
 A Project/Dissertation ETE Report on

 Covid-19 Status and Vaccine Slot
 Availability Finder
 Submitted in partial fulfilment of the requirement for the award

 of the degree of

 B.Tech (Computer Science and Engineering)

 Under The Supervision of

 Mr. Padmanabhan P. (Assistant Professor)

 Submitted By: - 1) Vikas Kumar Mishra (18SCSE1010507)

 (18021011735)

 2) Nishant Kumar Singh (18SCSE1010543)

 (18021011769)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

MONTH, YEAR

AUG-DEC 2021

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “Covid-19 Status and Vaccine Slot Availability Finder” in partial fulfillment of

the requirements for the award of the B. Tech(CSE) submitted in the School of Computing

Science and Engineering of Galgotias University, Greater Noida, is an original work carried

out during the period of month, Year to Month and Year, under the supervision of Name…

Designation, Department of Computer Science and Engineering/Computer Application and

Information and Science, of School of Computing Science and Engineering , Galgotias

University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for

the award of any other degree of this or any other places.

Vikas Kumar Mishra(18SCSE1010507)

Nishant Kumar Singh(18SCSE1010543)

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge.

Mr. Padmanabhan P.
 Assistant Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Vikas Kumar

Mishra(18SCSE1010507) and Nishant Kumar Singh(18SCSE1010543) has been held on and

his/her work is recommended for the award of B. Tech (CSE)

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December 2021

Place: Greater Noida

 ACKNOWLEDGEMENT

 In the accomplishment of completion of my project on Covid-19 Status and Vaccine Slot

Availability Finder I would like to convey my special gratitude to Mr. Padmanabhan

P. of Computer Science Department.

Your valuable guidance and suggestions helped me in various phases of the completion of

this project. I will always be thankful to you in this regard.

I am ensuring that this project was finished by me and not copied.

Vikas Kumar Mishra (18SCSE1010507)

Nishant Kumar Singh (18SCSE1010543)

 ABSTRACT

With its alarming surge of affected cases throughout the world, lockdown, and

the World Health Organization's declaration, the Novel Coronavirus,

Coronavirus, 19 has been declared pandemic throughout the world by the WHO.

People are found to be able to prevent the spread of disease only by raising

awareness social distancing, mask use, etc. They don't know which areas of

popular culture are more affected by this pandemic. After the vaccine arrives,

everyone can take it very fast. In front of the government, the biggest problem is

how to manage this vaccine process. It is not possible to get vaccinated

completely in 10 to 15 days. There is a panic situation between the people of a

country. We make software to solve these problems. This project developed for

tracking COVID-19 vaccine slots available in your pin-code and district for 18+

age category. Once available, it will send email notifications at periodic interval

to subscribers until slots are available. A android-based system is proposed for

this business management page such as Automobile Service Center or Beauty

Parlor / Saloons etc. to control the spread of social gatherings. The proposed

system has features such as a single application for service providers and

customers. Verification of real customers and service providers will be done

through OTP and store-based photographs respectively. The owner can keep track

of the details of his employees by registering and can track regular customers. It

helps to book easily and cancel appointments. The customer can view non-

working days with the event calendar and the services provided and their cost,

time required etc. The system also offers the option to handle customer payments,

invoice production, analytics reports help maintain the website and give the

customer a reminder of appointments. So the system will do the right planning

and reduce the effort and time of both the client and the owner.

Through this application we can view the details of covid patients and dead all

over the world. It's difficult to schedule an appointment for Covid-Vaccine given

that there are only a limited number of slots available each day, so this script

automates the whole process by checking the availability of slots every 3 seconds

as well as booking it once it becomes available. This script needs only one

configuration - entering your preferences once (pin code, district, centre

preference, slot timing, etc.) and then it takes care of everything else.

Keywords

Android, Covid19 Cases & Vaccination Statistics, Check Vaccine

Availability, Firebase Cloud Storage, Authentication, Identification, etc.

 TABLE OF CONTENTS

CHAPTER TITLE PAGE

1 INTRODUCTION

 1.1 OVERVIEW

 1.2 FEATURES

2 LITERATURE REVIEW

 2.1 FLUTTER

 2.2 DART

 2.2.1 GOOGLE ANALYSIS

 2.2.2 DATA PARSING SCRIPT

 2.3 HTTP PROTOCOL

 2.4 SHARED PREFRENCE

3 SYSTEM DESIGN

 3.1 SYSTEM ARCHITECTURE

 3.1.1 DATA PARSING PROCESS

 3.1.2 PROCESS MODEL APP

 3.1.3 SLOT AVAILABILITY PROCESS

 3.2 CONTEXT DIAGRAM

 3.2.1 OVERVIEW AND SLOT CHECKING

 3.2.2 CASES STATICTIS WITH STATEWISH

4 FUNCTION MODULE

 4.1 DATA AVAILABILITY

 4.1.1 BASIC DATA

 4.2 FILES ARE AVAILABLE

5 OBJECTIVE AND METHODOLOGY

 5.1 EXECUTION PROCESS

 5.2 SUGGESTIONS

6 CONCLUSION AND FUTURE WORK

 6.1 CONCLUSION

7 SAMPLE CODE AND OUTPUT

 APPENDIX 1

 REFERENCES

CHAPTER 1

 INTRODUCTION

1.1 Overview

The contagious coronavirus, or more technically known as COVID-19, has

spread all over the world and is listed as a pandemic by the World Health

Organization. It started surfacing in China in November 2019 and has been on

the rise in all major parts of the world. On 27th July, 2020, more than 16.52M

cases of COVID-19 were reported in about 187 countries and territories. On 30th

January, 2020, the first case of coronavirus pandemic in India was reported, and

the number of cases in India has now reached more than 1.48M .

Most people infected from COVID-19 experience mild to moderate respiratory

illness. If a person is tested positive for coronavirus, every individual who has

come in contact with the infected individual is advised to go for self-quarantine

for two weeks, so that the infection chain can be broken and the disease does not

spread further. At present, there is no specific treatment or vaccine available for

COVID-19. Many countries are trying to develop contact-tracing techniques

through which they can trace the person suspected of the infection. For example,

in South Korea, the government is maintaining a database of known patients

along with their details such as their age, gender, occupation, and so on. In Israel,

the government has been allowed to track the mobile-phone data of people

suspected with the infection. Singapore developed a mobile-based application

which shows the number of cases of covid and also helps in finding covid

vaccination slots.

