
A Thesis/Project/Dissertation Report

on

BURGER BUILDER WEB APPLICATION

Submitted in partial fulfillment of the

 requirement for the award of the degree of

 B.TECH IN COMPUTER SCIENCE ENGINEERING

Under The Supervision of

DR. KIRTI SHUKLA

(ASSOCIATE PROFESSOR)

Submitted By

NAVED MAHTAB KHAN -18SCSE1010065

SAJJAN SHAH – 18SCSE1180070

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTERAPPLICATION

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

DECEMBER, 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“BURGER BUILDER WEB APPLICATION in partial fulfillment of the requirements for the

award of the B.TECH submitted in the School of Computing Science and Engineering of

Galgotias University, Greater Noida, is an original work carried out during the period of JULY-

2021 TO DECEMBER-2021, under the supervision of DR. KIRTI SHUKLA (ASSOCIATE

PROFESSOR), Department of Computer Science and Engineering/Computer Application and

Information and Science, of School of Computing Science and Engineering , Galgotias University,

Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

NAVED MAHTAB KHAN , 18SCSE1010065

SAJJAN SHAH , 18SCSE1180070

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Supervisor

 DR. KIRTI SHUKLA

(ASSOCIATE PROFESSOR)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of NAVED MAHTAB KHAN |

18SCSE1010065 , SAJJAN SHAH | 18SCSE1180070 has been held on _________________

and his/her work is recommended for the award of BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: DECEMBER , 2021

Place: Greater Noida

ABSTRACT

As we can see in various fast food companies like Burger King , Mcdonalds have

fixed Burger menu on their services and this problem doesn’t satisfy the need of the

today’s customer because sometimes the customer want to have a custom burger

according to their liking and disliking.So to overcome this problem we came with an

idea for building this application called burger Builder where customer can easily

customize their burgers and can order it. In this Application the tech stack used is

react.js for UI interface frontend and firebase for backend .In this application there

are various ingredients such as vegetable, cheese, salad , chicken , bon. where user

can add and delete the ingredients to make their custom burger, along with this price

of burger is also shown and after making the custom burger user can order it by

providing the details . and for designing frontend part we are using react,js a

javascript main library. and for backend part we are using firebase a serverless

architecture.

The Application also used proper authentication and from validation and implements

routing uses React Router. Since this web application is made React , BurgerBuilder

is fast single page application enriched with UI design and also have better user

experience By the help of this application it solves the problems of the fast food

companies where customers get benefitted by ordering custom burgers.

Table of Contents

Title Page

No.

Candidates Declaration I

Acknowledgement II

Abstract III

Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem 3-4

 1.2.1 Tool and Technology Used 5

Chapter 2 Literature Survey/Project Design 6-23

Chapter 3 Functionality/Working of Project 24-35

Chapter 4 Results and Discussion 36

Chapter 5 Conclusion and Future Scope 37

 5.1 Conclusion

 5.2 Future Scope

 Reference 38-39

 Publication/Copyright/Product

 CHAPTER-1

INTRODUCTION

A Burger builder Application built using React Js and ReduxJs. The application

uses all the new features introduced in EcmaScript 6. The application is a single

page application with proper components and is Mobile Responsive. The

Application also used proper authentication and from validation and implements

routing uses React Router.

Since this web application is made React , BurgerBuilder is fast single page

application , enriched with UI design and also have better user experience

By the help of this application it solves the problems of the fast food companies

where customers get benefitted by ordering

custom burgers.

OBJECTIVE

Build a full stack web application – BurgerBuilder WebApplication using Node.JS,

React.Js, MongoDB, EJS (Template Engine for server-side rendering) and

deploying the application

 • Build this app from scratch and use it in your real life; best by adding some

additional advanced features to this base project.

• The main goal is to master your NodeJs and MongoDB skills and begin your

full stack journey by developing this project.

• After building this app, your goal should be implementing private chat, image

upload in the post section, and like, comment feature to make it more practical.

1.2 TECHNOLOGY USED

We can divide the project based on the stack used:

 • HTML, CSS ,React JS Building the UI of the application

• Serving HTML dynamically and use of EJS (template engine)

• Familiarising the NodeJS environment

• ExpressJS: Framework for creating servers.

• MongoDB: Using NoSQL Database.

• Socket.IO: Building live chatting feature

• GitHub: To publish your project.

• Heroku: Deploy the full stack application

• ReactJs : Building components

• Axios : api calling integration

KEY FEATURES IN THIS APPLICATION

 REACT JS

React is a free and open-source front-end JavaScript library for building user

interfaces based on UI components. It is maintained by Meta and a community

of individual developers and companies. React can be used as a base in the

development of single-page or mobile applications

1) Declarative

React makes it painless to create interactive UIs. Design simple views for

each state in your application, and React will efficiently update and render

just the right components when your data changes. Declarative views make

your code more predictable and easier to debug.

