and even the time elapsed.

e Every time a new transaction is fed to the window the old once are removed and step-2 is

processed for each group of transactions.

e After pre-processing, we train different classifiers on each group using the cardholders
behavioural patterns in that group and extract fraud features. Even when we apply classifiers
on the dataset, due to imbalance in the dataset, the classifiers do not work well on the

dataset.
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e Thus, we perform SMOTE (Synthetic Minority Over-Sampling Technique) operation on the
dataset.

e Oversampling does not provide any good results.

e Thus, there are two different ways of dealing with imbalance dataset i.e., consider
Matthew Coefficient Correlation of the classifier on the original dataset or we make use of

one-class classifiers.

« Finally, the classifier that is used for training the group is applied to each cardholder in that
group. The classifier with highest rating score is considered as cardholder’s recent

behavioural pattern.

PROGRAM

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

credit_card_data = pd.read('/content/creditcard.csv')

# first 5 rows of the data

credit_card_data.head()
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credit_card_data.info()

B8 comment

Connect «

# checking the number of missing value in each column

credit_card_data.isnull().sum()

# distribution of legit transaction & fraudulent transactions

credit_card_data['Class'].value_counts()




» Credit Card Fraud Detection Using MLipynb %

Runtime Tools Help

#separating the data for analysis

legit = credit_card_data[credit_card_data. Class == 0]

20
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@0 Credit Card Fraud Detection Us
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cO A Credit Card Fraud Detection Using ML.ipynb %
o

B comment 3% Share
File Edit ¢ Insert Runtime Tools Help

+ Code + Text Connect ~ ra

LN = I - A |

credit_card_data[ ].value_counts()

e: inte4

highly unbalanced
0 -> Normal Transactions

1 —> Fraudulant Transactions

fraud = credit_card_data[credit_card_data. Class == 1]
print(legit.shape)

print(fraud.shape)

(284315, 31) (492, 31)

#tstatistical measures of the data

legit. Amount.describe()
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° legit.Amount .describe()
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ud.Amount.describe()

# compare the values for the both transactions

credit_card_data.groupby('Class').mean()
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Under Sampling

Build a sample dataset containing similar distribution of legit & fraudulent transaction

= Number of Fraudulent Transaction —> 56
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Under Sampling
Build a sample dataset containing similar distribution of legit & fraudulent transaction

Number of Fraudulent Transaction --> 56

legit_sample = legit.sample(n=492)

NameErrorTraceback (most recent call last)
<ipython-input-5-11lc6ac7e9cdd>in <module>()---->
llegit sample=legit.sample (n=492)

NameError: name 'legit' is not defined

Concatening two Data Frames

new_dataset = pd.concat([legit_sample,fraud],axis=0)
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new_dataset.head()
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Concatening two Data Frames
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49762  44199.0 1.351546 -1.390759 0.713643 -1244118 -2.008408 -0.801667 -1.222513 -0.101894 -1.449164 1.422011 -0.688937 -1.450402 -0.426721 -0.276468 0.962478 -0.091587
159281 112390.0 -0.467520 -4.475601 -2.316311 0.869426 -0.645675 2233655 0.848250 0.294705 0.787210 -0.591245 0724197 1.021004 -0.221404 0457611 0.190564 -0.196274

19327  30190.0 -1416985 -1.932028 1321694 -2.173934 0324299 -1.484920 -1.988174 -0.723678 -1.443325 1.167898 -1.562772 -1.898673 -0.880261 -0.323279 0.265376 0.335234
<« ]
[ 1 new dataset.tail()

Time vi v2 v3 va Vs V6 v7 vs vo vie vii vi2 vi3 via V15 vie vi

J70RR 1RG149N .1 G27RR3 1 17ARAR 4 R1R3A1 1749203 .1 KRAR4R7 .2 NMN494 NRRJRAN NAA7211 D NAR4GAR KAR77G4 2 11A795 R 417424 1235193 _RARRI77 N4ANI701 D RATROK .4 R70A2
® X

18 = ~ ENG o 817 PM
L © o NN RO e

new_dataset.tail()
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+ Code + Text Connect ~ V4
11 280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346 -2.234739 1.210158 -0.652250 -3.463891 1.794969 -2.775022 -0.418950 -4.057162 -0.712616 -1.603015 -5.03532
281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548 -2.208002 1.058733 -1.632333 -5.245984 1.933520 -5.030465 -1.127455 -6.416628 0.141237 -2.549498 -4.61471

