» GALGOTIAS
® UNIVERSITY

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

A Project Report

on

Web Scraping using python

Submitted in partial fulfilment of the

requirement for the award of the degree of

Bachelors of Technology in Computer Science and

Engineering

Under The Supervision
of MR. Arjun KP

Assistant Professor
Department of Computer Science and Engineering

Submitted by
18SCSE1010197 - Devanshu

18SCSE1010050 — Abhishek Mishra

SCHOOL OF COMPUTING SCIENCE
AND ENGINEERING,
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,
entitled “ Web Scraping using python ” in partial fulfilment of the requirements for the
award of the Bachelors of Technology in Computer Science and Engineering submitted in
the School of Computing Science and Engineering of Galgotias University, Greater Noida, is
an original work carried out during the period of July-2021 to December-2021, under the
supervision of Mr. Arjun KP , Assistant Professor , Department of Computer Science
and Engineering of School of Computing Science and Engineering , Galgotias University,
Greater Noida
The matter presented in the thesis/project/dissertation has not been submitted by me/us for

the award of any other degree of this or any other places.

18SCSE1010197 -Devanshu

18SCSE1010050-AbhishekMishra

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

(Mr. Arjun KP, Assistant Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1010197 - Devanshu,

18SCSE1010050 — Abhishek Mishra has been held on and

his/her work is recommended for the award of Bachelors of Technology in Computer Science

and Engineering-

Signature of Examiner(s) Signature of Supervisor(s)
Signature of Project Coordinator Signature of Dean
Date:

Place:

ACKNOWLEDGEMENT

The feeling of gratitude when we expressed a holy acknowledgement and it’s with deep sense of

gratitude that we acknowledge the able guidance.

We express our grateful thanks to Mr. Arjun K P, Associate professor, Department of Computer
Science and Engineering, Galgotias University for providing us an opportunity for the research
report on “ Web Scraping using python * and for his

keen interest and the encouragement, which was required for the fulfilment of our capstone
project report. We would also like to thank him for giving us valuable guidance at all levels, help

and suggestions, which prove to be valuable for preparation of the report.

Finally, 1 would also like to thank all our friends for their cooperation and interest, which was

necessary for completing our project report.

Date:
Devanshu & Abhishek Mishra
School of Computing Science &
Engineering, Galgotias University, Greater

Noida, Uttar Pradesh

ABSTRACT

The purpose of this thesis is to evaluate state of the art web scraping tools.

To support the process, an evaluation framework to compare web scraping

tools is developed and utilised, based on previous work and established
software comparison metrics. Twelve tools from different programming

languages are initially considered. These twelve tools are then reduced to six,
based on factors such as similarity and popularity. Nightmare.js, Puppeteer,
Selenium,Scrapy, HtmlUnit and rvest are kept and then evaluated. The
evaluation framework includes performance, features, reliability and ease
of use. Performance is measured in terms of run time, CPU usage and
memory usage. The feature evaluation is based on implementing and
completing tasks, with each feature in mind. In order to reason about
reliability, statistics regarding code quality and GitHub repository statistics
are used. The ease of use evaluation considers the installation process, official
tutorials and the documentation.

While all tools are useful and viable, results showed that Puppeteer is the

most complete tool. It had the best ease of use and feature results, while
staying among the top in terms of performance and reliability. If speed is

of the essence, HtmlUnit is the fastest. It does however use the most overall
resources. Selenium with Java is the slowest and uses the most amount of memory,
but is the second best performer in terms of features. Selenium with Python uses
the least amount of memory and the second least CPU power. If JavaScript pages
are to be accessed, Nightmare.js, Puppeteer, Selenium and HtmlUnit can be used.

Table of Contents

Title Page No.
Candidates Declaration I
Certificate T
Acknowledgement i
Abstract IV
Table of Contents V
List of Table VII
List of Figures VI
Acronyms IX

Chapter 1: Getting Started with Scraping

Introduction

Setting up a Python development environment
Getting ready

How to do it...

Scraping Python.org with Requests and Beautiful Soup
Getting ready...

How to do it...
How it works...

Scraping Python.org in urllib3 and Beautiful Soup

Getting ready...
How to do it...
How it works

There's more...
Scraping Python.org with Scrapy

Getting ready...
How to do it...

How it works
Scraping Python.org with Selenium and PhantomdJS

Getting ready
How to do it...
How it works
There's more...

Chapter 2: Data Acquisition and Extraction

Introduction
How to parse websites and navigate the DOM using BeautifulSoup
Getting ready
How to do it...
How it works
There's more...
Searching the DOM with Beautiful Soup's find methods
Getting ready

Chapter 3: Processing Data

Introduction

Working with CSV and JSON data
Getting ready

How to do it

How it works

There's more...
Storing data using AWS S3

Getting ready
How to do it
How it works
There's more...
Chapter 4: Creating a Simple Data API

Introduction

Creating a REST API with Flask-RESTful
Getting ready

How to do it

How it works

There's more...

Chapter 05: Creating Scraper Microservices with Docker Introduction

Installing Docker
Getting ready

How to do it

Getting ready

How to do it
Running a Docker container(RabbitMQ)

Getting ready
Creating and running an Elasticsearch container

There's mor+e...
Stopping/restarting a container and removing the image
Creating a generic microservice with Nameko

Creating a scraping microservice

Chapter 06: Making the Scraper as a Service Real

Creating and configuring an Elastic Cloud trial account

Accessing the Elastic Cloud cluster with curl
Performing an Elasticsearch query with the Python API
Modifying the API to search for jobs by skill

List of Table

S.No. Caption Page No.
51 Unit Testing 29
5.2 Integration Testing 30
5.3 System Testing 31

List of Figures/Images

S.No. Title Page No.
2.1 Existing Projects 10
4.1 Use Case Diagram 24
4.2 Activity Diagram 25
4.3 Class Diagram 26
4.4 State Chart Diagram 27
6.1 Home Page Screen 32
6.2 Title Suggestions 33
6.3 Movie Details 34
6.4 Movie Cast 34
6.5 Actor Details 35
6.6 Recommended Movies 35
6.7 Reviews with Sentiments 36

Acronyms

B.Tech. Bachelor of Technology

R.S. Recommendation Systems

NLP Natural Language Processing

API Application Programming Interface

C.F. Collaborative Filtering

SCSE School of Computing Science and Engineering

CHAPTER-1

Introduction

1.1 General Introduction

The act of going through web pages and extracting selected text or
images. An excellent tool for getting new data or enriching your current
data.