We have developed a similar type of application named Covid-19 Status and

Vaccine Slot Availability Finder.

This Application helps the user to keep a track on the covid-19 cases status in

India. It shows the number of cases of covid positive patients and recovered cases

and as well as the number of death cases each day.

This is all done in the Covid-19 Statistics section of the application. The Statistics

section allows you to stay up to date regarding the number of cases, both locally

and nationally. The accurate numbers can help you assess your risk further.

Additionally, the availability of official updates prevents rumours and

misinformation from spreading.

The Application also helps the users to find vaccine slots so that they can get

vaccinated by finding vaccination centres nearby them and the slots available in

the centres . Both the Statistics and the Vaccination Slot finder gets updated on a

daily basis to provide up to date data to the users.

1.2 Features

• View Daily Covid19 Cases & Vaccination Statistics

• View State Wise Daily and Total Covid 19 Statistics

• Check Vaccine Availability in your area using your area Pin code

• Uses Firebase Cloud to store Data.

• Data Sync across different platforms and devices.

CHAPTER 2

 LITERATURE REVIEW

2.1 Flutter

In this app we have using the Android studio with flutter mode. Basically, flutter

is use to make the apps which they run in both of the famous mobile phone

processor like Android and iOS. Flutter is a cross-platform UI toolkit designed to

allow reuse of code across operating systems such as iOS and Android, while

allowing apps to interact directly with basic platform services. The goal is to

empower developers to bring the most efficient applications that feel natural to a

wide range of platforms, covering the differences where they exist while sharing

as much code as possible.

During the upgrade, Flutter applications work with a VM that provides hot

reloading of changes without the need for full integration. For download, Flutter

applications are directly integrated into the machine code, either in Intel x64 or

ARM instructions, or in JavaScript if it directs the web. The framework is an open

source, licensed BSD licensed, and has a thriving environment for third-party

packages that enhance the functionality of a central library.

2.2 Dart

In this project we uses the Famous languages Dart. It is use to increase the

productivity of you app. And it also provide the fast access and run of apps.

Strong languages have been created by the translator, without producing a

machine language code.

Of course, things eventually got worse. The concept of virtual machine (VM)

became popular, which is actually an advanced translator that mimics hardware

on software. The virtual machine makes it easy to send language to new hardware

platforms. In this case, the input VM language is usually the intermediate

language. For example, programming language (similar to Java) is integrated into

intermediate language (bytecode) and rendered into VM (JVM).

In addition, there are now timely compilers (JIT). The JIT compiler launches

during the process, compiling instantly. Real producers who used during the

creation of the system (pre-working time) are now called pre-programmers

(AOT).

2.2.1 Google Analytics

For storage we have to use the google analytics or firebase cloud. In this the main

role the firebase cloud to store the state wish data into a json file and connected

through app. Firebase Analytics is a tool that lets you do just that - it helps us

learn how our Android and iOS users interact with our app. From the setup, it will

automatically start tracking a set of defined events - which means we can start

learning in the first step. And if that is not enough, we might add our own custom

events that we can track. All these events then appear with the Firebase

Dashboard within the Firebase Console - our central access point for statistics

reports and other firebase services.

Once we have tracked and analyzed this data, we can make decisions about future

changes in our app to better serve users. And if that were not enough, Firebase

Analytics Incorporates Firebase Crash Reporting to create an audience of users

who have experienced a follow-up crash, Firebase Notifications to send alerts to

the audience and track events based on notification interaction, Firebase Remote

Config to change the look / feel. and our application behavior based on Audience,

Big Query performs improved data analysis on our tracked events and Google

Tag Manager in our Firebase Analytics settings remotely from another web

application.

2.2.2 Data-Parsing-Script

Most important library is use to forming this app. For using this library we

collected the specific type of the data from the whole table. JSON Analysis is a

very common function for applications that need to download data online.

Data Parshing is depend these thing:-

Write all JSON transfer code in person automatically perform the process by

generating code This guide will focus on how to transfer JSON manually to Dart

code, which includes: coding and coding on JSON describing safe model model

classes analyzing JSON into a Dart code using a factory builder dealing with

invalid / optional values data validation edits back to JSON to decrypt complex /

nested JSON data selecting deep values by deep pick package

2.3 Http Protocol-

HTTP is a protocol for fetching resources. It is the foundation of any data

exchange on the Web and it is a client-server protocol, which means requests are

initiated by the recipient, usually the Web browser. A complete document is

reconstructed from the different sub-documents fetched, for instance, text, layout

description, scripts, and more.

2.4 Shared Preferences-

Shared Preferences object points to a file containing key-value pairs and provides

simple methods to read and write them. Each Shared Preferences file is managed

by the framework and can be private or shared.

Data-Parsing-Script –

“Data parser” is a generic parsing script that handles a wide range of data formats:

is files (as downloaded from the Web Of Science), Factiva datasets, PubMed, RIS

files, batches of simple text files or any file formatted in csv format .

 CHAPTER 3

 SYSTEM DESIGN

3.1 SYSTEM ARCHITECTURE

3.1.1 Data Parsing process:

3.1.2 Process Model App

 Page 1

Page 2

CSV File

provide from the

govt.

CSV File provide

from the govt.

Change the

CSV/Json file into

Excel

Divide the data

basis of your

requirement

 Parshing

Algorithms and

Some Modules

Usees

Check the Full

Country Cases

Report with Gap

Check the

Cases Report

in State-wise

Check The

Slot

Availability

 Start

 Stop

Page 3

3.1.3 Slot Availability Process:-

3.2 CONTEXT DIAGRAM

3.2.1 Overview and Slot Checking

 Slot

Availability

Input Your Area

Pin-code

Vaccination

Centre No 1

Vaccination

Centre No 2

Vaccination

Centre No 3

Check Paid and

Unpaid Both

Status With

Present Actual

Doses

3.2.2 Cases Statistics with State wise

 CHAPTER 4

FUNCTION MODULE

4.1 Data availability

4.1.1 Basic data

The data used for this project is taken from the following public sources available

in the JSON format and commas comma sequences (csv) respectively:

