
 1

A Project Report

on

Attendance System Using Face Recognition

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Mr. Gokul V. Rajan

Assistant Professor

Department of Computer Science and Engineering

Submitted By

18SCSE1050043- SOUMYA SHREE

18SCSE1050015 - RICHA

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

 2

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the project, entitled “ Attendance

System Using Face Recognition ” in partial fulfillment of the requirements for the award of the

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

submitted in the School of Computing Science and Engineering of Galgotias University, Greater

Noida, is an original work carried out during the period of JULY-2021 to DECEMBER-2021,

under the supervision of Mr. GOKUL V. RAJAN, Assistant Professor, Department of

Computer Science and Engineering of School of Computing Science and Engineering ,

Galgotias University, Greater Noida

The matter presented in the project has not been submitted by us for the award of any other

degree of this or any other places.

18SCSE1050043- SOUMYA SHREE

18SCSE1050015 - RICHA

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

(Mr.Gokul V. Rajan, Assistant Professor)

 3

 CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1050043 - SOUMYA

SHREE, 18SCSE1050015 - RICHA has been held on _ and his/her

work is recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER

SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

4

ABSTRACT

Attendance marking system is very time-consuming and prone to error. This project

proposed an automated attendance system that uses face recognition technology. The

system was able to identify the faces of the students and determine the appropriate

attendance mark.

Our app asks the student to fill the details and take image of the student. After

completing the process, it saves the images and sends them to Training Image folder.

By clicking Track Image button, the camera of running machine will automatically

open. If the face is recognized by system, the name and image of the person shown are

shown on Image.

5

Table of Contents

Title Page
No.

Candidates Declaration

Acknowledgement

Abstract

List of Table

List of Figures

Acronyms

Chapter 1 Introduction 9

 1.1 Introduction

1.2 Formulation of Problem

1.2.1 Tool and Technology Used
Chapter 2 Literature Survey 11

Chapter 3 Project Design 14

Chapter 4 Working of Project 18

Chapter 5 Coding 25

Chapter 6 Results and Discussion 42

Chapter 7 Conclusion and Future Scope 43

7.1 Conclusion

7.2 Future Scope

Reference 44

Publication/Copyright/Product 45

6

List of Figures

S.No. Caption Page No.

1 Working of Face detection and recognition 13

2 Use Case Diagram 16

3 Class Diagram 16

4 Sequence Diagram 17

5 Activity Diagram 17

6 Process involved in LBPH 19

7 Pixel value of LBPH 19

8 Feature vector of the image 20

9 Database creation 22

10 Train database 22

11 Attendance marking 23

12 Store train image 23

13 Face detection 23

14 Report generation 42

7

List of Tables

S.No. Title Page No.

1 Data Table 6

2 Software Dependencies 10

3
Hardware Requirements 10

4
Software Requirements 10

8

Acronyms

LBPH Logical Binary Pattern Histogram

ML Machine Learning

UML Unified Modelling Language

MAS Manual Attendance System
AAS Automatic Attendance System

9

CHAPTER-1

Introduction

The flow process in Face Recognition-based attendance management systems begins with the ability

to detect and distinguish frontal faces from a database input dataset. In today's society, good

classroom control has been proved to increase student engagement during lectures. The importance

of high levels of student engagement cannot be overstated. Face detection and identification are not

new concepts in modern society. The human mind's ability to recognise certain individuals is

astounding. Face detection is the process of detecting faces with various expressions, sizes, and

angles in photos with complex light and backdrop and feeding back face parameters. Face recognition

analyses patterns and detects one or more faces in an image by processing it. To identify a match,

this technique employs algorithms that extract information and compare them to a database.

This project is being carried out in response to the concerns stated about the methods used by

lecturers to take attendance during lectures. These days, technology attempts to convey a significant

amount of knowledge-based technical innovation. Machine learning is an intriguing domain in which

a machine can teach itself by producing a suitable output during testing using various learning

methods. Attendance is now regarded as critical for both students and teachers in educational

institutions. With the developments in machine learning technology, the computer can now

automatically recognise the students' attendance performance and keep a record of it. The reasons

for building up this particular section Attendance system based on Face Recognition with LBPH.

In general, the attendance system of the student can be maintained in two different forms

namely,

⚫ Manual Attendance system (MAS)

⚫ Automated Attendance System (AAS)

Manual Student Attendance Management is a technique in which a teacher responsible for a specific

subject calls the students' names and manually records their attendance. Manual attendance can be a

time–consuming operation, and it's not uncommon for the teacher to overlook someone, or for pupils

to respond to the absence of their friends many times. When we consider the usual method of taking

attendance in the classroom, we encounter a difficulty. We use Automated Attendance System (AAS)

to tackle all of these problems. AAS is a technique that uses face recognition technology to

automatically estimate a student's presence or absence in a classroom. It is also feasible to detect if

a student is sleeping or awake during a lecture, and it can be used to ensure a student's presence

during exam sessions. The presence of students may be determined by capturing their faces on a

high–definition monitor video streaming service, making the machine's ability to understand the

presence of all pupils in the classroom more dependable.