Usually the first step of a data science project which requires a lot of data.
An alternative to API calls for data retrieval. Meaning, if you don’t have an
API or if it’s limited in some way.

Web scraping is not initially developed for research of social science, as a
effect, analysts using this method may incorporate unknown
suppositions into their own, because web scraping will not usually
require direct contact among the analyst and those who were formerly
collecting the information and inserting it online, data analysis issues
may simply arise. Research teams using web scraping techniques as
an information gathering method still have to be acquainted with the
accuracy and correct analysis of the details retrieved from the website.
One final problem analysts must address is the potential effect of web
scraping on a publication's functionality, as certain web scraping actions
unintentionally overpowered and close down a webpage. A web scraper
which is appropriately intended and executed, could assist analysts prevail
over obstacle to data access, gather online information more
resourcefully, and eventually respond investigation queries that cannot be
answered by conventional means of assortment and examination. The
below figure 1 shows the overview of how web scraping is done.

1.2 Problem Definition

This paper depends on R.S. that prescribes various things to users. This system
will prescribe movies to users. This system will give more. exact outcomes when
contrasted with the current systems. The current system chips away at individual
users' appraising. This might be some of the time futile for the users who have
various preferences from the recommendations shown by the system as each client
might have various preferences. This system ascertains the likenesses between
various users and then prescribes movies to them according to the evaluations given
by the various users of comparable preferences. This will give an exact
recommendation to the client. This is an electronic just an android system where
there is a film web administration which offers types of assistance to users to rate
movies, see recommendations, put remarks and see comparable movies. There are
systems that manage the self-recommendation rather than: considering the
preferences of users, we thereby assemble a system that admits the user's wishes and
then suggest a watch-rundown of movies which depends on their chosen kind. And
along these lines makes the watch more ideal and pleasant to the client. Given a bunch
of users with their past appraisals for a bunch of movies, would we be able to foresee
the rating they will allocate to a film they have not recently evaluated? Ex. Which
film would you like given that you have seen '"The Avengers", "Avenger Age of
Ultron", "Avengers Endgame'' and users who saw these movies also liked '"Avengers

Infinity war'?

1.3 Problem Purpose

R.S. is data filtering devices that try to foresee the rating for users and things,
dominatingly from huge information to suggest their preferences. Film R.S. gives a
component to help users in ordering users with comparable interests. The motivation
behind a R.S. essentially is to look for: content that would be fascinating to a person.
Additionally, it includes various elements to make customised arrangements of

valuable and intriguing substance explicit to

3

CHAPTER-2

Literature Survey

2.1 Literature Review

1 Renita Crystal Pereira et. al., provided web scraping summary and

techniques and tools that face several complexities as data extraction isn't that
simple. These strategies guarantee
2 that the data collected is correct, consistent and has better integrity,

because there is a large amount of data present which is hard to handle and retain.
Although there are a few problems faced by functional techniques that can be such
as the elevated amount of web scraping be able to cause rigid harm to the
websites. The measurement level of the web scraper will vary with the
measurement units of the original source file, making it very difficult to interpret the
data.

3 Using social networking sites and internet is amplifying day by day like
facebook, twitter,linked-in and some other, user knowledge is also high in the
internet available from everywhere. This as well offers hackers an advantage in
stealing information. Where the

4 concept of rising income comes into being, social networking is important

from a view of business point. Like with online shopping, it will also assist consumers
in getting fast shopping and also save time. On the other hand, there is advantage in
supporting the

5 company and profiting from it.
6 Kaushal Parikh et. al., [2] proposed a web scraping detection with the

help of machine learning It is valuable for research dependent companies. Web
scraping has forever been a difficult preventive attack. Every time a company places
its data on internet, it is probable that it could be copied and pasted and then utilized
in the other point of view without the corporation knowing itself about it. A lot of
protection mechanisms have already been in place but some of them continue to be
ignored. The significance of machine learning

7 therefore steps in. Machine learning is quite effective on pattern

detection. Therefore if we succeed in making the machine understand a cadence of
intruder then it will avoid these types
8 of threats from occurring.

Web scraping solutions are aimed primarily at translating complex data obtained
through networks into structured data that could be stored and examined in a central
database. Web scraping solutions thus have a significant impact on the result of the
cause.

Sameer Padghan et. al., [3] projected an approach where data

extraction is done from web pages in assistance with web scraping easily. This
method would enable the data to be scrapped from numerous websites that will
minimize human intervention, save time

and also enhance the quality of data relevance. It will also support the user in
gathering data from the site and to save the data to their intent and use it as the
individual wishes. The scraped

information may be used for database development or for research purposes and also
for different similar activities. The scraping used

would increase significantly and will often encroach on the framework to obtain the
details. However the scraping can be stopped by

using effective and safe-web scraping methods.

Web scraping is the process of using bots to extract content and data from a website.
Unlike screen scraping, which only copies pixels displayed onscreen, web scraping
extracts underlying HTML code and, with it, data stored in a database. The scraper
can then replicate entire website content elsewhere.

Web scraping is used in a variety of digital businesses that rely ondata harvesting.

Legitimate use cases include:

Search engine bots crawling a site, analysing its content and then ranking it. Price
comparison sites deploying bots to auto-fetch prices and
product descriptions for allied seller websites.

Market research companies using scrapers to pull data from forums and social media
(e.g., for sentiment analysis).

Since all scraping bots have the same purpose—to access site data—it can be difficult
to distinguish between legitimate and malicious bots.
That said, several key differences help distinguish between thetwo.

Legitimate bots are identified with the organization for which they scrape. For example,
Googlebot identifies itself in its HTTP header as belonging to Google. Malicious bots,
conversely, impersonate legitimate traffic by
creating afalse HTTP useragent.

Data Acquisition and Extraction

How to parse websites and navigate
the DOM using BeautifulSoup

When the browser displays a web page it builds a model of the content of the page in a representation
known as the document object model (DOM). The DOM is a hierarchical representation of the page's
entire content, as well as structural information, style information, scripts, and links to other content.

It is critical to understand this structure to be able to effectively scrape data from web
pages. We will look at an example web page, its DOM, and examine how to navigate the

DOM with Beautiful Soup.

Getting ready

We will use a small web site that is included in the www folder of the sample code. To follow along,
start a web server from within the www folder. This can be done with Python 3 as follows:

www $ python3 -m http.server 8080

Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/) ...

The DOM of a web page can be examined in Chrome by right-clicking the page

and selecting Inspect. This opens the Chrome Developer Tools. Open a browser

page to http://localhost:8080/planets.html. Within chrome you can right click and

select 'inspect’ to open developer tools (other browsers have similar tools).