1. As of 13 August, our API repository and api.covid19india.org have been

withdrawn. Redirecting api.covid19india.org to data.covid19india.org

Modeling projections for cases and deaths

Modeling projections for cases and deaths

For the mathematical model, allow three points P1 = (x1, y1), P2 = (x2, y2), and

P3 = (x3, y3) so that y1 corresponds to the number of events or deaths 30 days

before the day. current date, x1 = 0, y2 corresponds to the number of events or

deaths 15 days prior to today, x2 = 15, y3 corresponds to the number of events or

deaths today, and x1 = 30. Based on the quadratic equation defined as f (x) = ax2

+ bx + c,, let the equation system presented in (1), (2), and (3).

y1=ax21+bx1+c(1)y1=ax12+bx1+c (1)

y2=ax22+bx2+c(2)y2=ax22+bx2+c (2)

y3=ax23+bx+c(3)y3=ax32+bx+c (3)

Since x1 = 0 from (1):

y1=c(4)y1=c (4)

Subtracting (2) from (4):

y1−y2=−ax22−bx2(5)y1−y2=−ax22−bx2 (5)

Isolating the variable b from (5):

b=y1−y2+ax22−x2(6)b=y1−y2+ax22−x2 (6)

Subtracting (2) from (3):

y3−y2=a(x23−x22)+b(x3−x2)(7)y3−y2=a(x32−x22)+b(x3−x2) (7)

Replacing b in (7):

y3−y2=a(x23−x22)+y1−y2+ax22−x2(x3−x2)y3−y2=a(x23−x22)+(y1−y2)(x3−x

2)−x2−ax2(x3−x2)y3−y2=a((x23−x22)−x2(x3−x2))−(y1−y2)(x3−x2)x2(8)y3−y

2=a(x32−x22)+y1−y2+ax22−x2(x3−x2)y3−y2=a(x32−x22)+(y1−y2)(x3−x2)−x

2−ax2(x3−x2)y3−y2=a((x32−x22)−x2(x3−x2))−(y1−y2)(x3−x2)x2 (8)

Isolating the variable a from (8):

a=y3−y2((x23−x22)−x2(x3−x2))+(y1−y2)(x3−x2)x2((x23−x22)−x2(x3−x2))(9)

a=y3−y2((x32−x22)−x2(x3−x2))+(y1−y2)(x3−x2)x2((x32−x22)−x2(x3−x2))

https://f1000research.com/articles/9-570#e1
https://f1000research.com/articles/9-570#e2
https://f1000research.com/articles/9-570#e3
https://f1000research.com/articles/9-570#e1
https://f1000research.com/articles/9-570#e2
https://f1000research.com/articles/9-570#e4
https://f1000research.com/articles/9-570#e5
https://f1000research.com/articles/9-570#e2
https://f1000research.com/articles/9-570#e3
https://f1000research.com/articles/9-570#e7
https://f1000research.com/articles/9-570#e8

 (9)

Finally, isolating the variable c from (4):

c=y1(10)c=y1 (10)

Therefore, based on the a, b, and c used in quadratic calculations, the estimated

cases and deaths are calculated. In addition, calculated quadratic calculations will

be adjusted when new information is reported by WHO. In addition, the COVID-

19 Dashboard provides a 90-day guess; however, in some countries, the quadratic

equation can rise to a higher level; in these cases, the algorithms will stop

counting and thus the estimated days will be less than 90 days.

Therefore, the COVID-19 Dashboard allows for the analysis of confirmed cases,

death rates, and death rates as well as speculative cases and the submission of

death information: a) geographical charts to understand the spread of the disease

in the country, b) bar charts , c) columns of charts to indicate the occurrence of

the disease over time, and d) line charts to measure disease behavior.

4.2 Files are available

• Combined sheets provide integrated data at regional / regional level in csv

format.

• V4 json end points. These are json apis used by the website to display all the

statistics on the site. This can be used by engineers and analysts with knowledge

of json separation (recommended method). All of our v4 conclusions have been

improved and usable as this gives the impression of frontend Documents the

same.

• The latest data from google sheet (10-20 minutes delay) is available in the latest

archive. These are located under the green files section below. (Not recommended

as the number of files is large and no additional information is available on these

compared to the conclusions mentioned above.)

Statu

s
Link to API

Descriptio

n

https://data.covid19india.org/v4/min/timeseries.min

.json

Daily

numbers

across

C,R,D and

Tested per

state

(historical

https://f1000research.com/articles/9-570#e4
https://data.covid19india.org/v4/min/timeseries.min.json
https://data.covid19india.org/v4/min/timeseries.min.json

Statu

s
Link to API

Descriptio

n

data).

https://data.covid19india.org/v4/min/data.min.json

Current

day

numbers

across

districts

and states.

vaccine_doses_administe

red_statewise

http://data.covid19india.org/csv/latest/vaccine_

doses_statewise_v2.csv

https://data.covid19india.org/v4/min/data.min.json
http://data.covid19india.org/csv/latest/vaccine_doses_statewise_v2.csv
http://data.covid19india.org/csv/latest/vaccine_doses_statewise_v2.csv

 CHAPTER 5

 OBJECTIVE AND METHODOLOGY

5.1 PROCESS

A android-based system is proposed for this business management page such as

Automobile Service Center or Beauty Parlor / Saloons etc. to control the spread

of social gatherings. The proposed system has features such as a single

application for service providers and customers. Verification of real customers

and service providers will be done through OTP and store-based photographs

respectively. The owner can keep track of the details of his employees by

registering and can track regular customers. It helps to book easily and cancel

appointments. The customer can view non-working days with the event calendar

and the services provided and their cost, time required etc. The system also offers

the option to handle customer payments, invoice production, analytics reports

help maintain the website and give the customer a reminder of appointments. So

the system will do the right planning and reduce the effort and time of both the

client and the owner.