2) Component-Based

Build encapsulated components that manage their own state, then compose

them to make complex UIsSince component logic is written in JavaScript

instead of templates, you can easily pass rich data through your app and

keep state out of the DOM.

3) Learn Once, Write Anywhere

We don’t make assumptions about the rest of your technology stack, so you

can develop new features in React without rewriting existing code.

React can also render on the server using Node and power mobile apps

using React Native.

https://reactnative.dev/

 AXIOS

Axios is a promise-based HTTP Client for node.js and the browser. It

is isomorphic (= it can run in the browser and nodejs with the same codebase).

On the server-side it uses the native node.js http module, while on the client

(browser) it uses XML Http Requests.

Features

 Make XMLHttpRequests from the browser

 Make http requests from node.js

 Supports the Promise API

 Intercept request and response

 Transform request and response data

 Cancel requests

 Automatic transforms for JSON data

 Client side support for protecting against XSRF

 CSS

Cascading Style Sheets (CSS) is a stylesheet language used to describe the

presentation of a document written in HTML or XML (including XML dialects

such as SVG, MathML or XHTML). CSS describes how elements should be

rendered on screen, on paper, in speech, or on other media.

CSS is among the core languages of the open web and is standardized across

Web browsers according to W3C specifications. Previously, development of

various parts of CSS specification was done synchronously, which allowed

versioning of the latest recommendations. You might have heard about CSS1,

CSS2.1, CSS3. However, CSS4 has never become an official version.

o CSS is the language we use to style an HTML document.

o CSS describes how HTML elements should be displayed.

https://javascript.info/promise-basics
https://nodejs.org/
https://www.lullabot.com/articles/what-is-an-isomorphic-application
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
http://nodejs.org/api/http.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://developer.mozilla.org/en-US/docs/Web/API/StyleSheet
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/MathML
https://developer.mozilla.org/en-US/docs/Glossary/XHTML
https://w3.org/Style/CSS/#specs

 FIREBASE

Firebase has several features that make this platform essential. These features

include unlimited reporting, cloud messaging, authentication and hosting,

etc.

And more features are.

o Unlimited Reporting

o Audience Segmentation

o Integration with Other Services

o Cloud Messaging

o Authentication

o Test Lab

o Hosting

o Remote Configuration

o Dynamic Links

CHAPTER 2

Literature Survey/Project Design

LITERATURE SURVEY

This section describes about the existing research on the Node.js as a server

side language and areas where Node.js is implemented practically, along with having

some general review about the same like History of Node, and some application areas

of Node.js and is it efficient or not.The most important thing with a web server is its

ability to handle multiple users efficiently. This has a lot to do with the programming

language used to write its script. Hence performance of server-side scripting

languages like PHP, Python were taken into consideration with comparison with

Node.js . P. S. Bangare et al has proposed the novel secure encryption mechanism

which is a combination of chaotic logistic mapping and RC4 stream cipher. Node.js

is an excellent tool if you want some kind of live interaction, realtime results. It is

capable of very quickly delivering data to/from a web server. Traditionally, there has

always been a big problem with computers where the CPU can only do one thing at

a time. It was solved long ago with multi-threading, allowing us to have multiple

'threads' on a single CPU. It switches between them all the time, and while it's pretty

fast, the switching has a ton of overhead. To avoid this overhead node.js solves this

problem by running in a single, event-driven thread. Rather than have a new thread

get created on each request, there is one thread for every single request. When a new

one comes in, it fires an event that runs some code. When you make a call to a

database, for example, rather than block until it's returned, you just run a call-back

function after the call is complete. Any number of call-backs can respond to any

event, but only one call back function will ever be executing at any time. Everything

else your program might do—like waiting for data from a file or an incoming HTTP

request—is handled by Node, in parallel, behind the scenes. Your application code

will never be executed at the same time as the most important thing with a web server

is its ability to handle multiple users efficiently. This has a lot to do with the

programming language used to write its script.

PROPOSED SOLUTION

1) UML DIAGRAM

A UML diagram is a diagram based on the UML (Unified Modeling Language) with

the purpose of visually representing a system along with its main actors, roles,

actions, artifacts or classes, in order to better understand, alter, maintain, or

document information about the system

2) DATA FLOW DIAGRAM

It describe the high-level functions and scope of a system. These

diagrams also identify the interactions between the system and its

actors. The use cases and actors in use-case diagrams describe what

the system does and how the actors use it, but not how the system

operates internally. it depicts the behavior of a system. An activity

diagram portrays the control flow from a start point to a finish point

showing the various decision paths that exist while the activity is

being executed.