10

03x 4879 INamed Mercurius by the Romans botause it appeass 10 move 50 suifily,
| [Roman same foe the poddess of love, This plaserws post beantiful plaset o
pay [[ta10 (s in the Beavens. Other civilizations have named | Reloed $
Save An
Print...
Cant.,
Transiate 1o Englsh
O AdBlock »
’n:nnﬁulhmﬂwhhb-ﬁwnpeuh- & Create Gist am ‘estho,’ and
S0 12756 paltimatoly Gonman ‘ende,’ Dwich 'sarde, Scandiravis Everncte Web Clipoer » orms irclude Greok
feraze,” meaning ‘on the groend.’ and Weish 'arw,’ m ;me’d »
© Visits 20 127.0.0.1:8080
View Page Source 1
D542 k792 /INamed by the Romans for their god of war because of its red, bleedlike color. Other civilizations also named
| | 'phis planct from this ateribase; far example, the Egyptaans named it *Her Desier.” mearing “the »d cae.” I

' This opens the developer tools and the inspector. The DOM can be examined in the
Elements tab.

html

Sources Network

Gy ey e

fi] Eements Console
.
V-:p:-
v<table id="planetsList" border="1">
v <thody>
P <trew</tr>
»<tr id="planetl”
»<tr id="planet2”

-

class="planet" name="Mercury >.</tr>
class="planet” name="Venus'>.</tr>

| p<td>.</td>
<td>Earthe</td>
<td>5.97</td>
<td>12756</td=~
| v<td>

"The name Earth comes from the Indo—European base

‘ar 'whirh nradurad the Germanic gous ! nn !
body divitwrapper p table#planstslist tbody RBig v ===k ptanet

10

Performance Memory Application » 1 X
Styles Computed Event Listeners 3
Fler thov .cls

element . style {
}

tr { user agent stylesheet
display: table-row;
vertical-align: inherit;
border—color: » inherit;

Inherited from | table#planetsiist
table { user agent styleshect
white-space: normal;

How it works

beautiful Soup converts the HTML from the page into its own internal representation. This model has an identical
representation to the DOM that would be created by a browser. But Beautiful Soup also provides many powerful
capabilities for navigating the elements in the DOM, such as what we have seen when using the tag names as
properties. These are great for finding things when we know a fixed path through the HTML with the tag names.

Querying data with XPath and CSS selectors

CSSselectorsare patternsusedfor selectingelementsand are oftenusedto define the elementsthat styles should
be appliedto. They can also be used with Ixmlto select nodesinthe DOM. CSS selectors are commonly used as
theyare more compactthan XPath and generally canbe more reusable incode. Examples of common selectors
whichmay be used are asfollows:

Scraping Challenges and Solution

Retrying failed page

downloads Supporting page

redirects

Waiting for content to be available in Selenium Limiting crawlingto a single domain Processing
infinitely scrolling pages Controlling the depth of a crawl

Controlling the length of a crawl

Handling paginated websites

Handling forms and form-based authorization Handling basic authorization Preventing bans by
scraping via proxies Randomizing useragents

Caching responses

Retrying failed page downloads

Failed page requests can be easily handled by Scrapy using retry middleware. When installed, Scrapy
will attempt retries when receiving the following HTTP error codes:
[500, 502, 503, 504, 408]

11

Supporting page redirects

Page redirects in Scrapy are handled using redirect middleware, which is enabled by
default. The process can be further configured using the following parameters:
REDIRECT_ENABLED: (True/False - default is True)

REDIRECT_MAX_TIMES: (The maximum number of redirections to follow for any
single request - default is 20)

How it works

The spider is defined as the following:

class Spider(scrapy.spiders.SitemapSpider):

name = 'spider'

sitemap_urls =

['https:/iwww.nasa.gov/sitemap.xml] def

parse(self, response):

print("Parsing: ", response)

print (response.request.meta.get(‘redirect_urls’))

This is identical to our previous NASA sitemap based crawler, with the addition of one
line printing theredirect_urls. Inany call to parse, this metadata will contain all
redirects

that occurred to get to this page.

The crawling process is configured with the

following code: process =CrawlerProcess({

'LOG_LEVEL" 'DEBUG,

'‘DOWNLOADER_MIDDLEWARES":

{

"scrapy.downloadermiddlewares.redirect.RedirectMiddleware™: 500 },
'REDIRECT_ENABLED": True,

'REDIRECT_MAX_TIMES" 2

11

http://www.nasa.gov/sitemap.xml%27

Waiting for content to be available in
Selenium

A common problem with dynamic web pages is that even after the whole page has
loaded, and hence the get() method in Selenium has returned, there still may be content
that we need to access later as there are outstanding Ajax requests from the page that
are still pending completion. An example of this is needing to click a button, but the
button not being enabled until all data has been loaded asyncronously to the page after
loading.

Take the following page as an example: http:/ / the- internet. herokuapp. com/

dynamic_ loading/ 2. This page finishes loading very quickly and presents us with a
Start button:

&« C {t @ the-internet.herokuapp.com/dynamic |

Dynamically Loaded Page Elements
Example 2: Element rendered after the fact

Powered by Elemental Selen|ur

The Start button presented on screen

Nhen pressing the button, we are presented with a progress bar for five seconds:

& C () @ the-internet-herokuapp.com/dynamic_loading/? i

Dynamically Loaded Page Elements
Example 2: Element rendered after the fact

Loading... N

Powered by Elemantal Selenium

The starus bar while waiting:

And when this is completed, we are presented with Hello World!

<« C {1 @ the-internet.herokuapp.com/dynamic loading/?

Dynamically Loaded Page Elements
Example 2: Element rendered after the fact

Hello World!