The two common Human Face Recognition techniques are:

⚫ Feature-based approach

⚫ Brightness-based approach.

The feature-based approach, also known as a local face recognition system, is used to point out

important facial characteristics such as the eyes, ears, nose, and mouth. The brightness-based

approach, also known as the global face recognition system, is used to recognize people from all

around the world.

10

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS:

Processor intel core i5 8th Gen

i5 8th Gen

Graphics Processing Unit

(GPU)

NVIDIA GEFFORCE

Random Access Memory

(RAM)

8GB

Hard Disk 1TB

SOFTWARE DEPENDENCIES:

Requirement Version

Open CV 4.3.0

tkinter GUI 8.6

NumPy 1.18.1

Pandas 1.0.3

PIL 1.1.7

SOFTWARE REQUIREMENTS:

Operating system Windows 10,8,7

Language Python 3.6 version

Editor Visual Studio Code

Design Tool Star UML

11

 CHAPTER-2

Literature Survey

In this chapter, a brief overview of studies made on face recognition will be introduced alongside

some popular face detection and recognition algorithms. This will give a general idea of the history

of systems and approaches that have been used so far.

Sr

No.

Author Algorith

m

Problem Summary

1. Visar Shehu [1] PCA The recognition rate is

56%, having a problem to

recogn

Using HAAR Classifier

and computer vision

algorithm to implement

face recognition

2. Viola, M. J. Jones [8] Viola and

Jones

algorithm

In Viola and Jones the

result depends on the data

and weak classifiers. The

quality of the final

detection depends highly

on the consistence of the

training set. Both the size

of the sets and the

interclass variability are

important factors to take in

account.The analysis

shows very bad results

when in case of multiple

person with different

sequence

The training of the data

should be done in correct

manner so that the quality

final detection will

increase.System overview

should contain the overall

architecture that will give

the clear and

comprehensive

information of the project.

3.

Kasar, M., Bhattacharyya, D. and Kim,

T. [9]

Neural-

Network

Detection process is slow

and computation is

complex.Overall

performance is weaker

than ViolaJones

algorithm.

Accurate only if large size

of image was trained.

4. Pratiksha M. Patel [10] Contrast

Limited

Adaptive

Histogram

Equalizatio

n

(CLAHE)

More sensitive to noise

compared to histogram

equalization.

Unlike, HE which works

on entire image, it works

on small data regions. Each

tile's contrast is enhanced

to ensure uniformly

distributed histogram.

Bilinear interpolation is

then used to merge the

neighboring tiles.

Advantage:- It prevent

over enhancement as well

as noise amplification.

5. Suman Kumar Bhattacharyya &

Kumar Rahul. [6]

Fisher face/

LDA

(Linear

Discrimina

nt Analysis

Bigger database is

required because images

of different expression of

the individual have to be

trained in same class.It

Images of individual with

different illumination,

facial expressions able to

be recognized if more

samples are trained.

12

Overview of Face Recognition: Most face recognition systems rely on face recognition algorithms

to complete the following functional task. The figure below shows a simplified diagram from the

framework for face recognition.

Fig 1:Working of Face detection and recognition

Face Detection, also known as face detector, will detect any given face in the given image or input

dataset, as shown in the diagram above. Face localization uses bounding boxes to recognise where

the faces are in the given image/input dataset. Face Alignment is when the system locates a face

and aligns landmarks like the nose, eyes, chin, and mouth in order to extract features. Feature

extraction is the process of extracting essential features such as the eyes, nose, and mouth so that

they can be tracked. Matching and categorization of features. Matches a face with a trained data set

of images from a database with a small number of images. Face recognition determines whether a

recognized face is positive or negative based on feature matching and classification from a

referenced facial image. Face detection is the process of detecting a face in a digital image using

computer software designed specifically for this purpose.

) depend more on databa

6. Varsha Gupta, Dipesh Sharma [7] Successive

mean

quantizatio

n transform

(SMQT)

The region contain very

similar to grey value

regions will be

misidentified as face.

1. Capable to deal with

lighting problem in object

detection.

2. Efficient in computation

7. Syen navaz [2] PCA, ANN Low accuracy with the big

size of images to train with

PCA

Hight Computational cost

due to com

Using PCA to train and

reduce dimensionality and

ANN to classify input data

and find the pattern.