281674 1703480 1.991976 0.158476 -2.583441 0408670 1.151147 -0.096695 0.223050 -0.068384 0.577829 -0.888722 0.491140 0.728903 0.380428 -1.948883 -0.832498 0.518436 0.90356

new_dataset|[ ].value_counts()

1 492
) 56
Name: Class, dtype: int64

rveooB RPN

new_dataset . groupby(

Time

80835.375000 -0.002041 -0.203528 0.187796 -0.026107 -0.024774 0.038651 -0.181050 -0.334998 0.141425 0.073726 0.002476 0.031928 -0.014840 -0.046562 0.133623 -0.168151 0.0
80746.806911 -4.771948 3623778 -7.033281 4.542029 -3.151225 -1.397737 -5568731 0.570636 -2.581123 -5676883 3.800173 -6.259393 -0.109334 -6.971723 -0.092929 -4.139946 -6.6

Splitting the data into Features & Targets

X = new_dataset.drop(columns
Y = new_dataset[ ]

orint(X)
® Xx

817 PM

a
=D ® 0

new_dataset['Class'].value_counts()




new_dataset.groupby('Class').mean()

X = new_dataset.drop(columns='Class', axis=1)

Y = new_dataset['Class']
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+ Code + Text Connect ~ ra

[ 1 legit.Amount.describe()

count  284315.000000
mean 88.291022
std 250, 105092
min 0.000000
25% 5650000
50% 22.000000
75% 77.050000
max 25691. 160008
Name: Amount, dtype: float6d

fraud. Amount .describe()

count 492 . 60000
mean 122.211321
std 256.683288
min 0.0600000
25% 1.000000
50% 9.250000
75% 105. 896000

2125. 870000

Amount, dtype: floate4

credit_card_data.groupby( ).mean()

Time v2

94838.202258 0.008258 -0.006271 0.012171 -0.007860 0.005453 0002419 0.009637 -0.000987 0.004467 0.009824 -0.006576 0.010832 0.000189 0.012064 0.000161 0.007164 0.
® x

8:31 PM
1272272001
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2 Credit Card Fraud Detection Using ML.ipynb
File Edit View Insert Runtime Tools Help

B comment 2% Share

+ Code + Text Connect ~ ra
V23
[1 vaa
V25
V26
v27
vag
Amount @
Class ]
dtype: int64

tveoB BN
credit_card data[ ].value counts()
0 284315
1 492
Name: Class, dtype: int6a
This dataset is highly unbalanced.
0 -> Normal Transactions

1 —> Fraudulant Transactions

legit credit_card_data[credit_card_data. Class a]
fraud = credit_card data[credit_card data. class == 1]

[ 1 print(legit.shape)
print(fraud. shape)
(284315, 31)
® x

813 PM

TO® oo
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X = new_dataset.drop(columns='Class', axis=1)

Y

new_dataset['Class']

print(X)

print(Y)
Split the data into Training & Testing Data

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)

d Fraud Detection Us

C colab.res:

+ Code + Text

-0.026107

Time c V28  Amount
[}

print(X.shape, X_train.shape, X_test.shape)
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0.008258 -0.006271 0.012171 -0 0.005453 0.00241¢ - 0.004467 0.009824 0.000188 0012064 0000161 0.007164 0.

,.' M x s

(548, 30) (438, 30) (110, 30)

Model Training

Logistics Regression

model = LogisticRegression()
(548, 30) (438, 30) (110, 30)

#training the Logistics Regression with training data
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new_dataset. groupby( ).mean()

[1]

Time vi

80835.375000 -0.002041 -0.203528 0.187796 -0.026107 -0.024774 0.038651 -0.181050 -0.334998 0.141425 0.073726 0.002476 0.031928 -0.014840 -0.046562 0.133623 -0.168151 0.0

80746.806911 4771948 3623778 -7033281 4.542029 -3.151225 -1.397737 -5.568731 (570636 2581123 5676883 3.800173 6259393 -0.109334 6971723 0092929 -4.139946 6.6
]

Splitting the data into Features & Targets

° X = new_dataset.drop(columns
¥ = new_dataset| 1

print(x)