ADVANTAGES OF NODE.JS

Node.js is built from ground for the purpose of handling asynchronous I/O as it is

built of JavaScript and JavaScript is built as event loop. Like the on click event for a

button in client side JavaScript is and event loop. While other environments do have

this feature, they have it with using third party libraries or are not built from ground

for the same purpose like the Node.js and hence they are often slow, or lags and does

not belongs as a standard feature to them. Similarly an edge of Node.js over others

will be that it will be capable of handling multiple request while it will act like a

client towards the third party services by executing only a single thread. Other

languages in this regard will block the processing until the remote server responds

first for their initial request as a result they will be requiring multiple threading for

executions. Comparatively in Node, all what you will use is asynchronous as it will

become quite hard if you are to write non-asynchronous code in it. Also Node.js will

never force to buffer data before outputting while the others like Event Machine.

Why BurgerBuilder ?

As we can see in various fast food companies like Burger King , Mcdonalds have

fixed Burger menu on their services and this problem doesn’t satisfy the need of the

today’s customer because sometimes the customer want to have a custom burger

according to their liking and disliking. So to overcome this problem we came with

an idea for building this application called burgerbuilder where customer can easily

customize their burgers and can order it. And one time I started using a food delivery

app because I wanted to eat some really good food. Unfortunately, I ended up heading

out for lunch instead, because the food that I wanted to eat was available at my choice

and it really hates me a lot because the customer satisfaction is not fulfilled in this

case.

Assumptions

 Adding some Cards/discounts/offers a coupon on UI helps to attract user

attention.

 Good UI is the key for amazon food for a new start as their competitor doing great

when it comes to UI.

 To make a brand stand out, The nutrition tracker feature is important as no one

has this feature.

 Ease of payment is also a great feature that boosts the amazon food selling ratio.

BurgerBuilder effective tool:

A bespoke ‘Burger Builder’ website provides tools to allow people to design their

own version with an option to share the burger online to gain public votes.

The 12 most popular burgers will be assessed by a judging panel consisting of

England rugby star and 'Celebrity Masterchef' winner Phil Vickery, McDonald’s

staff, an "independent expert" and a member of the public.The judging panel will

choose their five favourite burgers, which will appear in all McDonald’s branches

over a five week period starting in October.

Alistair Macrow, senior vice-president and chief marketing officer at McDonald’s

UK, said: "Customisation and digital engagement are becoming an integral part of

how consumers interact with companies and we want to continue to innovate as a

brand."McDonald’s crowd-sourcing initiative comes the week after it set up its first

Twitter page in the UK with a tweet promising "news, promotions and fun stuff".

The 80 different ingredients mean there are more than one million possible

combinations with ingredients including guacamole, chorizo and pineapple chunks,.

The ‘Burger Builder’ tool was created by Razorfish and traffic will be driven to the

site via a YouTube masthead takeover, pre-roll ads and digital display ads.

BUILDER PATTERN

It falls under the creational pattern.

This pattern is handy when construction of an object is complex (Creating object

includes, creating instance + assigning values to some members) and you want to

separate the construction logic from the representation so that it can be used with

various representations.

The Factory pattern is more of an answer to: "What is being built?", whereas this

pattern is more of an answer to: "How to built it?".

Problem Statement

You all may have heard of McDonald's Happy Meals. Let's create a code for creating

a ChickenMcGrill HappyMeal.

Problems and various solutions

Problem 1

The End client has to be aware of the steps for building the final product.

A new Happy meal, say for a McVeggie, results in a substantial amount of cluttered

code

(because now ChickenMcGrill will be replaced with McVeggie and Toy with

HarryPotterToy).

Solution 1

Change the constructor logic of the Happy Meal as:

Problem 3

We can see for every happy meal, the construction process is the same except some

attributes are affected and so those representation steps need to be separated from the

construction logic.

Solution 3 Builder Pattern

The Builder pattern separates out the representation and creation from each other

with the help of Builders and Directors.

Components involved in the Builder pattern are

AbstractBuilder - Contains the steps required for creating final concrete object.

Builder - Constructs the Individual part of the Concrete Product implementing

AbstractBuilder.

Director - Construct the complete Concrete Product using Builder.

Product - A Complex Object which is required to create.

CLASS DIAGRAM

Patterns are made for solving the business problems. If any pattern does not solve the

problem then it would be better you revamp it as per your requirements.

Even in some scenario, 2 or more patterns are used together.

Please download both of the attached source codes for a complete demonstration of

the pattern.