Using PCA and ANN to do

a better attendance result

13

Face identification implies determining a face's position in the image plane as well as its size or

scale. As shown in the diagram, detecting a face in a digital image is a precondition for any

subsequent face recognition or processing software. The technology's concept, known as the

Student Attendance System, was realized using a machine learning approach. This technology

automatically detects a student's performance and keeps track of important information such as

attendance. As a result, by identifying the student's face, the student's attendance can be

determined. When you recognize the details of attendance, you can move on to the next step. The

Automated Attendance System with Face Recognition proposes that the system is based on face

detection and detection and recognition algorithms, which are used to automatically detect the

students face as they enter the classroom and the system is capable of recognizing him and marking

his attendance. The effectiveness of the images is also being discussed in order to allow much

faster image recognition.

14

CHAPTER-3

PROJECT DESIGN

UML Diagrams

The Unified Modelling Language (UML) is a modelling language that can be used for a variety of

purposes. The primary goal of UML is to establish a standard for visualising the design of a

system. It looks a lot like blueprints in other branches of engineering.

UML is a visual language rather than a programming language. UML diagrams are used to depict a

system's behavior and structure. UML is a modelling, design, and analysis tool for software

engineers, businesspeople, and system architects. Unified Modelling Language was approved as a

standard by the Object Management Group (OMG) in 1997. Since then, OMG has been in charge

of it. In 2005, the International Organization for Standardization (ISO) accepted UML as a

standard. UML has been updated throughout time and is examined on a regular basis.

Goals of UML:

The primary goals in the design of the UML were:

1. Provide users with a ready-to-use, expressive visual modelling language so they

can develop and exchange meaningful models.

2.Provide extensibility and specialization mechanisms to extend the core concepts.

3.Be independent of particular programming languages and development processes.

4. Provide a formal basis for understanding the modelling language.

5. Support higher-level development concepts such as collaborations, frameworks,

patterns and components.

6. Integrate best practice

3.1 The conceptual model of UML

A conceptual model can be defined as a model which is made of concept and their

relationships. A conceptual model is the first step before drawing UML diagrams. It helps to

understand the entities in the real world and how they interact with each other.

To understand how the UML works, we need to know the three elements:

1. UML basic building blocks

2. Rules to connect the building blocks

3.Common mechanisms that apply throughout in the UML.

3.2 Types of Diagrams

UML diagrams are divided into three different categories such as,

⚫ Structural diagram

⚫ Behavioral diagram

⚫ Interaction diagram

15

Structural diagrams

Structural diagrams are used to depict a system's static view. It denotes a component of a system

that contributes to the overall structure of the system. A structural diagram depicts the system's

many objects.

Following are the various structural diagrams in UML:

⚫ Class diagram

⚫ Object diagram

⚫ Package diagram

⚫ Component diagram

⚫ Deployment diagram

Behavioral diagrams

Any real-world system can be represented in one of two ways: static or dynamic. If a system can be

stated in both static and dynamic forms, it is said to be complete. A system's behavior is depicted in

a behavioral diagram.

Structural diagrams are UML diagrams that deal with the static element of a system. Behavioral

diagrams are UML diagrams that deal with the system's moving or dynamic parts.

Following are the various behavioral diagrams in UML:

⚫ Activity diagram

⚫ Use case diagram

⚫ State machine diagram

Interaction diagrams

A subset of behavioral diagrams is an interaction diagram. It's used to show how a system's many

use case elements interact. Interaction diagrams are used to depict how two things interact and how

data flows between them.

Following are the various interaction diagrams in UML:

⚫ Timing diagram

⚫ Sequence diagram

⚫ Collaboration diagram

3.2.1 Use case diagram:

Use Case Diagram captures the system's functionality and requirements by using actors and

use cases. Use Cases model the services, tasks, function that a system needs to perform. Use

cases represent high-level functionalities and how a user will handle the system. Use-cases

are the core concepts of Unified Modelling language modeling.

A Use Case consists of use cases, persons, or various things that are invoking the features

called as actors and the elements that are responsible for implementing the use cases. Use

case diagrams capture the dynamic behavior of a live system. It models how an external

entity interacts with the system to make it work. Use case diagrams are responsible for

visualizing the external things that interact with the part of the system.

16

Fig 2: Use Case Diagram

3.2.2 Class diagram:

A class diagram depicts classes, properties, operations, and their relationships to provide an overview

of a software system. The class name, properties, and operation are all divided into different

compartments in this diagram. The Class Diagram depicts the various categories of items in the

system as well as the various sorts of relationships between them. Almost all Object-Oriented

Methods can be used with this modelling method. Another class can be referred to by a class. It is

possible for a class to have its own objects or to inherit from other classes. The Class Diagram aids

in the development of code for software applications.