Time 1 \r1 ooc V27 v28  Amount
196088 131356. .891936 ©.148705 ... -9.034289 -0.085717 .88
254893 156965, .978648 -1,555866 ... ©.019441 -0,035722 .00
49762 44199. .351546 .398759 ... .830841 .838353 .80
159281 112390. 467520 -4.475601 ... -9.236393 0.144232 .82
19327 38198. .416985 .932028 . .476380 .183516 EN: ]

279863 169142.8 -1,927883 1.125653 ... ©.202680 ©,147968 .00
280143 169347 . .378559 1.289381 ... ©.389152 0.186637
280149 169351.8 -0,676143 1.126366 ... ©.3851067 ©,194361
281144  169966. 3.113832 .585864 ... .884876 .253700
281674 170348, .991976 ©,158476 ... ©.002088 -0,015309

[548 rows x 3@ columns]
® X

B:34 PM
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B comment

+ Code + Text Connect ~ ra

[1] 1 80746.806811 -4.771948 3623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123 -5.676883 3.800173 -6.259393 -0.109334 -6.971723 -0.092929 -4.138946 66

Splitting the data into Features & Targets

[ 1 X = new_dataset.drop(columns , axis=1)
Y = new dataset[’ 1

print(x)

Time Vi [ va7 vag
196088 131356.8 2.891936 ©.148705 . .034289 -0.085717
254893  156965. 978648 -1.555866 . .919441 -8.835722
49762 44199. « 351546 .398759 . .838841 .038353
159281 112399. .467520 -4.475601 . .236393  9.144232
19327 30190. «416985 .932028 ... .478380 .183516

]
[}
a
[}

279863 169142. .927883 .125653 ... . 292680 .147968
280143 169347, .378559 .289381 . .389152 . 186637
280149 169351. .676143 .126366 . 385107 .194361
281144 169966, L113832  0.585864 . 884876 -9.253700
281674 170348. .991976 .158476 ... .BO2988 .815309

[548 rows x 38 columns]

print(Y)

196088
254893
49762
159281
® x

B30 PM

TOW

LogisticRegression()
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[ 1 legit.Amount.describe()

count  284315.000000

mean 88.291022

std 250, 105092

min 0.000000

25% 5650000

50% 22

75% 77

max 25691.

Name: Amount, dtype: float6d

fraud. Amount .describe()

count 492 . 60000
mean 122.211321
std 256.683288
min 0.0600000
25% 1.000000
50% 9.250000
75% 105. 896000
max 2125. 870000
Name: Amount, dtype: floatéd

credit_card_data.groupby( ).mean()

Time v2

94838.202258 0.008258 -0.006271 0.012171 -0.007860 0.005453 0002419 0.009637 -0.000987 0.004467 0.009824 -0.006576 0.010832 0.000189 0.012064 0.000161 0.007164 0.
® x

8:31 PM
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cO A Credit Card Fraud Detection Using ML.ipynb % Bl Comment 2% Share
™ Fle Edt View Inset Runtime Tools Help

+ Code + Text Connect ~ ra

[1 1 80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0570636 -2.581123 -5676883 3.800173 -6.259393 -0.109334 -6.971723 -0.092929 -4.139946 66

Splitting the data into Features & Targets

[ 1 X = new dataset.drop(columns , axis=1)
¥ = new_dataset[ 1

print(x)

Time vi vz o... V27 V28
196088 131356.0 -891936 ©.148705 ... 834289 . 885717
254893  156965. .978648 -1.555866 ... .819441 835722
49762  44199. 351546 -1.390759 ... ©.030841 0.038353
159281 11239@. 467520 -4.475601 ... +236393 .144232
19327 30190. 416985 -1.932028 ... ©.470380 0.103516
279863 169142. .927833 -125653 ... -292680 .147968
280143 169347.8 1.378559 .289381 ... +389152 - 186637
280149 169351. .676143 .126366 ... 385107 .194361
281144 169966. .113832 ©.585864 . .884876 -0.253700
281674 170348. -991976 .158476 . -B22988 .015309

[548 rows x 3@ columns]

print(Y)

196088
254893
49762
159281
® x
B30 PM

ENG =
N A g

Model Evaluation




Accuracy Score

0 Credit Card Fraud Detection Usic X +
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= File Edit View Insert Runtime Tools Help

B comment 2% Share

+ Code + Text Connect ~ ra

new_dataset. groupby( ).mean()