The second sample is all about implementing the builder pattern in ASP.Net and you

will also find how two patterns (Factory and builder) work together.

USER FLOW

Process

To design a food ordering app, it’s vital to think over the variety of steps and clear

navigation that will enable users to quickly make and get the order under diverse

circumstancesIts extended functionality allows users to order a traditional burger

from the menu or customize any option for themselves adding or removing the

ingredients.

They feature all the flow of choice and customization of a burger as well as the

screens for delivery or picking up an order.

Burger Card: Variety of Choices

Choose the Burger

The menu shows actual positions and special offers that the restaurant or service has

at the moment. Users may see item photos and basic data on ingredients and weight.

Color accents highlight price and calls-to-action for quick scanning. What’s more,

the system of filters at the top of the screen enables a user to customize the search

and find a needed position faster.

Having chosen a specific position and moving to the product screen, users see the

big product photo, core information about pricing and weight and the CTA button

enabling to add the position to the cart. It makes the visual presentation emotional

and catchy, immediately sets the association with the burger. Also, the screen looks

clean – it isn’t overloaded with details about ingredients which isn’t interesting for

users who buy this position regularly or don’t care about the details and want to make

an order asap.

Customize the Burger

Those who do care about the ingredients or want to customize their burger, use the

tab “Ingredients” in the bottom part of the screen. Just pulling it up, they open the

tab and check the contents of the burger, organized along categories such as

Vegetables, Meat, Sauce, Topping, etc. To make the visual performance of the list

effective and appealing, the interface features photos of all ingredients. At any stage

of interaction with this screen, users may save the item to favorites just tapping the

heart icon in the top right corner. The cart icon features one more important UX

affordance: a yellow dot on it gives a quick prompt that it isn’t empty.

As for the color palette in the app, the designer played with the contrast of

backgrounds: interactions zones aimed at reading copy, observing and manipulating

positions in the lists are presented on the light background to provide a high level of

readability. Still, photo content and tab bar apply a dark background that supports the

visual performance, makes the graphics look stylish and elegant. Also, the designer

paid deep attention to building balanced and scannable visual hierarchy to make

interactions quick and screen scanning easy. Hungry people are definitely not the

audience which will want to devote much time and effort to learn how the app works

– everything has to be clear in short seconds.

The flow of interactions on customizing the order looks like the following animation.

Create a Burger

A typical food ordering app for restaurants and cafes usually features the meals of

the fixed formulation. Tasty Burger app pushes the limits: it suggests users not only

customize the existing offers by adding or removing ingredients but also create their

own burger from the ingredients in stock. Adding ingredients, users can see how the

price is changing relatively.

Here’s the animated flow of interactions on creating a burger in the app.

Order and delivery.Having decided on the order, a user is offered two ways to get is:

delivered at the particular address or picked it up from the restaurant. Also, a variety

of payment methods is presented.

If a user chooses to pick the order, the map helps to choose the best location and

shows the route. Color contrast makes the screen clear while carefully selected fonts

provide a high level of readability.

Here’s the interaction flow for the food app design regarding the order and delivery

solutions.

Slight and unobtrusive animation applied to transitions and microinteractions made

the food ordering app design lively and delicious.

Landing Page

Landing page for the presented app is based on the attractive and catchy animation:

fresh tasty burger creates a mouthwatering effect to immediately set the theme and

emotional appeal.

Tasty Burger app design process was an exciting creative challenge for the Tubik

design team: it was a cool attempt to broaden the horizons of food delivery

applications with extended functionality, strong usability, and finger-licking

appearance.

How we brought BurgerBuilder Design System to Mobile

Like many of today’s leading brands, from Apple and J.Crew to AirBnB and Warby

Parker, Burger King has embraced a design-led approach that looks at visual design

as one of the best ways to tell their story and communicate who they are and what

they’re about. And they aren’t leaving anything to chance. Every interaction with

Burger King is infused with their custom design language—everything from the

website, TV ads, and in-store menus, to (you guessed it) their mobile application. As

Raphael Abreu, Head of Design at Restaurant Brands International (parent company

of Burger King) put it recently:

Design is one of the most essential tools we have for communicating who we are and

what we value, and it plays a vital role in creating desire for our food and maximizing

guests’ experience.

The way that Burger King and other design-led brands create this consistency is

through the use of design systems. Design systems offer a set of visual standards and

specifications that help companies establish a unique brand identity that is

consistently experienced across all channels—both physical and virtual. In many

ways, the design system is the brand.

For web developers building frontend experiences across mobile, desktop, and web,

design systems have become part of the common vocabulary. Although a design

system can mean many things - from pure design specifications to actual, working

UI components - it often boils down to a shared UI library that can be used and reused

across any web project.