Fig 3: Class Diagram

3.2.3 Sequence Diagram:

UML Sequence Diagrams are interaction diagrams that detail how operations are carried

out. They capture the interaction between objects in the context of a collaboration.

Sequence Diagrams are time focus and they show the order of the interaction visually by

using the vertical axis of the diagram to represent time what messages are sent and when.

Sequence Diagrams captures:

⚫ The interaction that takes place in a collaboration that either realizes a use case or

an operation (instance diagrams or generic diagrams)

⚫ High-level interactions between user of the system and the system, between the

system and other systems, or between subsystems.

17

Sequence diagrams can be useful references for businesses and other organizations. Try

drawing a sequence diagram to:

1. Represent the details of a UML use case.

2. Model the logic of a sophisticated procedure, function, or operation.

3. See how objects and components interact with each other to complete a process.

4. Plan and understand the detailed functionality of an existing or future scenario.

Fig 4: Sequence Diagram

3.2.4 Activity Diagram:

Activity diagram is defined as a UML diagram that focuses on the execution and flow of the behavior

of a system instead of implementation. It is also called object-oriented flowchart. Activity diagrams

consist of activities that are made up of actions which apply to behavioral modeling technology. An

activity diagram portrays the control flow from a start point to a finish point showing the various

decision paths that exist while the activity is being executed. We can depict both sequential

processing and concurrent processing of activities using an activity diagram. They are used in

business and process modelling where their primary use is to depict the dynamic aspects of a system.

An activity diagram is very similar to a flowchart.The specific usage is to model the control flow

from one activity to another. This control flow does not include messages.

Activity diagram is suitable for modelling the activity flow of the system. An application can have

multiple systems. Activity diagram also captures these systems and describes the flow from one

system to another.These systems can be database, external queues, or any other system.

Fig 5: Activity Diagram

18

CHAPTER-4

Implementation and Description of project Modules

Methodology:
a) Local Binary Pattern Histogram (LBPH)

b) Haar Cascade Classifier

The project deployed on Haar Cascade classifier to find the positive and negative of the face and

LBPH (Local binary pattern histogram) algorithm for face recognition by using python

programming and OpenCV library.

4.1 Local Binary Pattern Histogram (LBPH):
In computer vision, a local binary pattern is a sort of visual descriptor used for categorization. LBP

is a part of the Texture Spectrum model, which was first presented in 1990. In 1994, LBP was

initially described. It has since been discovered to be a useful feature for texture classification; it

has also been discovered that combining LBP with the Histogram of Oriented Gradients (HOG)

descriptor significantly increases detection performance on specific datasets. Silva et al. compared

numerous enhancements to the original LBP in the field of background subtraction in 2015.

Bouwmans provides a comprehensive overview of the various LBO variations. Mahotas is a

Python library for computer vision that includes an LBP implementation. As of version 2, the

cascade classifiers in Open CV support LBPs.

The LBP Library is a collection of eleven local binary patterns (LBP) algorithms designed to solve

the problem of background subtraction. Face recognition using the Local Binary Patterns

Histogram method (LBPH). It is one of the top performing texture descriptors and is based on the

local binary operator. The demand for facial recognition technologies is growing all the time.

They're utilized for things like access control, surveillance, and unlocking smartphones. We will

utilize LBPH to extract features from an input test image and match them with faces in the system's

database in this project. In 2006, the Local Binary Pattern Histogram algorithm was proposed. It is

based on a binary operator that is local to the user. Because of its computational simplicity and

discriminative capability, it is commonly employed in facial recognition.

The steps involved to achieve this are:

⚫ Creating dataset

⚫ Face acquisition

⚫ Feature extraction

⚫ Classification

The LBPH algorithm is a part of OpenCV.

19

Steps:

Fig 6:Process involved in LBPH

⚫ Suppose we have an image having dimensions N x M.

⚫ We divide it into regions of same height and width resulting in m x m dimension for every

region.

⚫ Local binary operator is used for every region. The LBP operator is defined in

window of 3x3.

here '(Xc,Yc)' is central pixel with intensity 'Ic'. And 'In' being the intensity of the neighbor pixel

⚫ Using median pixel value as threshold, it compares a pixel to its 8 closest pixels using this

function.

⚫ It is set to 1 if the value of the neighbor is larger than or equal to the center value, else it is set

to 0.

⚫ As a result, the 8 neighbors yield a total of 8 binary value.

⚫ We get an 8 bit binary number after combining these values, which is then converted to a

decimal number for our convenience.

Fig 7: LBPH Pixel Value

20

⚫ The pixel LBP value is a decimal number with a range of 0-255.