India's vaccination campaign is about to fall as it battles the second wave of the

COVID-19 epidemic. Although the government has finally agreed to increase the

production capacity of the vaccine in the country. The Atmanirbhar Bharat 3.0

Mission has taken a significant step forward to promote COVID's indigenous

policies by prohibiting COVID Suraksha from supporting the development and

production of COVID's indigenous policies; three public sector functions (PSUs)

have been established to increase policy capacity. As of 23 April 2021

approximately 13,41,80,854 of which 11,44,66,357 Volume 1 and 1,97,14,497

volume 2 vaccines have been given to the public. There are 68,395 vaccination

centers out of which 61,836 are state and 6,559 are independent. There were

11,90,92,552 registrars and 1,38,82,605 were online, 8,10,50,255 logged in and

2,41,59,692 were FLW and HCW (senior staff and health workers). a total of

12,18,49,147 vaccine doses were given to Covishield and 1,23,31,706 were

Covaxin. Following the same trends (1.38 crore doses per week) will take about

100 weeks to vaccinate nationwide in India, meaning that everyone in India will

receive at least one dose of the vaccine by December 15th 2022. According to

Johns Hopkins University of Medicine Coronavirus Resource Center, only about

1% of Indians in India are completely vaccinated. The COVID-19 vaccine is

made in India by two companies. The Serum Institute of India in Pune is

partnering with AstraZeneca in Covishield, and Bharat Biotech in Hyderabad has

obtained a production license from the Indian Medical Research Council (ICMR)

to produce Covaxin. According to Down To Earth, India is strong enough, with

a panel of seven PSUs capable of producing goals. However, three production

licenses from these PSUs - Central Research Center, Kasauli; BCG Policy

Laboratory, Guindy; and the Pasteur Institute of India, Conoor - were withdrawn

in 2008 because they did not comply with the good production procedures set out

in the regulations (DownToEarth, 2021). Bharat Biotech also received funding

from the Union government to develop its facilities. By May-June 2021, both

measures are expected to double the current Covaxin production capacity, and by

July-August 2021, it will have increased almost six to seven times. Vaccine

production is expected to increase from one dose of crore per month in April 2021

to approximately seven doses of crore in July-August 2021, and approximately

ten doses by September 2021.

Table 1. COVID-19 Specific Characteristics of Application, N=14, N (%)

Symptom management 4 (28%)

Symptom assessment 8 (57%)

Resource information in app

Testing centres 6 (42%)

Preventative measures 5 (35%)

Regional/federal guidelines 2 (14%) Those at higher risk 2 (14%)

Physical distancing 3 (21%)

Source of information supporting app

Not specified 2 (14%)

Research evidence 0 (0%)

Professional experience 2 (14%)

Personal experiences or stories 0 (0%)

National guidelines 2 (14%)

Coronavirus tracking feature 4 (28%)

Live chat room 3 (21%)

Training resources for clinicians 2 (14%)

Frequently Asked Questions (FAQ) forum 5 (35%)

5.2 SUGGESTIONS

On the other hand, as the world struggles with the COVID-19 virus, its

proliferation and flexibility lead to new challenges for governments and research

communities. In this regard, the number of patients worldwide is growing by the

second wave of the COVID-19 outbreak and many countries are re-using closures

and curfews to prevent infection. In addition, non-compliance with the rules of

social isolation, security and privacy concerns, high level of anonymous cases,

etc., suggests that COVID19 mobile applications should be integrated with new

features, not limited to COVID-19 management, but also in providing

information on health services such as diagnosis, consultation, treatment,

procedures, procedures, and more. These apps can be very effective in raising

awareness about prevention strategies such as social isolation, hand washing, and

keeping information related to health issues and tracking contacts.

It is worth mentioning that most of the studies focused on the goals and

approaches to improving mobile applications, quality, and technological

advances were made in the early days of the COVID-19 epidemic. With the rapid

development in the context of the epidemic, with new signs and cases, as well as

new technologies emerging, there is a need for regular global updates of mobile

applications. Although there are studies that focus on feature analysis and

performance, their analysis is limited to common features of applications such as

ease of use and ease of use, but did not include performance with specific features

of COVID-19. Generally, studies have only examined mobile applications used

to detect COVID-19 outbreaks infrequently.

COVID-19 brings new challenges, making it essential to review and evaluate

these mobile applications so that these gaps can be closed. In this regard, the

findings of this paper may have a positive impact on medical professionals,

software developers, social organizations, science centres, and technology

organizations. App developers can benefit from a comprehensive review of

COVID-19 mobile applications, as they will be able to identify some of the

barriers and utilize various functions and technologies to improve future

applications. Clinicians can also review a variety of applications, and propose

more efficient patient programs that can aid patients in improving their health

management and adopting COVID-19 reduction strategies thanks to increased

awareness of mobile appliances. With reference to a functional application, health

care services such as diagnostics, consultation can be managed online, which not

only saves time and money, but also helps prevent the spread of COVID-19 by

reducing mobility.

 CHAPTER 6

 CONCLUSION AND FUTURE WORK

SWOT analysis allows us to understand more about this app since we can assess

its strengths, weaknesses, opportunities, and threats. We believe that

experimentation and creating such an app during a time like this is our greatest

asset. The lack of awareness among people, especially in rural areas, and the

inability to find solutions for this problem is certainly a drawback.

There is a chance to collaborate amongst newer minds to develop an app that will

facilitate the management of vaccine programs; this may provide an opportunity

to many new minds, as well as inspire people to head in a better direction. We

took the first step toward a better future when we developed Covid 19 Status and

Slot Finder.

This study reviewed the best applications used during the outbreak of COVID-19

to provide health care services, contain the spread of the new coronavirus, and

facilitate human migration during the return home to Saudi. Arabia, India, Italy,

Singapore, United Kingdom, United States of America, and Australia. Analysis

pointed out that different programs are designed various activities such as contact

tracking, awareness, booking an appointment, online consultation, etc. However,

only a few applications such as Arogya Setu as well Path Check has integrated a

variety of functions and features

such as self-assessment, consultation, support and access information in a single

app, which makes it easy for users access to services. Also, most apps are focused

on it tracking a contact, while very few are dedicated to growth to raise awareness

and share information about COVID-19, important to combat the spread of

COVID-19.

Similarly, most apps rely on GPS as well Bluetooth technology for tracking a

contact and other essentials job. There are no identified applications with the

built-in community media features. In addition, one of the biggest challenges

identified lack of integrated application with many features and functionality

analysed in this read. In this sense, users rely on different programs medical care,

mobility, diagnosis, follow-up, and awareness, etc. Therefore, an effective

solution to solve this problem could be designing and improving integrated cell

life application, which allows access to all of these functions. Using a single

system can reduce costs and improve health data management, and decision-

making

CHAPTER 7

 SAMPLE CODE AND OUTPUT

APPENDIX 1: MAIN MODULE CODE

First Page XML:-

<manifest

xmlns:android="http

://schemas.android.c

om/apk/res/android"
 package="com.example.covid19_stats">
 <application
 android:label="Covid-19 Stats"
 android:icon="@mipmap/ic_launcher">
 <activity
 android:name=".MainActivity"
 android:launchMode="singleTop"
 android:theme="@style/LaunchTheme"