Time vi

80835.375000 -0.002041 -0.203528 0.187796 -0.026107 -0.024774 0.038651 -0.181050 -0.334998 0.141425 0.073726 0.002476 0.031928 -0.014840 -0.046562 0.133623 -0.168151 0.0

80746.806911 4771948 3.623778 7033281 4.542029 -3.151226 -1.367737 -5.566731 0.570636 -2.581123 5676883 3.B00173 5269383 -0.108334 6971723 0.082929 -4.139846 6.6
e _________________________]

Splitting the data into Features & Targets

© x = new dataset.drop(columns , axis=1)
Y = new_dataset[ |

print(x)

Time Vi 71 ooc v27 V28  Amount
196088 131356.8 2.091936 ©.148705 ... -8.034289 -0.085717 .88
254893 156965.0 1.978648 -1.555866 ... ©.019441 -8.835722 .80
49762 44199. 1.351546 -1.398759 ... .830841 .838353
159281 112399.0 -0.467520 -4.475601 ... -8.236393 0.144232
19327 30190.08 -1.416985 -1.932028 ... .A470380 .183516

279863 169142.8 -1.927883 1.125653 ... ©.292680 ©.147968
286143 169347.8 1.378559 1.289381 ... ©.389152 ©.186637
280149 169351.8 -0.676143 1.126366 ... ©.385167 ©.194361
281144 169966.8 -3.113832 0.585864 ... . 884876 .253700
281674 170348.0 1.991976 ©.158476 ... ©.002988 -0.015389

[548 rows x 3@ columns]
® x

ENG o B8:34 PM
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X_train_prediction = model.predict(X_train)
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Ll

LogisticRegression()
Model Evaluation
Accuracy Score

[1
X train prediction = model.predict(X train)
training_data_accuracy - accuracy_score(X_train_prediction, Y_train)

print( , training data_accuracy)

Accuracy on Training Data: ©.9611872146118722
ryeoB RPN
X_test_prediction - model.predict(X_test)
test_data_accuracy = accuracy_score(X_test prediction, v_test)
print( , test data accuracy )

Accuracy on Training Data: ©.9272727272727272

® x

B35PM

ENG =
N A ng
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new_dataset. groupby( ).mean()

[1]

Time vi

80835.375000 -0.002041 -0.203528 0.187796 -0.026107 -0.024774 0.038651 -0.181050 -0.334998 0.141425 0.073726 0.002476 0.031928 -0.014840 -0.046562 0.133623 -0.168151 0.0

80746.806911 4771948 3623778 -7033281 4.542029 -3.151225 -1.397737 -5.568731 (570636 2581123 5676883 3.800173 6259393 -0.109334 6971723 0092929 -4.139946 6.6
]

Splitting the data into Features & Targets

° X = new_dataset.drop(columns
¥ = new_dataset| 1

print(x)

Time 1 \r1 ooc V27 v28  Amount
196088 131356. .891936 ©.148705 ... -9.034289 -0.085717 .88
254893 156965, .978648 -1,555866 ... ©.019441 -0,035722 .00
49762 44199. .351546 .398759 ... .830841 .838353 .80
159281 112390. 467520 -4.475601 ... -9.236393 0.144232 .82
19327 38198. .416985 .932028 . .476380 .183516 EN: ]

279863 169142.8 -1,927883 1.125653 ... ©.202680 ©,147968 .00
280143 169347 . .378559 1.289381 ... ©.389152 0.186637
280149 169351.8 -0,676143 1.126366 ... ©.3851067 ©,194361
281144  169966. 3.113832 .585864 ... .884876 .253700
281674 170348, .991976 ©,158476 ... ©.002088 -0,015309

[548 rows x 3@ columns]
® X

B:34 PM
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new_dataset. groupby( ) .mean()

[1]

Time vi

80835.375000 -0.002041 -0.203528 0.187796 -0.026107 -0.024774 0.038651 -0.181050 -0.334998 0.141425 0.073726 0.002476 0.031928 -0.014840 -0.046562 0.133623 -0.168151 0.0

80746.806911 4771948 3623778 -7033281 4.542029 -3.151225 -1.397737 -5.568731 (570636 2581123 5676883 3.800173 6259393 -0.109334 6971723 0092929 -4.139946 6.6
]

Splitting the data into Features & Targets

° X = new_dataset.drop(columns
¥ = new_dataset| 1

print(x)