⚫ The region's histogram is constructed after the LBP values are generated by counting the

number of similar LBP values in the region.

⚫ Following the generation of a histogram for each region, the histograms are merged to generate

a single histogram, which is known as the image's feature vector.

Fig 8: Feature vector of the image

⚫ The histograms of the test image and the photographs in the database are now compared, and

the image with the closest histogram is returned.

⚫ Many techniques, such as Euclidean distance, chi-square, and absolute value, can be used to do

this.

⚫ The Euclidean distance is obtained by comparing the test picture features with features

contained in the dataset. The matching rate is determined by the minimum distance between

the test and the original image.

⚫ If the test image is recognized, we get an image ID from the database as an output.

LBPH can recognize both side and front faces, and it is unaffected by changes in lighting, making

it more adaptable.

4.2 Haar Cascade:
Haar Cascade is a machine learning object recognition approach based on the concept of features

developed by Paul Viola and Michael Jones in their 2001 paper "Rapid Object Detection using a

Boosted Cascade of Basic Features." It's a machine-learning-based method in which a cascade

function is learned using a large number of positive and negative images. After that, it's used to

find things in their photos. Fortunately, OpenCV includes a preconfigured Haar Cascade algorithm

that is divided into categories based on the photos that were used to train it.

Let's have a look at how this algorithm actually works. Haar Cascade is a concept using a 'filter' to

extract features from photographs, analogous to the notion of the Kernel with convolutions Haar

characteristics are the name for these filters.

21

Algorithm:

import numpy as np

import cv2

face_cascade = cv2. Cascade Classifier (“haarcascade_frontalface_default. Xml”)

eye_cascade =cv2.CascadeClassifier (1’haarcascade_eye.xml”)

img = cv2. imread (“image .jpg”)

gray =cv2. CvtColor (img, cv2.COLOR_BGR2GRAY)

faces = face_cascade. detectMultiScale (gray, 1.3, 5)

for (x, y, w, h) in faces:

img = cv2.rectangle (img, (x, y), (x+w, y+h), (255, 0, 0), 2)

roi_gray = gray [y: y+h, x: x+w]

roi_color = img[y: y+h, x: x=w]

eyes = eye_cascade.detectMultiScale (roi_gray)

for (ex, ey, ew, eh) in eyes:

cv2.rectangle (roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)

cv2 .imshow (‘img’, img)

cv2.Waitkey (0)

cv2.destroyAllWindows ()

Initially, the algorithm needs a lot of positive images of faces and negative images

without faces to train the classifier. Then we need to extract features from it. First step is to collect

the Haar features.

⚫ Haar Feature Selection

⚫ Creating Integral images

⚫ Adaboost Training

⚫ Cascading Classifiers

As you can see, our algorithm performed admirably. If you look through the entire library of Haar

Cascade algorithms, you'll notice that their unique models improve when trained on different

aspects of a human's physical appearance, thus you can improve your model by detecting new

characteristics. However, the majority of the traits we calculated are irrelevant. Consider the

following image. Two good aspects are shown in the first row. The first attribute chosen appears to

be the fact that the area around the eyes is frequently darker than the area around the nose and

cheekbones. The second feature chosen is based on the fact that the eyes are darker than the nasal

bridge. However, the same windows applied to cheeks or any other location are ineffective. So,

how do we pick the best features from a list of 160000+ options? Adaboost is the one who

accomplishes it.

We can do this by applying each feature to all of the training photos. It determines the appropriate

threshold for each feature to identify the faces as positive or negative. However, there will probably

be rate misclassifications. We choose characteristics with the lowest error rate, which implies

they're the ones that best distinguish between face and non-facial photos. The Haar Cascade

classifier uses the Haar Wavelet approach to break down pixels in images into squares based on

their function. The "features" discovered are computed using "integral pictures" principles. Haar

Cascades employ the Adaboost learning algorithm, which picks a small number of significant

features from a large number in order to get an efficient output. Classifiers then employ cascade

approaches to recognize faces in images. The Haar Cascade classifier is based on the Viola Jones

detection technique, which is learned by feeding it a set of input faces and non-faces and training a

classifier to recognize them. The Viola Jones face detection algorithm has been trained, and the

weights have been saved to disc. All we have to do is apply the characteristics from the file to our

22

image; if there are faces in the image, we receive the face location. A Haar Cascade is essentially a

classifier that detects the object for which it was trained from the source. Using high-quality photos

and increasing the number of stages for which the classifier is trained gives better results. Face

recognition can thus be made simple by employing the haar cascade classifier technique.