android:configChanges="orientation|keyboardHidden

|keyboard|screenSize|smallestScreenSize|locale|layout

Direction|fontScale|screenLayout|density|uiMode"
 android:hardwareAccelerated="true"

android:windowSoftInputMode="adjustResize">
 <!-- Specifies an Android theme to apply to

this Activity as soon as
 the Android process has started. This

theme is visible to the user
 while the Flutter UI initializes. After that,

this theme continues
 to determine the Window background

behind the Flutter UI. -->
 <meta-data

android:name="io.flutter.embedding.android.Normal

Theme"
 android:resource="@style/NormalTheme"
 />
 <!-- Displays an Android View that continues

showing the launch screen
 Drawable until Flutter paints its first

frame, then this splash
 screen fades out. A splash screen is useful

to avoid any visual
 gap between the end of Android's launch

screen and the painting of
 Flutter's first frame. -->
 <meta-data

android:name="io.flutter.embedding.android.SplashS

creenDrawable"

android:resource="@drawable/launch_background"
 />
 <intent-filter>
 <action

android:name="android.intent.action.MAIN"/>
 <category

android:name="android.intent.category.LAUNCHER

"/>
 </intent-filter>
 </activity>
 <!-- Don't delete the meta-data below.
 This is used by the Flutter tool to generate

GeneratedPluginRegistrant.java -->
 <meta-data
 android:name="flutterEmbedding"
 android:value="2" />
 </application>
</manifest>

Second Page:-

<manifest

xmlns:android="http

://schemas.android.c

om/apk/res/android"

 package="com.example.covid19_stats">
 <application
 android:label="Covid-19 Stats"

 android:icon="@mipmap/ic_launcher">
 <activity
 android:name=".MainActivity"
 android:launchMode="singleTop"
 android:theme="@style/LaunchTheme"

android:configChanges="orientation|keyboardHidden

|keyboard|screenSize|smallestScreenSize|locale|layou

tDirection|fontScale|screenLayout|density|uiMode"
 android:hardwareAccelerated="true"

android:windowSoftInputMode="adjustResize">
 <!-- Specifies an Android theme to apply to

this Activity as soon as
 the Android process has started. This

theme is visible to the user
 while the Flutter UI initializes. After that,

this theme continues
 to determine the Window background

behind the Flutter UI. -->
 <meta-data

android:name="io.flutter.embedding.android.Normal

Theme"
 android:resource="@style/NormalTheme"
 />
 <!-- Displays an Android View that continues

showing the launch screen
 Drawable until Flutter paints its first

frame, then this splash
 screen fades out. A splash screen is useful

to avoid any visual
 gap between the end of Android's launch

screen and the painting of
 Flutter's first frame. -->
 <meta-data

android:name="io.flutter.embedding.android.SplashS

creenDrawable"

android:resource="@drawable/launch_background"

 />
 <intent-filter>
 <action

android:name="android.intent.action.MAIN"/>
 <category

android:name="android.intent.category.LAUNCHER

"/>
 </intent-filter>
 </activity>
 <!-- Don't delete the meta-data below.
 This is used by the Flutter tool to generate

GeneratedPluginRegistrant.java -->
 <meta-data
 android:name="flutterEmbedding"
 android:value="2" />
 </application>
 </manifest>

Main Code:-

import

'package:flutter/material.da

rt';
import

'package:firebase_core/firebase_core.dart';
import

'package:covid19_stats/homepage/homePage.d

art';

void main() async {
 WidgetsFlutterBinding.ensureInitialized();
 await Firebase.initializeApp();
 runApp(MyApp());
}

class MyApp extends StatefulWidget {
 const MyApp({Key? key}) : super(key: key);

 @override
 _MyAppState createState() =>

_MyAppState();
}

class _MyAppState extends State<MyApp> {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: "COVID-19 Statistics",
 home: HomePage(),
);
 }
}

Homepage :-

import

'package:covid19_stats/cases/cas

ePage.dart';
import

'package:covid19_stats/overview/overvie

wPage.dart';
import

'package:covid19_stats/vaccination/vacin

ationPage.dart';
import 'package:flutter/material.dart';
import

'package:bottom_navy_bar/bottom_navy_

bar.dart';
import

'package:fluttericon/font_awesome5_icon

s.dart';

class HomePage extends StatefulWidget

{
 const HomePage({Key? key}) :

super(key: key);

 @override
 _HomePageState createState() =>

_HomePageState();
}

class _HomePageState extends

State<HomePage> {
 int _currentIndex = 0;
 final List<Widget> _screens =

[OverviewPage(), CasePage(),

VaccinationPage()];

 void onItemTapped(int val) {
 setState(() {
 _currentIndex = val;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.only(
 bottomLeft:

Radius.circular(20),
 bottomRight:

Radius.circular(20))),
 title: Center(child: Text("COVID-19

Statistics")),
 backgroundColor: Colors.blue[900],
),
 body: _screens[_currentIndex],
 bottomNavigationBar: new

BottomNavyBar(
 // backgroundColor: Colors.grey,
 items: [
 BottomNavyBarItem(
 icon:

Icon(FontAwesome5.viruses),
 title: Text(
 " Overview",
),
 activeColor: Colors.redAccent),
 BottomNavyBarItem(
 icon:

Icon(FontAwesome5.chart_line),
 title: Text(" Cases"),
 activeColor: Colors.blueAccent),

 BottomNavyBarItem(
 icon:

Icon(FontAwesome5.syringe),
 title: Text(
 " Vaccine",
),
 activeColor: Colors.lightBlue)
],
 selectedIndex: _currentIndex,
 onItemSelected: onItemTapped,
),
);
 }
}

Cases Page:-

import

'package:covid19_stats/cases/di

strictPage.dart';
import 'package:flutter/material.dart';
import

'package:cloud_firestore/cloud_firestore.d

art';

class CasePage extends StatefulWidget {
 const CasePage({Key? key}) :

super(key: key);

 static final FirebaseFirestore _firebase =

FirebaseFirestore.instance;

 @override
 _CasePageState createState() =>

_CasePageState();
}

class _CasePageState extends

State<CasePage> {
 Map<String, String> stateCode = {
 "AN": "Andaman and Nicobar Islands",