Now, this is easy enough to do with the web, with its vast array of CSS

customizations and tailor-made UI components. But what about mobile? As any UX,

UI, or frontend dev team will quickly discover, it turns out that bringing their design

system to mobile is not so simple.

So how does Burger King do it? Before I answer that, let’s run down the options for

customizing your UI in a native mobile app, based on which platform or SDK you’re

building with, and then dive into how they make it happen.

Native iOS and Android

Android and iOS offer native software development kits (SDKs) that provide a rich

library of frontend UI components, animations, and gestures. The catch is, they’re

not your UI components. A big limitation of the native SDKs is that your ability to

customize the UI components - and the overall experience - is limited to whatever

Apple and Google are willing to support. You have to use their pre-built library and

customization options. If you have a highly custom design language, with very

specific fonts, colors, or design patterns, you might not be able to replicate those

patterns for your mobile applications. Want your button component to look and

behave just so? Better hope the native UI toolkits support it. Otherwise, you’re out

of luck.And if you have an existing web-based UI library that you’d like to repurpose,

you definitely won’t be able to use these components in your native app if you’re

building with the Android and iOS SDKs exclusively. This means you’ll be

rebuilding everything from scratch; which effectively negates the value of a shared

library of reusable components—at least as it concerns mobile.

React Native, Flutter, and Xamarin: Limitations to Native UI Toolkits

So what about cross-platform solutions like React Native, Flutter, or Xamarin?

React Native and Xamarin both use the same native UI toolkits. Although you write

your app logic using JavaScript or C#, you evoke the native UI components during

runtime. React Native and Xamarin will often tout this deep native integration as a

benefit, but these options leave you in the same boat as if you were building with the

native UI toolkits. Any customizations you want to make are at the whim of Apple

and Google.

Flutter is somewhat unique, because they’ve built their own UI library and graphical

rendering engine—but the same limitations apply. You won’t be able to bring in your

existing design system or web-based UI library to Flutter. Instead, you’ll have to

recreate each component, and all customizations must be supported by Flutter. In the

end, teams who choose to build with the native toolkits or popular cross-platform

solutions (like React Native, Flutter, or Xamarin) will find themselves recreating

their design system for mobile, often without fully matching the UX and design

specifications that their corporate brand and design systems would prefer to use.

Capacitor: The Cross-Platform Solution for Design Systems

Solving this challenge was one of our goals when we built Capacitor and Stencil—

two open source projects that, when combined, provide a powerful solution for teams

who want to bring their existing UI library to mobile.

First, Capacitor is a cross-platform native runtime that provides fully native mobile

experiences that can be deployed natively on iOS, Android, and desktop platforms.

You can also run Capacitor apps on a traditional web browser or a mobile-ready

Progressive Web App, all from the same codebase.

The best thing about Capacitor? The UI layer is completely web-based, using the

same open web standards, libraries, and frameworks that power your existing design

system.

Let bring thing in practice

Let’s say you have an existing design system based on React UI components. If you

build your mobile experience with Capacitor, you can use your existing UI library

even when deploying a native mobile app. Of course, to create the best experience,

you’ll need to account for mobile styling, navigation, and platform-specific UI

guidelines specific to iOS and Android, but fundamentally your UI library will run

fine on Capacitor right out of the box.

Burger King’s Approach

In fact, that’s exactly what Burger King did. The team at Burger King chose

Capacitor because it allowed them to bring their existing UI library to mobile in a

really unique way. If you check out their iOS and Android mobile app experiences,

you’ll note that, while they look and feel totally native to the device, you’re not using

the stock iOS or Android components. Their design team wants to make sure that the

way you experience the BK menu, for example, is consistent whether you’re on their

website, inside the restaurant, or on their mobile app. Capacitor allows them to do

just that, by persisting their web-based UI components across web and mobile.

Chapter 3

Functionality / Working of the Project

BASIC UI OF THE APPLICATION

 DESCRIPTION

As you can see on the top-left corner there is a burger icon and in top-right side

there are two routers BurgerBuilder and Orders in which on clicking

BurgerBuilder we navigate to the main page of application and on clicking orders

we can navigate to the list of ordered burgers.

And the main part comes in center where we can actually build our custom burger

and in which top most and lower most bread are static and ingredients to be added

inside it are dynamic

UI WITH FUNCTIONAL COMPONENTS

DESCRIPTION

Initiallty in our web application only user can see the ui parts of the application but

now it has the features that user can interact with the web page . Like you can see in

UI parts when we click on the button like less or more components get added between

bread .