Powered by Elementa!l Seleniurn

After the page is completely rendered

12

How it works

Let us break down the explanation:

1. We start by importing the required items from
Selenium: from selenium import webdriver
from selenium.webdriver.support import ui

2. Now we load the driver and thepage:
driver = webdriver.PhantomJS()
driver.get("http://the-internet.herokuapp.com/dynamic_loading/2")

3. With the page loaded, we can retrieve the button:
button =
driver.find_element_by xpath("//*/div[@id="start']/button™)

4. And then we can click the button:
button.click()
print(“clicked")

5. Next we create a WebDriverWait object:
wait = ui.WebDriverWait(driver, 10)

6. With this object, we can request Selenium's Ul wait for certain events. This
also sets a maximum wait of 10 seconds. Now using this, we can wait until we
meet a criterion; that an element is identifiable using the following XPath:

wait.until(lambda driver:
driver.find_element_by xpath("//*/div[@id="finish"]"))

7. When this completes, we can retrieve the h4 element and get its enclosing
text: finish_element=driver.find_element_by xpath("//*/div[@id="finish’}/

ha™)
print(finish_element.text)

14

http://the-internet.herokuapp.com/dynamic_loading/2

Handling forms and forms-based
authorization

We are often required to log into a site before we can crawl its content. This is usually done through a
form where we enter a user name and password, press Enter, and then granted access to previously
hidden content. This type of form authentication is often called cookie authorization, as when we
authorize, the server creates a cookie that it can use to verify that you have signed in. Scrapy respects
these cookies, so all we need to do is somehow automate the form during our crawl.

We will crawl a page in the containers web site at the following URL.:
http://localhost:5001/home/secured. On this page, and links from that page, there

is content we would like to scrape. However, this page is blocked by a login. When opening the page
in a browser, we are presented with the following login form, where we can enter darkhelmet as the
user name and vespa as the password

| Legin - Cranl Me

& C [} | @ localhost:5001/account/login?Returs

Crawl me

Login
Username darkhelmet

Password -+«

Login |

Username and password credentials are entered

Uponpressing Enterweareauthenticatedandtakentoouroriginallydesiredpage. There'snota
greatdeal of contentthere, butthe message is enoughto verify thatwe have logged in, and our
scraper knows that too.

16

How to do it

We proceed with the recipe as follows:

1. If you examine the HTML for the sign-in page, you will have noticed

the following form code:

<form action="/Account/Login" method="post"><div>

<label for="Username">Username</label>

<input type="text" id="Username" name="Username" value=""" />

<span class="field-validation-valid" data-valmsg-

for="Username" data-valmsg-replace="true"></div>

<div>

<label for="Password">Password</label>

<input type="password" id="Password" name="Password" />

<span class="field-validation-valid" data-valmsg-

for="Password" data-valmsg-replace="true">

</div>

<input name="submit" type="submit" value="Login"/>

<input name="__ RequestVerificationToken" type="hidden"
value="CfDJ8CqzjGWzUMJIKkKCmxuBIlgZf3UkeXZnVKBWRV_Wu4qUkprH8b_2jno5-
1 SGSNjFqlFgLie84x12ZBkhHDzwgUXpz6bbBWEROV_-
fPSITITiZi2VIyXzLD_beXUp5cgjCS5AtklayWThJS1361nzBgj2A" /></form>

2. To get the form processors in Scrapy to work, we will need the 1Ds of the
username and password fields in this form. They are Username and
Password respectively. Now we can create a spider using this information.
This spider is in the script file, 06/09_forms_auth.py. The spider definition
starts with the following:

class Spider(scrapy.Spider):

name = 'spider’

start_urls = ['http://localhost:5001/home/secured’]

login_user = 'darkhelmet’

login_pass = 'vespa'

3. We define two fields in the class, login_user and login_pass, to hold
the username we want to use. The crawl will also start at the specified
URL.

4. The parse method is then changed to examine if the page contains a login
form. This is done by using XPath to see if there is an input form of type
password and with an id of Password:

def parse(self, response):

print("Parsing: ",

response)

count_of password_field

s=

int(float(response.xpath("count(//*/input[@type="password'

and @id="Password'])").extract()[0]))

if count_of _password_fields > 0:

print("Got a password page")

17

5. If that field is found, we then return a FormRequest to Scrapy, generated
using its from_response method:

return scrapy.FormRequest.from_response(

response,

formdata={"Username': self.login_user,

'Password": self.login_pass},

callback=self.after_login)

17

Searching, Mining and
Visualizing Data

Geocoding an IPaddress

Geocoding is the process of converting an address into geographic coordinates. These addresses can be
actual street addresses, which can be geocoded with various tools such as the Google maps geocoding API
(https:/ / developers. google. com/ maps/ documentation/ geocoding/ intro). IP addresses can be, and often
are, geocoded by various applications to determine where computers, and their users, are located. A very
common and valuable use is analyzing web server logs to determine the source of users of your website.
This is possible because an [P address does not only represent an address of the computer in terms of being
able to communicate with that computer, but often can also be converted into an approximate physical
location by looking it up in IP address / location databases.

There are many of these databases available, all of which are maintained by various registrars (such as
ICANN). There are also other tools that can report geographic locations for public IP addresses.

There are a number of free services for IP geolocation. We will examine one that is quite easy to use,
freegeoip.net.

18

@ treegecip.net x

< C) ©® www.ireegeoip.net/?c=52.153.113.32 wl iy s &
63.153.113.32
About
freegeoip.net provides a public HTTP APl for software developers to
14999 calls remaining, resets in 60 minutes
search the geolocation of IP addresses. It uses a database of IP
P database date Tue 07 Nav 2017 04:09 00 GMT
addiesses that are associaled 1o cities along with other relevant
information like time zone, latitude and longitude. Country United States
You're allowed up to 15,000 queries per hour by default Once this limit Region Montana
Is reached, all of your requests will result in HTTP 403, forbidden, untl
. City Deer Lodge
your fuota is cleared
; - Zi tal cod 59722
The freegeoip web server is free and open source so if the public 2ip/Postalcode G
service limit is a problem for you, download it and run your own
LayLong 46.3797,-112.7202
Instance
Metro code 754
DOWNLOAD GITHUB PROJECT Time zone Amenca/Denver

The frecgeoip net home page

The default page reports your public IP address, and also gives you the geolocation of the
IP address according to their database. This isn't accurate to the actual address of my house,
and is actually quite a few miles off, but the general location in the world is fairly accurate.
We can do important things with data that is at this resolution and even lower. Often just
knowing the country origin for web requests is enough for many purposes.

Freegeoip lets you make 15000 calls per hour. Each page load counts as
one call, and as we will see, each API call also counts as one.