SYSTEM MODULE

1. Database Creation Module

2. Face Detection Module

3. Extraction and Database Matching Module

4. Report Generation Figure

The camera must be placed in a classroom where it can efficiently take photographs of all of the

students. This photograph is now being processed to produce the desired results. The following is

a basic description of the functionality:

The following are the characteristics of several system modules:

1. Create a database:

• Input: Provide input in the form of a single student image captured by the camera.

• Output: When the entire procedure is completed.

The characteristics of all students are stored in a database.

Figure 9: Database Creation

23

Figure 10: Train Database

Figure 11: Attendance marking

Figure 12: Store Train Images

2. Detecting faces:

• Input: This is the input frame.

• Output: From a bunch of photos, find the Face and divide the images.

24

Figure 6: Face Detection

3. Extraction of the Face:

• Input: The face detection module's result

• Output: Extract the pupils' identified images that match the database.

4.Excel sheet Generation:

• Input: An extracted image as an individual.

• Output: Attendance mark for present or absent and store data and Generate report.

Figure 7: Report Generation

25

CHAPTER-5

CODING

AMS_Run.py

import tkinter as tk

from tkinter import *

import cv2

import csv

import os

import numpy as np

from PIL import Image,ImageTk

import pandas as pd

import datetime

import time

window = tk.Tk()

window.title("FAMS-Face Recognition Based Attendance Management System")

window.geometry('1280x720')

window.configure(background='snow')

####GUI for manually fill attendance

def manually_fill():

 global sb

 sb = tk.Tk()

 sb.iconbitmap('AMS.ico')

 sb.title("Enter subject name...")

 sb.geometry('580x320')

 sb.configure(background='snow')

 def err_screen_for_subject():

 def ec_delete():

 ec.destroy()

 global ec

 ec = tk.Tk()

 ec.geometry('300x100')

 ec.iconbitmap('AMS.ico')

 ec.title('Warning!!')

 ec.configure(background='snow')

 Label(ec, text='Please enter your subject name!!!', fg='red', bg='white', font=('times', 16, ' bold

')).pack()

 Button(ec, text='OK', command=ec_delete, fg="black", bg="lawn green", width=9, height=1,

activebackground="Red",

 font=('times', 15, ' bold ')).place(x=90, y=50)

26

 def fill_attendance():

 ts = time.time()

 Date = datetime.datetime.fromtimestamp(ts).strftime('%Y_%m_%d')

 timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

 Time = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

 Hour, Minute, Second = timeStamp.split(":")

 ####Creatting csv of attendance

 ##Create table for Attendance

 date_for_DB = datetime.datetime.fromtimestamp(ts).strftime('%Y_%m_%d')

 global subb

 subb=SUB_ENTRY.get()

 DB_table_name = str(subb + "_" + Date + "_Time_" + Hour + "_" + Minute + "_" + Second)

 import pymysql.connections

 ###Connect to the database

 try:

 global cursor

 connection = pymysql.connect(host='localhost', user='root', password='',

db='manually_fill_attendance')

 cursor = connection.cursor()

 except Exception as e:

 print(e)

 sql = "CREATE TABLE " + DB_table_name + """

 (ID INT NOT NULL AUTO_INCREMENT,

 ENROLLMENT varchar(100) NOT NULL,

 NAME VARCHAR(50) NOT NULL,

 DATE VARCHAR(20) NOT NULL,

 TIME VARCHAR(20) NOT NULL,

 PRIMARY KEY (ID)

);

 """

 try:

 cursor.execute(sql) ##for create a table

 except Exception as ex:

 print(ex) #

 if subb=='':

 err_screen_for_subject()

 else:

 sb.destroy()

 MFW = tk.Tk()

 MFW.iconbitmap('AMS.ico')

 MFW.title("Manually attendance of "+ str(subb))

27

 MFW.geometry('880x470')

 MFW.configure(background='snow')

 def del_errsc2():

 errsc2.destroy()

 def err_screen1():

 global errsc2

 errsc2 = tk.Tk()

 errsc2.geometry('330x100')

 errsc2.iconbitmap('AMS.ico')

 errsc2.title('Warning!!')

 errsc2.configure(background='snow')

 Label(errsc2, text='Please enter Student & Enrollment!!!', fg='red', bg='white',

 font=('times', 16, ' bold ')).pack()

 Button(errsc2, text='OK', command=del_errsc2, fg="black", bg="lawn green", width=9,

height=1,

 activebackground="Red", font=('times', 15, ' bold ')).place(x=90, y=50)

 def testVal(inStr, acttyp):

 if acttyp == '1': # insert

 if not inStr.isdigit():

 return False

 return True

 ENR = tk.Label(MFW, text="Enter Enrollment", width=15, height=2, fg="white",

bg="blue2",

 font=('times', 15, ' bold '))

 ENR.place(x=30, y=100)