Time 1 \r1 ooc V27 v28  Amount
196088 131356. .891936 ©.148705 ... -9.034289 -0.085717 .88
254893 156965, .978648 -1,555866 ... ©.019441 -0,035722 .00
49762 44199. .351546 .398759 ... .830841 .838353 .80
159281 112390. 467520 -4.475601 ... -9.236393 0.144232 .82
19327 38198. .416985 .932028 . .476380 .183516 EN: ]

279863 169142.8 -1,927883 1.125653 ... ©.202680 ©,147968 .00
280143 169347 . .378559 1.289381 ... ©.389152 0.186637
280149 169351.8 -0,676143 1.126366 ... ©.3851067 ©,194361
281144  169966. 3.113832 .585864 ... .884876 .253700
281674 170348, .991976 ©,158476 ... ©.002088 -0,015309

[548 rows x 3@ columns]
® X

B:34 PM
1272272001

ENG
AN FTHW
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[ 1 legit.amount.describe()

count  284315.000000

mean 88.291022

std 250, 105092

min 0.000000

25% 5,650

50% 22

75% 77

max 25691

Name: Amount, dtype: float6d

fraud. Amount .describe()

492 . 60000
122.211321
256.683288
0.0600000
1.000000
9.250000
105. 890000
2125. 870000
Name: Amount, dtype: floatéd

credit_card_data.groupby( ).mean()

Time v2

94838.202258 0.008258 -0.006271 0.012171 -0.007860 0.005453 0002419 0.009637 -0.000987 0.004467 0.009824 -0.006576 0.010832 0.000189 0.012064 0.000161 0.007164 0.
® x

8:31 PM
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training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
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+ Code + Text Connect 7

[+  SEARCH STACK OVERFLOW

. : name 'pd' is not defined

asoaw
]

credit_card_data.head()

vi2 vi3 via vis vie vi7 vis vie V20 v21 v22 v23 v24 V25 V26 v27 V28 Amount Class
-0.617801 -0.991390 -0.311169 1.468177 -0.470401 0.207971 0.025791 0403993 0251412 -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62
1.065235 0489095 -0.143772 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724
0.066084 0.717293 -0.165946 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
0.178228 0.507757 -0.287924 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458

0.538196 1.345852 -1.119670 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153

credit_card_data.tail()

Time vi v2 v3 va Vs V6 v7 vs Vo vie vii vi2 vi3 via vis vie
172786.0 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837 -4.918215 7.305334 1.914428 4.356170 -1.593105 2711941 -0.689256 4.626942 -0.924459 1.107641
172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415 0.024330 0.294869 0.584800 -0.975926 -0.150189 0.915802 1.214756 -0.675143 1.164931 -0.711757
172788.0 1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260 -0.296827 0.708417 0432454 -0.484782 0411614 0.063119 -0.183699 -0.510602 1.329284 0.140716 0.312
172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686180 0.679145 0.392087 -0.399126 -1.933849 -0.962886 -1.042082 0.449624 1.962563 -0.608577 0.50¢
172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617 1.577006 -0.414650 0.486180 -0.915427 -1.040458 -0.031513 -0.188093 -0.084316 0.041333 -0.302620 -0.66C

® X
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print('Accuracy on Training Data: ', training_data_accuracy)
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L)

LogisticRegression()
Model Evaluation
Accuracy Score

[1
X train prediction = model.predict(X train)
training_data_accuracy - accuracy_score(X_train_prediction, Y_train)

print( , training data_accuracy)

Accuracy on Training Data: ©.9611872146118722
ryeoB RPN

X_test_prediction - model.predict(X_test)
test_data_accuracy = accuracy_score(X_test prediction, ¥ _test)

print( , test data accuracy )

Accuracy on Training Data: ©.9272727272727272

® x

B35PM

ENG =
N A ng

Accuracy on Training Data: 0.9611872146118722
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[ 1 legit.Amount.describe()

count 284315. 000000
mean 88.291022
std 250.105092
min 0.000000
25% 5.6560000
seX 22.000000
75% 77056000
max 25691. 160000
Name: Amount, dtype: floates

fraud. Amount .describe()

count 492 . BOOOOD

mean 122.211321

std 256.683288

min a.

25%

se% 9.

75% 105.

max 2125.