18

How to do it

We could scrape this page to get this information but fortunately, freegeoip.net gives us a
convenient REST API to use, Scrolling further down the page, we can see the API

documentation:

& C 0O O wawireageocip.net/ 700215311337 et ™
AP|
Tre WTTI AP sakes GET 1aquests i the fallowng schern

freegeoip, net/{farmat}/{IP_or_hostnore)}

1100 © o hostirame (s grasided en pour 0wn 1P is losked up

Swptned fomats ww. Cay, W Wil f

Examples

csv XML JSON
{reegeotp.netfcyv/8.0,8.8 freeqeoip netfamli4,2.2,2 freegeoip, met/yson/github, con

The freegecio.net AP] docamentition

We can simply use the requests library to make a GET request using the properly formatted
URL. As an example, just entering the following URL in the browser returns a JSON
representation of the geocoded data for the given IP address:

@ frosgicinretfson 2. 183110 X

¢ O () @ freegeclpnetison@212311302 & |1 & » ‘"

{*4p":"02.143.119.92" , *country_code":"DE", "coantry_name":*Cezmany”,'"regicn_
code"i*", "reqion_name""*, "olty*1*", "adp ocode’ ' "Limo_2one” "', "latitude”
91,2953, "longitude 39,491, "retro_code’ i¢)

Sazmpie TSON oz s TP adikess

19

A Python script to demonstrate this is available in 08/01_geocode_address.py. The
is simple and consists of the following:

import json

import

requests

raw_json = requests.get("http://www.freegeoip.net/json/63.153.113.92").text
parsed = json.loads(raw_json)

print(json.dumps(parsed, indent=4,

sort_keys=True)) This has the following output:

{

"city": "Deer Lodge",

"country_code™: "US",

"country_name": "United

States", "ip": "63.153.113.92",

"latitude™: 46.3797,

"longitude™: -112.7202,

"metro_code": 754,

"region_code": "MT",

"region_name": "Montana”,

"time_zone":

"America/Denver"”, "zip_code™:

"59722"

}

Note that your output for this IP address may vary, and surely will with
different IP addresses.

Creating a REST API with Flask-RESTful

We start with the creation of a simple REST API using Flask-RESTful. This initial API
will consist of a single method that lets the caller pass an integer value and which returns
a JSON blob. In this recipe, the parameters and their values, as well as the return value,
are not important at this time as we want to first simply get an APl up and running using
Flask- RESTful.

Getting ready

Flask is a web microframework that makes creating simple web application
functionality incredibly easy. Flask-RESTful is an extension to Flask which does the
same for making REST APIs just as simple. You can get Flask and read more about it
at flask.pocoo.org.

Flask-RESTful can be read about

at https://flask-restful.readthedocs.io/en/latest/. Flask can be installed into

20

http://www.freegeoip.net/json/63.153.113.92

your Python environment using pip install flask. and Flask-RESTful can
also be installed with pip install flask-restful.

The remainder of the recipes in the book will be in a subfolder of the
chapter's directory. This is because most of these recipes either require
multiple files to operate, or use the same filename (ie: apy.py).

How to do it

The initial API is implemented in 09/01/api.py. The API itself and the logic of the API is implemented
in this single file: api.py. The API can be run in two manners, the first of which is by simply
executing the file as a Python script.

The API can then be launched with the following:

When run, you will initially see output similar to the following:
Starting the job listing API

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

Starting the job listing

API

* Debugger is active!

* Debugger pin code: 362-310-034

This programexposesaREST APl on 127.0.0.1:5000, and we can make requests for job listings using a
GET request to the path /joblisting/<joblistingid>. We can try this with curl:

curl localhost:5000/joblisting/1

The result of this command will be the following:

{
"YouRequestedJobWithid™: "1"

}

And just like that, we have a REST API up and running. Now let's see how it is implemented.

20

Integrating the REST API with scraping code

In this recipe, we will integrate code that we wrote for scraping and getting a clean job listing from
StackOverflow with our API. This will resultin a reusable API that can be used to perform on-demand
scrapes without the client needing any knowledge of the scraping process. Essentially, we will have
created a scraper as a service, a concept we will spend much time with in the remaining recipes of the
book.

Getting ready

The first part of this process is to create a module out of our preexisting code that was written in
Chapter 7, Text Wrangling and Analysis so that we can reuse it. We will reuse this code in several
recipes throughout the remainder of the book. Let's briefly examine the structure and contents of this
module before going and integrating it with the API. The code for the module is in the sojobs (for
StackOverflow Jobs) module in the project's modules folder.

£ modules

B

The sojobs folder

22

Storing data in Elasticsearch as the result
of a scraping request

In this recipe, we extend our API to save the data we received from the scraper into Elasticsearch. We will
use this later (in the next recipe) to be able to optimize requests by

using the content in Elasticsearch as a cache so that we do not repeat the scraping process

for jobs listings already scraped. Therefore, we can play nice with StackOverflows servers.

Make sure you have Elasticsearch running locally, as the code will
access Elasticsearch at

localhost:9200. There a good quick-start available at https:/ / www. elastic. co/ guide/ en/ elasticsearch/
reference/ current/ _ installation. html, or you can check out the docker Elasticsearch recipe in Chapter 10,
Creating Scraper Microservices with Docker if you'd

like to run it in Docker.

Once installed, you can check proper installation with the following
curl: curl 127.0.0.1:9200?pretty

If installed properly, you will get output similar to the following:

{

"name": "KHhxNIz",

"cluster_name": "elasticsearch",

"cluster_uuid":

"fAlqyp78TB623C8IKXgT4g", "version™: {

"number": "6.1.1",

"build_hash™:

"bd92e7f",

"build_date™: "2017-12-17T20:23:25.338Z",

"build_snapshot™: false,

"lucene_version™: "7.1.0",

"minimum_wire_compatibility version": "5.6.0",

23

http://www/

How to do it

We will make a few small changes to our API code. The code from the previous recipe has
been copied into 09/04/api.py, with the few modifications made.

1. First, we add an import for elasticsearch-py:

from elasticsearch import Elasticsearch.

2. Now we make a quick modification to the get method of the JobL.isting class
(I've done the same in JobL.istingSkills, but it's omitted here for brevity):
class JobL.isting(Resource):

def get(self, job_listing_id):

print("Request for job listing with id: "' + job_listing_id)

listing = get_job_listing_info(job_listing_id)

es = Elasticsearch()

es.index(index="joblistings', doc_type='job-listing’,

id=job_listing_id, body=listing)

print("Got the following listing as aresponse: " +

listing)

return listing.

3. The two new lines create an Elasticsearch object, and then insert the resulting
document into ElasticSearch. Before the first time of calling the API, we can see that
there is no content, nor a 'joblistings’ index, by using the following curl: curl
localhost:9200/joblistings.

4. Given we just installed Elasticsearch, this will result in the following error.
{"error":{"root_cause":[{"type":"index_not_found_exception","reason ":"no such
index","resource.type":"index_or_alias","resource.id":"joblistings"
,"index_uuid™"_na_","index":"joblistings"}], type™:"index_not_foun
d_exception”,"reason™:"no such
index","resource.type™:"index_or_alias","resource.id":"joblistings"

,"index_uuid™™ _na_","index":"joblistings"}," "status":404}.