 STU_NAME = tk.Label(MFW, text="Enter Student name", width=15, height=2,

fg="white", bg="blue2",

 font=('times', 15, ' bold '))

 STU_NAME.place(x=30, y=200)

 global ENR_ENTRY

 ENR_ENTRY = tk.Entry(MFW, width=20,validate='key', bg="yellow", fg="red",

font=('times', 23, ' bold '))

 ENR_ENTRY['validatecommand'] = (ENR_ENTRY.register(testVal), '%P', '%d')

 ENR_ENTRY.place(x=290, y=105)

 def remove_enr():

 ENR_ENTRY.delete(first=0, last=22)

 STUDENT_ENTRY = tk.Entry(MFW, width=20, bg="yellow", fg="red", font=('times', 23,

' bold '))

 STUDENT_ENTRY.place(x=290, y=205)

 def remove_student():

28

 STUDENT_ENTRY.delete(first=0, last=22)

 ####get important variable

 def enter_data_DB():

 ENROLLMENT = ENR_ENTRY.get()

 STUDENT = STUDENT_ENTRY.get()

 if ENROLLMENT=='':

 err_screen1()

 elif STUDENT=='':

 err_screen1()

 else:

 time = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

 Hour, Minute, Second = time.split(":")

 Insert_data = "INSERT INTO " + DB_table_name + "

(ID,ENROLLMENT,NAME,DATE,TIME) VALUES (0, %s, %s, %s,%s)"

 VALUES = (str(ENROLLMENT), str(STUDENT), str(Date), str(time))

 try:

 cursor.execute(Insert_data, VALUES)

 except Exception as e:

 print(e)

 ENR_ENTRY.delete(first=0, last=22)

 STUDENT_ENTRY.delete(first=0, last=22)

 def create_csv():

 import csv

 cursor.execute("select * from " + DB_table_name + ";")

 csv_name='C:/Users/kusha/PycharmProjects/Attendace managemnt

system/Attendance/Manually Attendance/'+DB_table_name+'.csv'

 with open(csv_name, "w") as csv_file:

 csv_writer = csv.writer(csv_file)

 csv_writer.writerow([i[0] for i in cursor.description]) # write headers

 csv_writer.writerows(cursor)

 O="CSV created Successfully"

 Notifi.configure(text=O, bg="Green", fg="white", width=33, font=('times', 19, 'bold'))

 Notifi.place(x=180, y=380)

 import csv

 import tkinter

 root = tkinter.Tk()

 root.title("Attendance of " + subb)

 root.configure(background='snow')

 with open(csv_name, newline="") as file:

 reader = csv.reader(file)

 r = 0

 for col in reader:

 c = 0

 for row in col:

 # i've added some styling

 label = tkinter.Label(root, width=13, height=1, fg="black", font=('times', 13, '

29

bold '),

 bg="lawn green", text=row, relief=tkinter.RIDGE)

 label.grid(row=r, column=c)

 c += 1

 r += 1

 root.mainloop()

 Notifi = tk.Label(MFW, text="CSV created Successfully", bg="Green", fg="white",

width=33,

 height=2, font=('times', 19, 'bold'))

 c1ear_enroll = tk.Button(MFW, text="Clear", command=remove_enr, fg="black",

bg="deep pink", width=10,

 height=1,

 activebackground="Red", font=('times', 15, ' bold '))

 c1ear_enroll.place(x=690, y=100)

 c1ear_student = tk.Button(MFW, text="Clear", command=remove_student, fg="black",

bg="deep pink", width=10,

 height=1,

 activebackground="Red", font=('times', 15, ' bold '))

 c1ear_student.place(x=690, y=200)

 DATA_SUB = tk.Button(MFW, text="Enter Data",command=enter_data_DB, fg="black",

bg="lime green", width=20,

 height=2,

 activebackground="Red", font=('times', 15, ' bold '))

 DATA_SUB.place(x=170, y=300)

 MAKE_CSV = tk.Button(MFW, text="Convert to CSV",command=create_csv, fg="black",

bg="red", width=20,

 height=2,

 activebackground="Red", font=('times', 15, ' bold '))

 MAKE_CSV.place(x=570, y=300)

 def attf():

 import subprocess

 subprocess.Popen(r'explorer /select,"C:\Users\Soumya Shree\Downloads\Project

material\Attendace_management_system\Attendance\Manually Attendance\-------Check

atttendance-------"')

 attf = tk.Button(MFW, text="Check Sheets",command=attf,fg="black" ,bg="lawn green"

,width=12 ,height=1 ,activebackground = "Red" ,font=('times', 14, ' bold '))

 attf.place(x=730, y=410)

 MFW.mainloop()