 "AP": "Andhra Pradesh",
 "AR": "Arunachal Pradesh",
 "AS": "Assam",
 "BR": "Bihar",
 "CH": "Chandigarh",
 "CT": "Chhattisgarh",
 "DN": "Dadra and Nagar Haveli",
 "DL": "Delhi",
 "GA": "Goa",
 "GJ": "Gujarat",
 "HR": "Haryana",
 "HP": "Himachal Pradesh",
 "JK": "Jammu and Kashmir",
 "JH": "Jharkhand",
 "KA": "Karnataka",
 "KL": "Kerala",
 "LA": "Ladakh",
 "LD": "Lakshadweep",
 "MP": "Madhya Pradesh",
 "MH": "Maharashtra",
 "MN": "Manipur",
 "ML": "Meghalaya",
 "MZ": "Mizoram",
 "NL": "Nagaland",
 "OR": "Odisha",
 "PY": "Puducherry",
 "PB": "Punjab",
 "RJ": "Rajasthan",
 "SK": "Sikkim",
 "TN": "Tamil Nadu",
 "TG": "Telangana",
 "TR": "Tripura",
 "UP": "Uttar Pradesh",
 "UT": "Uttarakhand",
 "WB": "West Bengal",
 };
 @override
 Widget build(BuildContext context) {
 return Center(
 child: new

StreamBuilder<QuerySnapshot<Map<Stri

ng, dynamic>>>(
 stream:

CasePage._firebase.collection("stateDaily

Delta").snapshots(),
 builder: (context,

AsyncSnapshot<QuerySnapshot<Map<St

ring, dynamic>>> snapshot) {
 if (!snapshot.hasData) {
 return Center(child:

CircularProgressIndicator());
 }
 return ListView(
 children:

snapshot.data!.docs.map((document) {
 var stateName =

stateCode[document.id];
 return Padding(
 padding: const

EdgeInsets.all(4.0),
 child: Container(
 child: InkWell(
 child: new Card(
 child: ExpansionTile(
 // backgroundColor:

Colors.blue[100],

collapsedBackgroundColor:

Colors.grey[100],
 title: Text(
 stateName.toString(),
 style: TextStyle(
 fontSize: 18.0,

fontWeight: FontWeight.bold),
),
 // subtitle: ,
 children: <Widget>[
 Text(
 "Cases Reported

Today",
 style: TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.black87),
),
 Row(
 mainAxisAlignment:

MainAxisAlignment.spaceAround,
 children: [
 Column(
 children: [
 Padding(
 padding: const

EdgeInsets.all(4.0),
 child: Text(
 "Confirmed",
 style: TextStyle(
 fontSize: 16,
 fontWeight:

FontWeight.bold,
 color:

Colors.grey),
),
),
 Padding(
 padding:
 const

EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Text(

(document.data()['confirmed'] ?? 0)
 .toString(),
 style: TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.black87),
),
),
],
),
 Column(
 children: [
 Padding(
 padding: const

EdgeInsets.all(4.0),
 child: Text(

"Death/Recovered",
 style: TextStyle(
 fontSize: 16,
 fontWeight:

FontWeight.bold,
 color:

Colors.grey),
),
),
 Padding(
 padding:
 const

EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Row(
 children: [
 Text(

(document.data()['deceased'] ?? 0)
 .toString(),
 style:

TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.red),
),
 Text(
 " / ",
 style:

TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.black),
),
 Text(

(document.data()['recovered'] ?? 0)

 .toString(),
 style:

TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.green),
),
],
),
),
],
),
 Column(
 children: [
 Padding(
 padding: const

EdgeInsets.all(4.0),
 child: Text(
 "Tested",
 style: TextStyle(
 fontSize: 16,
 fontWeight:

FontWeight.bold,
 color:

Colors.grey),
),
),
 Padding(
 padding:
 const

EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Text(

(document.data()['tested'] ?? 0)
 .toString(),
 style: TextStyle(
 fontSize: 18,
 fontWeight:

FontWeight.bold,
 color:

Colors.deepPurple),

),
),
],
),
],
),
],
),
),
 onTap: () {
 DistrictPage.sCode =

document.id.toString();

Navigator.of(context).push(MaterialPage

Route(
 builder: (_) => new

DistrictPage()));
 },
),
),
);
 }).toList(),
);
 },
),
);
 }

Overview :-

import

'dart:m

ath';
import 'package:intl/intl.dart';
import 'package:flutter/material.dart';
import 'package:cloud_firestore/cloud_firestore.dart';
import 'package:draw_graph/draw_graph.dart';
import 'package:draw_graph/models/feature.dart';
import 'package:lottie/lottie.dart';

class OverviewPage extends StatefulWidget {

 const OverviewPage({Key? key}) : super(key: key);

 static final FirebaseFirestore _firebase =

FirebaseFirestore.instance;
 @override
 _OverviewPageState createState() => _OverviewPageState();
}

class _OverviewPageState extends State<OverviewPage> {
 int maxNum(confirmed, recovered) {
 int max1 = 0;
 int max2 = 0;
 int maximum = 0;
 for (int i = 0; i < confirmed.length; i++) {
 if (int.parse(confirmed[i].toString()) > max1) {
 max1 = int.parse(confirmed[i].toString());
 }
 if (int.parse(recovered[i].toString()) > max2) {
 max2 = int.parse(recovered[i].toString());
 }
 }
 maximum = max(max1, max2);
 print(maximum);
 return maximum;
 }

 List<double> parseSeries(List<dynamic> data, total) {
 // int value = int.parse(total.toString());
 List<int> parsedData = [];
 for (int i = 0; i < data.length; i++) {
 parsedData.add(data[i]);
 }
 List<double> series = [];
 for (int i = 309; i < parsedData.length; i++) {
 series.add(parsedData[i] / int.parse(total.toString()));
 }
 // print(parsedData[2]);
 return series;
 }

 List<String> getSpaces(List<dynamic> data) {
 int i;
 List<String> space = [];

 for (i = 309; i < data.length; i++) {
 space.add('');
 }
 space[0] = "1 Jan 21";
 space[i - 310] = "Today";
 return space;
 }

 var time = '';
 @override
 void initState() {
 getTime();
 super.initState();
 }

 getTime() async {
 DocumentSnapshot variable = await OverviewPage._firebase
 .collection('countryDailyDelta')
 .doc('lastUpdated')
 .get();
 time =
 "Last Updated: ${DateFormat('dd/MM/yy hh:mm

a').format(DateTime.fromMicrosecondsSinceEpoch(variable['time'