5. Now start up the API by using python api.py. Then issue the curl to get the job
listing (curl localhost:5000/joblisting/122517). This will result in

output similar to the previous recipes. The difference now is that this document will
be stored inElasticsearch.

6. Now reissue the previous curl for the index:
curl localhost:9200/joblistings

24

7. And now you will get the following result (only the first few lines shown):
{

"joblistings

o

"aliases"":

&

"mappings

n g

"job-listing™: {

"properties’: {

"CleanedWords

" {"type™:

text",

"fields™: {

"keyword"™: {

"type":

"keyword™,

"ignore_above™: 256

b
"ID
n g
"type':

"text",

"fields™: {
"keyword": {

"type":

"keyword™,
""ignore_above'": 256
h
8. The specific document that we just stored can be retrieved by using the
following curl:

curl localhost:9200/joblistings/job-listing/122517

9. Which will give us the following result (again, just the beginning of the
content shown):

{

" index™: "joblistings",

" type": "job-listing™,

"oidT: 122517,

" version™: 1,

"found"": true,

" source': {

"ID":

"122517",

"JSON™: {

@context": "http://schema.org",
@type'': ""JobPosting™,

25

http://schema.org/

"title": "SpaceX Enterprise Software Engineer, Full

Stack™, "'skills™: [

"c#",

"sql™,

"javascri

pt”,

asp.net

"angular

js”

1

"description™: "'<h2>About this job</h2>\r\n<p>Location
options: Paid relocation
Job
type: Permanent
Experience
level:

Mid-Level,

And just like that, with two lines of code, we have the document stored in our
Elasticsearch database. Now let's briefly examine how this worked.

25

Checking Elasticsearch for alisting before
scraping

Now lets leverage Elasticsearch as a cache by checking to see if we already have stored a
job listing and hence do not need to hit StackOverflow again. We extend the API for
performing a scrape of a job listing to first search Elasticsearch, and if the result is found
there we return that data. Hence, we optimize the process by making Elasticsearch a job
listings cache.

How to do it

We proceed with the recipe as follows:

The code for this recipe is within 09/05/api.py. The JobL.isting class now has the
following implementation:

class JobListing(Resource):

defget(self, job_listing_id):

print("Request for job listing with id: " + job_listing_id)

es = Elasticsearch()

if (es.exists(index="joblistings', doc_type="job-listing’,

id=job_listing_id)):

print('Found the document in ElasticSearch’)

doc = es.get(index="joblistings', doc_type="job-listing’,

id=job_listing_id)

return doc['_source']

listing = get_job_listing_info(job_listing_id)

es.index(index="joblistings’, doc_type="job-listing’,

id=job_listing_id, body=listing)

print("Got the following listing as a response: " + listing)

return listing

Before calling the scraper code, the API checks to see if the document already exists in
Elasticsearch. This is performed by the appropriately named ‘exists’ method, which we
pass the index, doc type and ID we are trying to get.

There's more...

The JobListingSkills API implementation follows a slightly different pattern. The
following is its code:

class JobL.istingSkills(Resource):

def get(self, job_listing_id):

print("Request for job listing's skills with id: " +
job_listing_id)

es =Elasticsearch()

if (es.exists(index="joblistings’,doc_type="job-listing’,
id=job_listing_id)):

print('Found the document in ElasticSearch")

doc = es.get(index="joblistings', doc_type="job-listing’,
id=job_listing_id)

return doc['_source']['JSON']['skills']

skills = get_job_listing_skills(job_listing_id)
print("Got the following skills as a response: " + skills)

25

Making the Scraper as a service
Real

In this recipe we will create and configure an Elastic Cloud trial account so that we can use Elasticsearch as a
hosted service. Elastic Cloud is a cloud service offered by the creators of Elasticsearch, and provides a completely
managed implementation of Elasticsearch.

While we have examined putting Elasticsearch in a Docker container, actually
running a container with Elasticsearch within AWS is very difficult due to a
number of memory requirements and other system configurations that are complicated

to get working within ECS. Therefore, for a cloud solution, we will use ElasticCloud

How to do it

We'll proceed with the recipe as follows:

1. Open your browser and navigate to https:/ / www. elastic. co/ cloud/ as- aservice/signup. You will see
a page similar to the following:

W Ty Bastio Cloud, Hested £l

C O[5 secrn Himliwmes

e elastic eroduce

G Elastic Cloud Tr

Pyt the official hoste

StartFree Trial

The Elastic Clond signmp page

25

http://www/

1. Enter your email and press the Start Free Trial button. When the email arrives,
verify yourself. You will be taken to a page to create your cluster:

“ © (O # Seooe Iips) cioud sastc co

€cloud cmes Hee

Summary Cluster Size
o Cnoose 3 custer size. Cluster 3o Can be charged e without downtime
Aastorm Aeacn Vs b2
Servees &
Aegion LIS Vst [Oregon) o
(™ . 4 .
Somge =)
550 a Sere o Stzrage parkrress Neod o lorger cluster? Gontaot uz
Highmvateolty Y
Houdy rate 800125
Cloud Platform
Moy rete e
Fick your cioud
‘amazon)
57 webservioes ehs

Crocee = mgion neer you

2. I'll be using AWS (not Google) in the Oregon (us-west-2) region in other examples, so I'll pick
both of those for this cluster. You can pick a cloud and region that works for you. You can leave
the other options as it is, and just press create. You will then be presented with your username
and password. Jot those down. The following screenshot gives an idea of how it displays the
username and password:

26

Your New Elastic Cluster

Copy down the generated password for the elastic userand keep t somewhere safe. We can show you this password only
once, If you lose the password, you need to resel it on the security page.

Usermame elastic

Pagewerd tduhdzxu)

e .-.I-s.m -
TGRS - ——
Get slarted with Beats and Logatash quickly. The Cloud ID smplifies sending data to your cluster on Elastic Cloud. Letn mor ..

Em&uﬁahiiofuhﬂz&&dm

We won't use the Cloud ID in any recipes.

4, Next, you will be presented with your endpoints. The Elasticsearch URL is

what's important to us:
Endpoints
Elasticsearch hitpsJ//Telc?2c 227 us-west-2.aws found, 109243
Kibana https://96eet 31 us-west-2 aws.found, 08243

5. And that's it - you are ready to go (at least for 14 days)!

27

Connecting to the Elastic Cloud cluster
with Python

Now let's look at how to connect to Elastic Cloud using the Elasticsearch Python library.