Name: Amount, dtype: float6d

credit_card_data.groupby( ).mean()

94838.202258 0.008258 -0.006271 0.012171 -0.007860 0.005453 0.002419 0.009637 -0.000987 0.004467 0.009824 -0.006576 0.010832 0.000189 0.012064 0.000161 0.007164 0.

® x
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# accuracy on test data

X_test_prediction = model.predict(X_test)
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LogisticRegression()
Model Evaluation
Accuracy Score

[1
X train prediction = model.predict(X train)
training_data_accuracy - accuracy_score(X_train_prediction, Y_train)

print( , training data_accuracy)

Accuracy on Training Data: ©.9611872146118722
ryeoB RPN

X_test_prediction - model.predict(X_test)
test_data_accuracy = accuracy_score(X_test prediction, v_test)
print( , test data accuracy )

Accuracy on Training Data: ©.9272727272727272

® x

B35PM

ENG =
N A ng

test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
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SEARCH STACK OVERFLOW

Concatening two Data Frames

new_dataset = pd.concat([legit_sample,fraud],axis=0)
= = I - IS |
new_dataset. head(()]
Time vi v2 v3 va Vs V6 vz v8 ve vie vii vi2 vis via vis

196088 1313560 2091936 0.148705 -3.738184 0.159139 3.386352 2.869366 0462437 0467049 -0.437896 0415274 -0.132049 0.132293 -0.441097 1.110540 0.076008 -0.935165 -0.300€
254893 156965.0 1.978648 -1.555866 -1.887961 -1.881698 1.130933 3.709389 -1.619579 0.953556 -0.045954 (0.744668 0.037306 -0.481764 0.230474 -0.272885 0.996942 1.312164 -0.108¢
49762 44199.0 1.351546 -1.390759 0.713643 -1.244118 -2.008408 -0.801667 -1.222513 -0.101894 -1.449164 1.422011 -0.688937 -1.450402 -0.426721 -0.276468 0.962478 -0.091587 0.434€
150281 112380.0 -0.467520 -4.475601 -2.316311 0.869426 -0.645675 2233655 0.848250 0.294705 0.787210 -0.591245 0724197 1.021004 -0.221404 0457611 0.190564 -0.196274 0.122%

19327 30190.0 -1.416985 -1.932028 1.321694 -2.173934 0.324299 -1.484920 -1.988174 -0.723678 -1.443325 1.167898 -1.552772 -1.898673 -0.880261 -0.323279 0.265376 0.335234 -0.0377

[ 1 new dataset.tail()

Time vi v2 v3 va Vs V6 v7 vs vo vie vii vi2 vi3 via V15 vie vi

J70RR 1AG149N .1 927RR3 1 17ARAR 4 R1R3A1 1749203 .1 KRAR4R7 .2 MMN484 _NRRORAN NAA7211 D NAR4GAR KAR77G4 2 11A795 .H4174%4 1235193 _RARRI7T7 N4NM701 D RATROK .4 R70A2
® X

817 PM
12/22/2021

o ¢ o = AN anw

print('Accuracy on Training Data: ', test_data_accuracy )
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[1 1 80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0570636 -2.581123 -5676883 3.800173 -6.259393 -0.109334 -6.971723 -0.092929 -4.139946 66

Splitting the data into Features & Targets

[ 1 X = new dataset.drop(columns , axis=1)
¥ = new_dataset[ 1

print(x)

Time vi vz o... V27 V28
196088 131356.0 .891936 ©.148705 . 834289 . 885717
254893  156965. -978648 -1.555866 . .819441 835722
49762  44199. 351546 -1.390759 ... ©.030841 0.038353
159281 11239@. 467520 -4.475601 ... +236393 .144232
19327 30190. 416985 -1.932028 ... ©.470380 0.103516
279863 169142. .927833 -125653 . -292680 .147968
280143 169347.8 1.378559 .289381 ... +389152 - 186637
280149 169351. .676143 .126366 ... 385107 .194361
281144 169966. .113832 ©.585864 ... ©.884876 -0.253700
281674 170348. -991976 .158476 ... -B22988 .015309

[548 rows x 3@ columns]

print(Y)

196088
254893
49762
159281
® x
B30 PM
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Accuracy on Training Data: 0.9272727272727272
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LogisticRegression()

Model Evaluation

Accuracy Score

[1

X_train_prediction = model.predict(X_train)

training data accuracy = accuracy score(X train prediction, Y train)
print( T , training data_accuracy)
Accuracy on Training Data: ©.9611872146118722