This is possible through add event listeners and events that is used in jsx elements

BUTTON FUNCTIONALITY

DESCRIPTION

In this section button plays an role in this web application to manage the features

embedded in this application .

These buttons are not only components but it has the featues of providing interaction

to the user.

Similarly we have order summary where we can see the orders details .

 APPROACH

1. Technology choice

1.1. Mobile App

We knew from day one that The Burger Collective wanted to launch both iOS and

Android apps at the same time. We have considered few options - native apps, React

Native or Ionic. Early stage startups are always limited by funding so we needed to

deliver the best possible experience with minimal costs. Another consideration was

rapid development and on the fly deployments which can bypass lengthy app store

reviews.

We have considered Ionic for a while. Mostly because of getting the web app as well

as Android/iOS mobile app almost for free. But from our experience Ionic apps fall

behind native apps in animation speed and in displaying rich content properly. For

this reason it wasn't appropriate for a user facing app.

Building both apps natively was too costly and it wouldn't give us the advantage of

rapid development and deployment as Javascript based apps would. So the winner

was React Native. We had delivered few React Native apps in the past and were

confident that it will check all the boxes for what The React Native framework is

now mature enough to deliver great apps with native-like experience and the tool set

around it allows better-than-native development with hot reloading and extremely

fast releases which ensure all new features are rolled out immediately to all users.

1.2. Restaurant POS App

Restaurants run their separate app which can read a user QR code and associate

orders to their accounts. It's an important piece of the puzzle in TBC business as

users can redeem their vouchers, get member’s discount and collect points for

purchasing and reviewing burgers. Although the purpose of the restaurant app is

quite different than consumer facing app and the app is distributed via private

enterprise channel, we decided to go with React Native for the same reasons as with

the user app.

POS App

1.3. Back-end and admin UI

We had to deliver 3 important bits on the back-end:

API which will handle requests from mobile and POS app - many API calls were

geolocation heavy, we needed to make sure API will scale with growing user base.

Benchmark was set to support up to 5000 concurrent users.

Admin UI - TBC team needed to execute various operation tasks without developers,

such as approving reviews and new restaurants, removing inappropriate content

etc.Admin section for restaurants where they can update their details, working hours

and menu.

First important step was choosing a database. After initial data modelling we found

that data doesn't need to be too heavily relational and we didn't need to support

atomic transactions on multiple tables. Also, apart from basic data queries we needed

a database which worked really well with geolocation queries. Hence, we decided to

use MongoDB as our database. Another reason was that with MongoDB we could

use excellent admin UI / CMS keystone.js which saved TBC a lot of time and money

compared to custom solution we would have to build. Keystone.js is built on top of

express.js which is de-facto standard for api development in Node.js; another

problem solved. For a restaurant admin section we decided to build a small custom

react.js app as this required more restrictive approach and custom UI elements to

make restaurant details updates as easy as possible.

2. Application Hosting, deployment, monitoring

Startups in early stages usually can’t afford on-premise servers and staff to service

them. And it would be foolish to even think about this choice when you don’t know

how big your initial user load will be and how fast you will grow. So here the choice

was quite obvious to select a cloud provider which will cope with flexible startup

needs.

We chose AWS as we have the best experience with their services, especially Elastic

Beanstalk. It allows us to streamline deployment process and with a little setup, it

connects well with CloudWatch where we can monitor application load and get

alerts if anything goes wrong. Elastic Beanstalk main advantage comes when you

need auto-scaling of application servers. With just 2 boxes to set, you get fully

working load balanced fleet of instances which will grow with user load. You need

to set up to how many instances you want to spin and most importantly, when you

want to do so. EB gives you multiple options, the most common is to set a threshold,

when CPU utilization reaches some specific value. We recommend to load test every

app with most common usage scenario to find out where this threshold is. This can

significantly improve autoscaling efficiency and lower costs.

3. Hot releases with CodePush

We live in times where change is an essential part of our lives. This puts a huge

pressure on development teams, mainly to make development cycles shorter and to

be more responsive to incessant changes in requirements. We were able to

accommodate many new changes in application UX and to introduce hotfixes in

matter of hours or days based on our member’s feedback. We also managed to push

out new versions immediately. This flexibility wouldn’t be possible without

employing a CodePush service which allows to deploy React Native or Cordova

applications instantly without going through Apple App store or Google Play store

approval process. This approach helped us to connect with our members and quickly

react on how they use the app.