Getting ready
Thecodeforthisrecipeisinthe11/01/elasticcloud_starwars.py script. This
script will scrape Star Wars character data from the swapi.co APl/website and put
itinto the Elastic Cloud.

How to doit

We proceed with the recipe as follows:

1. Execute the file as a Python script:

$ python elasticcloud_starwars.py

2. Thiswillloopthroughupto 20 characters and drop theminto the swindex
witha documenttype of people. The code is straightforward (replace the
URL with

yours):

from elasticsearch import

Elasticsearch import requests

import json
if_name__==
es =
Elasticsearch([
"https://elastic:tduhdExunhEWPjSuH7306yLS@d7c72d3327076cc4daf552
810 3c46a27.us-west-2.aws.found.io:9243"

)

i=1

while i<20:

r=requests.get(‘http://swapi.co/api/people/' +

str(i)) if r.status_code is not 200:

print("Got a" + str(r.status_code) + " so stopping")

break

J =

json.loads(r.content)

print(i, j)

#es.index(index="sw', doc_type='people’, id=i,

body=json.loads(r.content))

i=i+1

3. The connectionis made using the URL with the username and password
added toit. The datais pulled fromswapi.co usinga GET requestandthen
with acall to .index() on the Elasticsearch object. You'll see output similar
tothe

__main__"

28

http://swapi.co/api/people/%27

Configuring Docker to authenticate withECR

In this recipe, we will configure docker to be able to push our containers to the
Elastic Container Repository (ECR).

Getting ready

A key element of Docker is docker container repositories. We have previously used Docker

Hub to pull containers. But we can also push our containers to Docker Hub, or any Dockercompatible
container repository, such as ECR. But this is not without its troubles. The

docker CLI does not naturally know how to authenticate with ECR, so we have to jump through a
few hoops to get it to work.

Make sure that the AWS command line tools are installed. These are required to get Docker
authenticated

to work with ECR. Good instructions are found at https:/ / docs. aws. amazon. com/ cli/ latest/
userguide/

installing. html. Once the install is verified, you will need to configure the CLI to use the account
created

in the previous recipe. This can be done using the aws configure command, which will prompt you for
fouritems:

$ aws configure

AWS Access Key ID [None]: AKIA ----------=-------- QKCVQAA

AWS Secret Access Key [None]: KEuSaLgn4dpyXe ---------=--=-==-=--=-mm---- VmEKdhV
Default region name [None]: us-west-2

Default output format [None]: json

Swap the keys to be the ones you retrieved earlier, and set your default region and data type.

How to do it

We proceed with the recipe as follows:

1. Execute the following command. This returns a command to authenticate Docker with ECR:

$ aws ecr get-login --no-include-email --region us-west-2 docker

login -u AWS -p
eyJwY XlIsb2FkljoiN3BZVWY4Q2JoZkFwYUNKOUp6c1BkRYy80OVMRYNOY2LzQO0
Y2pVNFJ
KZTA5alBrUEdSMHINUK9TMytsTFVURGtxb3Q5VTZqVOXXNMRCVHINL1FIb2IG
bEFOdV
ZhNFpEOUkxb1FXUTNwcUluaVhgS1FCZmU2WTRLNIQrbjE4VHdIOEpgbmtwWjJ
Jek8xR
IR2Y2Y5S3NGRIQrbDZhcktUNXZJIbjNkblczZVGQ2TXZPUIg5cE5Ea2w4S29vamt6S
E10
Ym8rOW5mLzBvVKRRSDIaY 3hqRG45d0FzNVA5Z1BPVUUSOVFITEZGeENPUHIRZmM
ITeHF qaEVPcG0o3ZVAGMOWEIKdy83bGAwSGMWMERNZWSs2ROVASENIWTRSS
XBUTUNJINThJIbIV3QUFBSDR3ZKFZSktvWklodmNOQVFjR29HOHdiIUUICQURC
b0Jna3Fo
a2lHOXcwQkJI3RXdIZUIIKWUIaSSUFXVURCQUV1TUJFRURQATFQVXQWRDFKN3c3Ry
s3Z0I
CRUIBN21Xay9EZNnNOM3R5MS9iRFARY IZtZjdOOURST2XhQWFFbTBFQVFndy9
JYIBjTz
hLcORINDBCLzhOVnROYmIFK1FXSDBCaTZmemtChzNXTKE9liwidmVyc2lvbil6ljliL
CJ0eXBIljoiREFUQVILRVEkILCJleHBpcmF0aW9uljoxXNTELNjA2NzMOfQ==
https://270157190882.dkr.ecr.us-west-Z.amazon%v&s.com

Creating a task to run our containers

Inthisrecipe, we willcreate an ECStask. Atasktellsthe ECR clustermanagerwhich containersto run.
Ataskisadescription of which containersin ECRtorun and the parameters required for each. The task
description will feel a lot like that which we have

done with Docker Compose.

Getting ready

The task definition can be built with the GUI or started by submitting a task definition JSON file. We
willusethelattertechnique andexamine the structure ofthefile, td.json, which describes how to run our
containers together. Thisfileisin the 11/07 recipe folder. How to do it The following command
registers the task with ECS:

$ aws ecs register-task-definition --cli-input-json file://td.json

{

"taskDefinition"

:{"volumes":

[

1,

"family": "scraper",
"memory": "4096",
"placementConstraints": [

]
1,
“cpu": "1024",
"containerDefinitions": [
{

"name": "rabbitmq",

"cpu": O,

"volumesFrom™: [

]

]

{
"hostPort";: 15672,

"protocol”: "tcp",
“containerPort": 15672
h

{
"hostPort": 5672,

"protocol”: “tcp”,
"containerPort": 5672
}

1,

"environment": [
"hostPort": 5672,
"protocol™: "tcp",
"containerPort": 567
"environment™: [

]

mountPoints™: [

’portMappings": [

image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmg", "memory":
256,
“essential: true

33

microservice",
"memory": 256,
"links": [
"rabbitmq”

]

}

{ -
"name": "apl1",
"cpu": 0,
"essential":
true,
"volumesFrom"
i

I
"mountPoints™: [

]

{
"hostPort": 80,

"protocol™: "tcp",
"containerPort": 8080

}

I

"environment": [

{

"name™: "AMQP_URI",

"value": "pyamqp://guest:guest@rabbitmq"
}

{
"name": "ES_HOST",

"value":
"https://elastic:tduhdExunhEWPjSUH7306yLS@7dc72d3327076cc4daf5528103c46a27 . us-
west-2.aws.found.io:9243"

}
1,

"image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-restapi"”,
"memory"': 128,

"links™: [

"rabbitmq"

]

}

1

"requiresCompatibilities™: [

"EC2"

1
"status™: "ACTIVE",

"taskDefinitionArn": "arn:aws:ecs:us-west-
2:414704166289:taskdefinition/ scraper:7",
"requiresAttributes™: [

"name": "com.amazonaws.ecs.capability.ecr-auth”

}

1

"revision": 7, 34
"compatibilities™: [

portMappings": [

Startingandaccessingthecontainersin AWS

In this recipe, we will start our scraper as a service by telling ECS to run our task
definition. Then we will check hat it is running by issuing a curl to get contents of a job
listing.