T eoB R EE

X test_prediction = model.predict(X test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print( , test_data_accuracy )

Accuracy on Training Data: ©.9272727272727272
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new_dataset . groupby( ).mean()

[1]
Vs

.014840 -0,

-0.109334

Currently, businesses work on fraud detection systems that incorporate machine learning and
artificial intelligence. Using modern fraud protection systems powered by ML, many industries can
keep their finances safe. There are already some fraud detection solutions for FinTech, e-commerce,
banking, healthcare, online gaming, and other industries. No matter your industry, there’s always a
way to benefit from Al and ML. Machine learning algorithms can process huge amounts of data and
draw patterns for every business to protect it from fraud. For instance, machine learning helps
online gaming businesses detect account takeovers and other scams by tracing patterns in a player’s

in-game behavior.

Capgemini claims their ML fraud detection system can reduce fraud investigation time by 70%

while increasing accuracy by 90%. Another ML fraud prevention solution provider, Feedzai, claims



https://www.capgemini.com/in-en/wp-content/uploads/sites/6/2017/07/next-generation_fraud_management_solutions_for_banks_and_capital_market_firms.pdf
https://feedzai.com/wp-content/uploads/2017/03/DML-Final.pdf
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that a well-trained machine learning solution can identify and prevent 95% of all fraud while

minimizing the amount of human labor required during the investigation stage.

Large corporations like Airbnb, Yelp, and Jet.com are already using Al solutions to get insights
from big data and prevent issues such as fake accounts, account takeover, payment fraud, and
promotion abuse. Machine learning takes care of all the dirty work of data analysis and predictive

analytics and allows companies to grow and develop safe from fraud.

Final thoughts

Businesses all over the world have already started using data science to prevent financial fraud.
Machine learning is currently the most promising innovative tool that can help companies prevent
fraudulent operations that lead to greater losses each year. Yet apart from implementing modern

fraud detection solutions, companies also need modern and secure FinTech services and custom

software development services that are harder for fraudsters to manipulate. An outdated financial

system is always full of loopholes tricksters can use. Luckily, machine learning has the potential to

improve bank fraud detection with data analytics and help nearly every industry.

From the moment the e-commerce payment systems came to existence, there have always been

people who will find new ways to access someone’s finances illegally. This has become a major
problem in the modern era, as all transactions can easily be completed online by only entering your
credit card information. Even in the 2010s, many American retail website users were the victims of
online transaction fraud right before two-step verification was used for shopping online.
Organizations, consumers, banks, and merchants are put at risk when a data breach leads to

monetary theft and ultimately the loss of customers’ loyalty along with the company’s reputation.



https://intellias.com/custom-fintech-services-for-digital-banking/
https://intellias.com/custom-software-development/
https://intellias.com/custom-software-development/
https://spd.group/ecommerce-solutions/e-payment-systems/
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Unauthorized card operations hit an astonishing amount of 16.7 million victims in 2017.
Additionally, as reported by the Federal Trade Commission (FTC), the number of credit card fraud
claims in 2017 was 40% higher than the previous year’s number. There were around 13,000
reported cases in California and 8,000 in Florida, which are the largest states per capita for such
type of crime. The amount of money at stake will exceed approximately $30 billion by 2020. Here

are some credit card fraud statistics.

8. CONCLUSION

In this we developed a novel method for fraud detection, where customers are grouped based on
their transactions and extract behavioural patterns to develop a profile for every cardholder. Then
different classifiers are applied on three different groups later rating scores are generated for every
type of classifier. This dynamic changes in parameters lead the system to adapt to new cardholder's
transaction behaviours timely. Followed by a feedback mechanism to solve the problem of concept
drift. We observed that the Matthews Correlation Coefficient was the better parameter to deal with
imbalance dataset. MCC was not the only solution. By applying the SMOTE, we tried balancing
the dataset, where we found that the classifiers were performing better than before. The other way

of handling imbalance dataset is to use one-class classifiers like one-class SVM. We finally
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observed that Logistic regression, decision tree and random forest are the algorithms that gave
better results. Credit card fraud is without a doubt an act of criminal dishonesty. This article has
listed out the most common methods of fraud along with their detection methods and reviewed
recent findings in this field. This paper presents a study on credit card fraud detection using K-Star

machine leaning algorithm.
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