4. Analytics

4.1. MixPanel

Every decision made during design & development process needs to be based on

hard data and insight about in-app user behaviour. Otherwise, you are just guessing

and this might lead to decreased potential ROI and suboptimal use of time &

resources on development. In our case, TBC team decided to employ MixPanel

service to fully understand user’s journey through the app. The MixPanel provided

TBC team with necessary information to make the right design decisions, test user

behaviour with A/B testing, engage with users through segmented push notifications

and provide analytical data for our executive & marketing teams.

From developer’s perspective, the MixPanel implementation requires adding event

trackers into various places in client's apps, depending on what they want to monitor.

The MixPanel React Native wrapper is available on GitHub which makes integration

with the app rather easy.

4.2. AppsFlyer

AppsFlyer service is a mobile attribution & marketing platform which helps

marketers to understand effectiveness of marketing campaigns. TBC marketers were

able to see ROI for different campaigns (a number of new app installations as a result

of a specific campaign - e.g. on Facebook) and adjust their decisions from what they

learned through AppsFlyer.

As with MixPanel, React Native wrapper component for AppsFlyer is available on

GitHub.

5. Testing

5.1. Server side-testing

When it comes to testing the server-side code, we prefer the maturity of Mocha

framework together with Chai assertion library. In NodeVision, we use BitBucket

as version control system which comes with so called, Pipelines. You can achieve

Continuous Delivery with this tool quickly and without cumbersome configuration.

Every commit into BitBucket triggers automated tests, which provide immediate

feedback about potential issues in your code base.

5.2. Client side-testing

We adopted more traditional user testing with a prepared set of user testing

scenarios. Before every release, our testing team carries out a full regression test on

reference devices to ensure full functionality of the app. We are fully aware that this

situation is not optimal as we can cover only limited number of devices (this is

problematic mainly for Android ecosystem). Moving forward, our plan is to switch

to more automated testing with AWS Device Farm. This would allow us to cover

numerous phones from different manufactures and to automate test with test scripts.

6. Load testing the app

As mentioned above we needed to ensure the app can handle ~5000 concurrent users.

We also needed to test that auto-scaling will spin new instances at the right time. We

used https://artillery.io/ framework to load test production servers. With a chosen

scenario of the most likely app user journey, we let Artillery to add more and more

users and we then monitored the output. We managed to get up to 6 t2.large

instances, handling all load with very fast 36ms average request latency.

Load testing

7. Crash Reporting & Logging & Monitoring

7.1. Client Side

There are many products and tools for app monitoring and your choice might be

affected by multiple factors such as, cost, supported platform, range of analytics,

details about crash events, etc.

In NodeVision, our number one choice is Crashlytics which is a part of a bigger

platform - Fabric. It gives you every possible information for any crash which has

occurred in your app. You can extend crash reporting with your custom metadata

which could help you to duplicate an issue in your dev environment (e.g. user id,

screen, user action etc.).

Another great advantage of Crashlytics over the other tools is that it’s free, even for

enterprise sized project. A React Native wrapper for Crashlytics is available as an

open source project on GitHub which allows to push costs of implementation down.

7.2. Server Side

7.2.1. Code execution and health monitoring - Loggly

For server side logging and request monitoring, we used Loggly services. It helped

us to detect any anomalies in our server code execution and to monitor response

times. It provides detailed error reporting and allows to monitor key resources and

metrics. Basically, Loggly gives you everything your team needs to quickly react if

something goes wrong or even before that.

7.2.2. AWS

The AWS comes with extensive resource monitoring which could be extended by

custom metrics and alarms. This allowed us to keep a close eye on server resources

and proactively react during high workload periods. Generally, the AWS tools don’t

provide a deeper insight into potential code issues. This requires different tools

which are integrated into your code base (e.g. Loggly).

As mentioned before, the AWS metrics are an essential part of auto-scaling

management. It allows to optimize a number of server instances based on the current

load. We were able to configure AWS EB instance in a way that any excessive

workload automatically increased a number of server instances. E.g when our

marketing team ran a promo campaign which resulted in increased number of

requests.

CHAPTER 4

RESULTS AND DISCUSSION

The study got the finding about the implementation of Node.js. Below is discussed

the implementations positive findings as a result of literature review and the survey.

• The Node.js have made Full Stack Developers’ job a dream come true. In

absence of Node.js it was hard for a developer to learn several different languages

and environments to manage the complete system at server side and client side.

 • Organizations and developers can now with the invent of Node.js build

highly load bearable and faster applications and by using Single Page Applications

(SPA) now the server calls are reduced and the applications are more user friendly

and faster.

 • Node.js made it easy to achieve high load operations like graphic processing

and Internet GIS very quicker, and it can be reliably used in every field where the

files sizes are high or the network bandwidth is highly consumed. Node.js will make

such operations faster and with less need of bandwidth.