Getting ready

We need to do one quick thing before running the task. Tasks in ECS go through
revisions. Each time you register a task definition with the same name (“family"), ECS
defines a new revision number. You can run any of the revisions.

To run the most recent one, we need to list the task definitions for that family and find the
most recent revision number. The following lists all of the task definitions in the cluster.
At this point we only have one:

$ aws ecs list-task-definitions

{

"taskDefinitionArns": [

"arn:aws:ecs:us-west-2:414704166289:task-definition/scraper-as-

aservice: 17"

]
}

Notice my revision number is at 17. While this is my only currently registered
version of this task, | have registered (and unregistered) 16 previous revisions.
How to do it

We proceed with the recipe as follows:

1. Now we can run our task. We do this with the following command:

$ aws ecs run-task --cluster scraper-cluster --task-

definition scraper-as-a-service:17 --count 1

{
"tasks": [

{

"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7bh868-1bh99-4b54-9f2a-0d5d0ae75197",
"version™: 1,

"group": "family:scraper-as-a-service",

"containerInstanceArn": "arn:aws:ecs:uswest-
2:414704166289:container-instance/5959fd63-7fd6-4f0e-92aaeal36dabd 762",
"taskDefinitionArn": "arn:aws:ecs:uswest-
2:414704166289:task-definition/scraper-as-a-service: 17",
"containers": [

{

"name": "rabbitmq",

"containerArn": "arn:aws:ecs:uswest-
2:414704166289:container/4b14d4d5-422c-

4ffaab4c- 476a983ec43b",

"lastStatus": "PENDING",

"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7h868-1h99-4b54-9f2a-0d5d0ae75197",
"networklInterfaces™: [

35

{

"name": "scraper-microservice",

“containerArn"; "arn:aws:ecs:uswest-
2:414704166289:container/511b39d2-5104-4962- a859-

86fdd46568a9",

"lastStatus": "PENDING",

"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
"networklinterfaces": [

]

b

{

"name": "api”,

"containerArn": "arn:aws:ecs:uswest-
2:414704166289:container/0e660af7-

e2e8-4707-b04bb8df18bc335h", "lastStatus": "PENDING",

"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
"networkinterfaces": [

]

}

I,

“launchType": "EC2",
"overrides™: {
"containerOverrides™: [

{

"name": "rabbitmq"

12

{ . .
"name": "scraper-microservice"
12

{

"name": "api"

}

]

}

"lastStatus": "PENDING",
"createdAt": 1515739041.287,
"clusterArn": "arn:aws:ecs:uswest-
2:414704166289:cluster/scraper-cluster”,
"memory": "4096",

"cpu™: "1024",

"desiredStatus™: "RUNNING",
"attachments™: [

]
1
]
)

Theoutputgivesusacurrentstatusofthetask. Theveryfirsttimethisis
run, it willtakea littletimetogetgoing, asthe containersarebeing
copiedovertothe EC2instance. The main culpritofthatdelayuisthe
scraper-microservice container with all of the NIZgEK data.

;‘ailures": [

2. 'You can check the status of the task with the following command:

$ aws ecs describe-tasks --cluster scraper-cluster --

task 00d7b868-1b99-4b54-9f2a-0d05d0ae75197

You will need to change the task GUID to match guid in the "taskArn"
property of the output from running the task. When all the containers are
running, we are ready to test the API.

3. To call our service, we will need to find the IP address or DNS name for
our cluster instance. you can get this from the output when we created the
cluster, through the portal, or with the following commands. First, describe
the cluster instances:

$ aws ecs list-container-instances --cluster scraper-cluster

{

"containerinstance Arns™: [

""arn:aws:ecs:us-west-

2:414704166289:containerinstance/ 5959fd63- 7fd6-
4f0e-92aa-eal36dabd762"

]

}
4. With the GUID for our EC2 instance, we can query its info and pull the

EC2 instance ID with the following:

$ aws ecs describe-container-instances --cluster scraper-cluster
-- container-instances 5959fd63-7fd6-4f0e-92aa-eal136dabd762
| grep "ec2Instanceld"

"ec2Instanceld™: "i-08614daf41a9ab8a2",

5. With that instance ID, we can get the DNSname:

$ aws ec2 describe-instances --instance-ids i-
08614daf41a9ab8a2 | grep "PublicDnsName"
"PublicDnsName": "ec2-52-27-26-

220.uswest- 2.compute.amazonaws.com"”,

"PublicDnsName":
""ec2-52-27-26-220.us-west-2.compute.amazonaws.com"
"PublicDnsName":
"ec2-52-27-26-220.us-west-2.compute.amazonaws.com"

6. And with that DNS name, we can make a curl to get a job listing:
$ curl ec2-52-27-26-220.uswest-
2.compute.amazonaws.com/joblisting/122517 | head -n 6

And we get the following familiar result!

{
"ID": "122517",

"JSON": {

"@context": "http://schema.org",

"@type": "JobPosting",

"title": "SpaceX Enterprise Software Engineer, Full Stack",

Our scraper is now running in the cloud!

37

http://schema.org/

40

	Web Scraping using python
	Under The Supervision of MR. Arjun KP
	Signature of Examiner(s) Signature of Supervisor(s)
	List of Table

	1.2 Problem Definition
	1.3 Problem Purpose
	Querying data with XPath and CSS selectors
	Scraping Challenges and Solution
	How it works
	Waiting for content to be available in Selenium
	How it works (1)
	Handling forms and forms-based authorization
	Searching, Mining and Visualizing Data
	Creating a REST API with Flask-RESTful

	How to do it
	We'll proceed with the recipe as follows:
	How to do it
	Getting ready
	How to do it (1)
	Creating a task to run our containers
	Starting and accessing the containers in AWS
	Getting ready