].microsecondsSinceEpoch))}";
 }

 @override
 Widget build(BuildContext context) {
 return SingleChildScrollView(
 scrollDirection: Axis.vertical,
 child: Container(
 child: Column(
 children: [
 Container(
 height: 200,
 child: Lottie.asset("assets/26428-covid-19-protect.json"),
),
 Container(
 child: Center(
 child: new StreamBuilder<DocumentSnapshot>(
 stream: OverviewPage._firebase
 .collection('countryDailyDelta')
 .doc('TT')

 .snapshots(),
 builder:
 (context, AsyncSnapshot<DocumentSnapshot>

snapshot) {
 if (!snapshot.hasData) {
 return Center(child: CircularProgressIndicator());
 }
 var info2 = snapshot.data!;
 return Padding(
 padding: const EdgeInsets.all(4.0),
 child: Card(
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(20)),
 color: Colors.red[50],
 elevation: 5,
 child: Column(
 children: [
 Padding(
 padding:
 const EdgeInsets.fromLTRB(0, 8, 0, 0),
 child: Text(time.toString()),
),
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Cases Reported in India Today",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding:
 const EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Text(
 info2['confirmed'].toString(),
 style: TextStyle(
 fontSize: 40,
 fontWeight: FontWeight.bold,
 color: Colors.grey[800]),
),
),

 Row(
 mainAxisAlignment:
 MainAxisAlignment.spaceAround,
 children: [
 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Recovered",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(
 0, 0, 0, 4),
 child: Text(
 info2['recovered'].toString(),
 style: TextStyle(
 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.green),
),
),
],
),
 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Deceased",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(

 0, 0, 0, 4),
 child: Text(
 info2['deceased'].toString(),
 style: TextStyle(
 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.red),
),
),
],
),
],
),
 Center(
 child: new

StreamBuilder<DocumentSnapshot>(
 stream: OverviewPage._firebase
 .collection('countryTimeSeries')
 .doc('TT')
 .snapshots(),
 builder: (context,
 AsyncSnapshot<DocumentSnapshot>
 snapshot) {
 if (!snapshot.hasData) {
 return Center(
 child: CircularProgressIndicator());
 }
 var infoSeries1 = snapshot.data!;
 var maximum = maxNum(
 infoSeries1['deltaConfirmed'],
 infoSeries1['deltaRecovered']);
 final List<Feature> features = [
 Feature(
 title: "Recovered",
 color: Colors.green,
 data: parseSeries(
 infoSeries1['deltaRecovered'],
 maximum,
)),
 Feature(
 title: "Death",
 color: Colors.red,
 data: parseSeries(

 infoSeries1['deltaDeceased'],
 maximum),
),
 Feature(
 title: "Total Cases",
 color: Colors.grey,
 data: parseSeries(
 infoSeries1['deltaConfirmed'],
 maximum),
),
];
 return Container(
 child: Padding(
 padding: const EdgeInsets.all(4.0),
 child: LineGraph(
 features: features,
 size: Size(
 MediaQuery.of(context)
 .size
 .width,
 220),
 labelX:
 getSpaces(infoSeries1['dates']),
 labelY: [],
 graphOpacity: 0.1,
 showDescription: true,
 graphColor: Colors.black87,
),
),
);
 },
),
),
],
),
),
);
 })),
),
 Container(
 height: 200,
 child: Lottie.asset("assets/41479-covid19-test.json"),
),

 Container(
 child: Center(
 child: new StreamBuilder<DocumentSnapshot>(
 stream: OverviewPage._firebase
 .collection('countryWiseRecord')
 .doc('TT')
 .snapshots(),
 builder: (context, AsyncSnapshot<DocumentSnapshot>

snapshot) {
 if (!snapshot.hasData) {
 return Center(child: CircularProgressIndicator());
 }
 var info = snapshot.data!;
 return Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(4.0),
 child: Card(
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(20)),
 color: Colors.yellow[50],
 elevation: 5,
 child: Container(
 width: MediaQuery.of(context).size.width,
 child: Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Total Cases Reported in India",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding:
 const EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Text(
 info['confirmed'].toString(),
 style: TextStyle(
 fontSize: 40,

 fontWeight: FontWeight.bold,
 color: Colors.grey[800]),
),
),
 Row(
 mainAxisAlignment:
 MainAxisAlignment.spaceAround,
 children: [
 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Recovered",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(
 0, 0, 0, 4),
 child: Text(
 info['recovered'].toString(),
 style: TextStyle(
 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.green),
),
),
],
),
 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Deceased",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),

),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(
 0, 0, 0, 4),
 child: Text(
 info['deceased'].toString(),
 style: TextStyle(
 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.red),
),
),
],
),
],
),
 Center(
 child: new

StreamBuilder<DocumentSnapshot>(
 stream: OverviewPage._firebase
 .collection('countryTimeSeries')
 .doc('TT')
 .snapshots(),
 builder: (context,
 AsyncSnapshot<DocumentSnapshot>
 snapshot) {
 if (!snapshot.hasData) {
 return Center(
 child:
 CircularProgressIndicator());
 }
 var infoSeries = snapshot.data!;

 final List<Feature> features = [
 Feature(
 title: "Recovered",
 color: Colors.green,
 data: parseSeries(
 infoSeries['recovered'],
 info['confirmed']),
),
 Feature(

 title: "Deceased",
 color: Colors.red,
 data: parseSeries(
 infoSeries['deceased'],
 info['confirmed']),
),
 Feature(
 title: "Total Cases",
 color: Colors.grey,
 data: parseSeries(
 infoSeries['confirmed'],
 info['confirmed']),
),
];
 return Container(
 child: Padding(
 padding: const EdgeInsets.all(4.0),
 child: LineGraph(
 features: features,
 size: Size(
 MediaQuery.of(context)
 .size
 .width,
 220),
 labelX: getSpaces(
 infoSeries['dates']),
 labelY: [],
 graphOpacity: 0.1,
 showDescription: true,
 graphColor: Colors.black87,
),
),
);
 },
),
),
 Row(
 mainAxisAlignment:
 MainAxisAlignment.spaceAround,
 children: [],
)
],
),