• Community like its feature that the same language is also being used at server

side while JavaScript is always been used at client side for ages

 CHAPTER 5

Conclusion and Future Scope

Node.js have some challenges in context of its use in the community as well as its

adoption by the developers and organizations over the existing programming

technologies. No doubt that Node.js have great benefits, it have also some challenges

to the community. One such challenge is the ability of misuse of the widely used

language by developers. One enthusiast have made a backdoor software using

Node.js on Raspberry Zero. It can create backdoors in the target computer and their

network even if the computer is password locked. Although there are solutions from

such backdoors but some seems impractical like totally blocking the USB ports, and

closing the web browser every time the user leaves the computer. And other options

are not implemented by majority and mostly might not be aware of it like using

secure layer on ones websites (https), and enabling secure flags on the cookies which

common users might not know about it.

• There is a plus point but as understood from the survey conducted that the

community feel it hard to learn JavaScript for Node.js

 • Also the developers having knowledge of other programming languages

have complications in adopting Node.js. Even the setting up of server for their

programming work is not an obstacle. This is as concluded from the survey results.

 • Another plus points were event-Driven Programming, Non-Blocking I/O,

and asynchronous feature. But according the survey results is that the features like

event-driven programming, NonBlocking I/O, and Asynchronous processing is a

hindrance.

 REFERENCES

1. "The benefits of web-based applications," [Online]. Available:

http://www.magicwebsolutions.co.uk/blog /thebenefits-of-web-

basedapplications.htm. [Accessed 25 November 2016].

2. Web Application Basics, Pearson Higher Education.

3. F. Bridge, "What Types of Developers Are There?," tree house, 24 June

2016. [Online]. Available: http://blog.teamtreehouse.com/what-types-of

developerare-there. [Accessed 25 November 2016].

4. M. Wales, "Front-End vs Back-End vs Full Stack Developers," Udacity, 08

December 2014. [Online]. Available:http://blog.udacity.com/2014/12/front-end

vsback-end-vs-full-stack-web-developers.html. [Accessed 25 November 2016].

5. J. Long, "I Don’t Speak Your Language: Frontend vs. Backend," tree house,

25 September 2012. [Online]. Available: http:// blog.teamtreehouse.com/ i-dont-

speakyour-language-frontend-vs-backend. [Accessed 25 November 2016].

6. A. Mardan, "PHP vs. Node.js," Programming Weblog, [Online]. Available:

http://webapplog.com/ php-vs-node-js/. [Accessed 28 January 2016].

7. J. Kaplan-Moss, "Quora," [Online]. Available:

https://www.quora.com/What-are-the-benefitsof developing-in-Node-js-versus-

Python. [Accessed 29 June 2016].

8. "Node.js Tutorial," tutorials point, [Online]. Available:

https://www.tutorialspoint.com/nodejs/index.htm. [Accessed 25 November 2016].

9. N. Chhetri, "A Comparative Analysis of Node.js (ServerSide JavaScript),"

Culminating Projects in Computer Science and Information Technology., p. 5, 2016.

10. R. R. McCune, "Node.js Paradigms and Bench marks," 2011.

11. Node.js, "Home page of Node.js," Joyent, 2016.

[Online].Available:https://nodejs.org/en/. [Accessed 01 May 2016].

12. G. Developers, "Chrome V8 | Google Developers," Google, [Online].

Available: https:// developers. google.com/v8/. [Accessed 27 May 2016].

13. eventmachine, "GitHub, Inc," [Online]. Available:

https://github.com/eventmachine/eventmachine.[Ac -cessed 30 June 2016].

14. Twisted Matrix Labs, "Twisted Matrix Labs," [Online]. Available:

http://twistedmatrix.com/trac/. [Accessed 30 June 2016].

15. The Apache Software Foundation, "Apache MINA," [Online]. Available:

http://mina.apache.org/. [Acce ssed 30 June 2016].

16. The Apache Software Foundation, "Apache MINA," [Online]. Available:

http:// mina.apache.org/ async webproject/index.html. [Accessed 30 June 2016].

17. Ryan Dahl: Original Node.js presentation. [Film]. Youtube, 2012.

18. "How Loading Time Effects Your Bottom Line," Kissmetrics Blog,

[Online]. Available: https://blog. kissmetrics.com/loading-time/. [Accessed 25

November 2016].

19. C. Buckler, "Site Point Smack Down: PHP vs Node.js," Site Point,

[Online]. Available: http://www. sitepoint.com/sitepoint-smackdown-php-vs-node

js/. [Accessed 28 January 2016].

	CANDIDATE’S DECLARATION
	1) Declarative
	2) Component-Based
	3) Learn Once, Write Anywhere

	Features