),
),
),
 Container(
 height: 200,
 child: Lottie.asset("assets/39099-sanitizer.json"),
),
 Padding(
 padding: const EdgeInsets.all(4.0),
 child: Card(
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(20)),
 color: Colors.blue[50],
 elevation: 5,
 child: Container(
 width: MediaQuery.of(context).size.width,
 child: Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Total Tested",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding:
 const EdgeInsets.fromLTRB(0, 0, 0, 4),
 child: Text(
 info['tested'].toString(),
 style: TextStyle(
 fontSize: 40,
 fontWeight: FontWeight.bold,
 color: Colors.deepPurple),
),
),
 Row(
 mainAxisAlignment:
 MainAxisAlignment.spaceAround,
 children: [

 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Vaccine Dose 1",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(
 0, 0, 0, 4),
 child: Text(
 info['vaccinated1'].toString(),
 style: TextStyle(
 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.blue),
),
),
],
),
 Column(
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text(
 "Vaccine Dose 2",
 style: TextStyle(
 fontSize: 20,
 fontWeight: FontWeight.bold,
 color: Colors.grey),
),
),
 Padding(
 padding: const EdgeInsets.fromLTRB(
 0, 0, 0, 4),
 child: Text(
 info['vaccinated2'].toString(),
 style: TextStyle(

 fontSize: 30,
 fontWeight: FontWeight.bold,
 color: Colors.blue[900]),
),
),
],
),
],
),
 Center(
 child: new

StreamBuilder<DocumentSnapshot>(
 stream: OverviewPage._firebase
 .collection('countryTimeSeries')
 .doc('TT')
 .snapshots(),
 builder: (context,
 AsyncSnapshot<DocumentSnapshot>
 snapshot) {
 if (!snapshot.hasData) {
 return Center(
 child:
 CircularProgressIndicator());
 }
 var infoSeries1 = snapshot.data!;

 final List<Feature> features = [
 // Feature(
 // title: "Total Tested",
 // color: Colors.purple,
 // data: parseSeries(
 // infoSeries['tested'],
 // info['']),
 //),
 Feature(
 title: "Vaccine Dose 1",
 color: Colors.blue,
 data: parseSeries(
 infoSeries1['vaccinated1'],
 info['vaccinated1']),
),
 Feature(
 title: "Vaccine Dose 2",

 color: Colors.deepPurple,
 data: parseSeries(
 infoSeries1['vaccinated2'],
 info['vaccinated1']),
),
];
 // print(infoSeries1['vaccinated1']);
 return Container(
 child: Padding(
 padding: const EdgeInsets.all(4.0),
 child: LineGraph(
 features: features,
 size: Size(
 MediaQuery.of(context)
 .size
 .width,
 220),
 labelX: getSpaces(
 infoSeries1['dates']),
 labelY: [],
 graphOpacity: 0.1,
 showDescription: true,
 graphColor: Colors.black87,
),
),
);
 },
),
),
],
),
),
),
),
],
);
 },
),
),
),
],
),
),

);
 }
}

REFERENCES

[1] D. Pao, X. Wang, X. Wang, C. Cao, Y. Zhu, “String Searching Engine

for Virus Scanning”, Computer, IEEE Transactions on Computers, pp.1

-1, 2010

[2] Symantec Corporation, Understanding Heuristics: Symantec’s

Bloodhoud Technology, Symantec White Paper Series, 1997.

[3] A. E. Stepan, “Defeating Polymorphicsm: Beyond Emulation”, Virus

Bulletin Conference October 2005, pp. 40-48, Oct 2005

[4] Wing Wong, Mark Stamp, Hunting for Metamorphic Engines, SpringerVerlag France,

2006

[5] Burak Bayoglu, Ibrahim Sogukpinar, Polymorphic Worm Detection

Using Token-Pair Signature, Proceedings of the 4th International

Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous

Computing, p.p. 7-12

[6] Jean-Marie Borello, Ludovic Mé, Code Obfuscation Techniques for

Metamorphic Viruses, Springer-Verlag France, 2008

[7] Magnus O.Myreen. Verified Just-In-Time Compiler on x86. Principles

of Programming Languages (POPL), 2010

[8] Tom Brosch and Maik Morgenstern. Runtime Packers: The Hidden

Problem. Proc. BlackHat USA, Black Hat,

www.blackhat.com/presentations/bh-usa-06 BH-US-o6-

Morgenstern.pdf; 2006. [accessed 02.04.11].

[9] Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor

for packed executable. In: Proceedings of the 5th ACM Workshop on

Recurring Malcode (MORM) (2007)

[10] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, Wenke Lee,

PolyUnpack: Automating the Hidden-Code Extraction of UnpackExecuting Malware

[11] S. TreadWell and M. Zhou, “A Heuristic Approach for Detection of

Obfuscated Malware”, Intelligence and Security Informatics, 2009. ISI’

09, pp. 291-299, June 2009

[12] A. H. Sung, J. Xu, P. Chavez, S. Mukkamala, “Static Analyzer of

Vicious Executables (SAVE),” Proceeding ACSAC ’04 Proceedings of

the 20th Annual Computer Security Applications Conference, pp. 326-

334, 2004

[13] M. Schultz, E. Eskin, and E. Zadok. Data mining methods for detection

of new malicious executables. In Proceedings of IEEE International

Conference on Data Mining, pp. 38-49, May 2001.

[14] James M. Aquilina, Eoghan Casey, Cameron H. Malin, Malware

Forensics: Investigating and Analyzing Malicious Code, Cahpter 7, p.p

340

[15] Matt Pietrek, An In-Depth Look Into the Win32 Portable Executable

File Format, MSDN Magazine, February 2002

[16] Microsoft MSDN,

http://msdn.microsoft.com/enus/library/windows/desktop/ms683156(v=vs.85).aspx

[17] Windows, Dev Center – Desktop,

http://msdn.microsoft.com/enus/library/windows/desktop/aa364934(v=vs.85).aspx

[18] Windows, Dev Center – Desktop,

http://msdn.microsoft.com/enus/library/windows/desktop/aa364418(v=vs.85).aspx

[19] Windows, Dev Center – Desktop,

http://msdn.microsoft.com/enus/library/windows/desktop/aa364428(v=vs.85).aspx

[20] Hennessy, John A.; Goldberg, David (1996). Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers. ISBN 1-55860-

329-8

[21] B. Schwarz, S. Debray, and G. Andrews, "Disassembly of Executable

Code Revisited", Proc. of 9th Working Conference on Reverse

Engineering (WCRE), pp. 45–54, 2002.

[22] Reverend Bill Blunden, The Rootkit Arsenal: Escape and Evasion in the

Dark Corners of the System, p.p 54-56, Chapter 2