30

 SUB = tk.Label(sb, text="Enter Subject", width=15, height=2, fg="white", bg="blue2",

font=('times', 15, ' bold '))

 SUB.place(x=30, y=100)

 global SUB_ENTRY

 SUB_ENTRY = tk.Entry(sb, width=20, bg="yellow", fg="red", font=('times', 23, ' bold '))

 SUB_ENTRY.place(x=250, y=105)

 fill_manual_attendance = tk.Button(sb, text="Fill Attendance",command=fill_attendance,

fg="white", bg="deep pink", width=20, height=2,

 activebackground="Red", font=('times', 15, ' bold '))

 fill_manual_attendance.place(x=250, y=160)

 sb.mainloop()

##For clear textbox

def clear():

 txt.delete(first=0, last=22)

def clear1():

 txt2.delete(first=0, last=22)

def del_sc1():

 sc1.destroy()

def err_screen():

 global sc1

 sc1 = tk.Tk()

 sc1.geometry('300x100')

 sc1.iconbitmap('AMS.ico')

 sc1.title('Warning!!')

 sc1.configure(background='snow')

 Label(sc1,text='Enrollment & Name required!!!',fg='red',bg='white',font=('times', 16, ' bold

')).pack()

 Button(sc1,text='OK',command=del_sc1,fg="black" ,bg="lawn green" ,width=9 ,height=1,

activebackground = "Red" ,font=('times', 15, ' bold ')).place(x=90,y= 50)

##Error screen2

def del_sc2():

 sc2.destroy()

def err_screen1():

 global sc2

 sc2 = tk.Tk()

 sc2.geometry('300x100')

 sc2.iconbitmap('AMS.ico')

 sc2.title('Warning!!')

 sc2.configure(background='snow')

 Label(sc2,text='Please enter your subject name!!!',fg='red',bg='white',font=('times', 16, ' bold

')).pack()

 Button(sc2,text='OK',command=del_sc2,fg="black" ,bg="lawn green" ,width=9 ,height=1,

activebackground = "Red" ,font=('times', 15, ' bold ')).place(x=90,y= 50)

31

###For take images for datasets

def take_img():

 l1 = txt.get()

 l2 = txt2.get()

 if l1 == '':

 err_screen()

 elif l2 == '':

 err_screen()

 else:

 try:

 cam = cv2.VideoCapture(0)

 detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

 Enrollment = txt.get()

 Name = txt2.get()

 sampleNum = 0

 while (True):

 ret, img = cam.read()

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 faces = detector.detectMultiScale(gray, 1.3, 5)

 for (x, y, w, h) in faces:

 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

 # incrementing sample number

 sampleNum = sampleNum + 1

 # saving the captured face in the dataset folder

 cv2.imwrite("TrainingImage/ " + Name + "." + Enrollment + '.' + str(sampleNum) +

".jpg",

 gray[y:y + h, x:x + w])

 cv2.imshow('Frame', img)

 # wait for 100 miliseconds

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 # break if the sample number is morethan 100

 elif sampleNum > 70:

 break

 cam.release()

 cv2.destroyAllWindows()

 ts = time.time()

 Date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')

 Time = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

 row = [Enrollment, Name, Date, Time]

 with open('StudentDetails\StudentDetails.csv', 'a+') as csvFile:

 writer = csv.writer(csvFile, delimiter=',')

 writer.writerow(row)

 csvFile.close()

 res = "Images Saved for Enrollment : " + Enrollment + " Name : " + Name

 Notification.configure(text=res, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))

 Notification.place(x=250, y=400)

 except FileExistsError as F:

32

 f = 'Student Data already exists'

 Notification.configure(text=f, bg="Red", width=21)

 Notification.place(x=450, y=400)

###for choose subject and fill attendance

def subjectchoose():

 def Fillattendances():

 sub=tx.get()

 now = time.time() ###For calculate seconds of video

 future = now + 20

 if time.time() < future:

 if sub == '':

 err_screen1()

 else:

 recognizer = cv2.face.LBPHFaceRecognizer_create() #

cv2.createLBPHFaceRecognizer()

 try:

 recognizer.read("TrainingImageLabel\Trainner.yml")

 except:

 e = 'Model not found,Please train model'

 Notifica.configure(text=e, bg="red", fg="black", width=33, font=('times', 15, 'bold'))

 Notifica.place(x=20, y=250)

 harcascadePath = "haarcascade_frontalface_default.xml"

 faceCascade = cv2.CascadeClassifier(harcascadePath)

 df = pd.read_csv("StudentDetails\StudentDetails.csv")

 cam = cv2.VideoCapture(0)

 font = cv2.FONT_HERSHEY_SIMPLEX

 col_names = ['Enrollment', 'Name', 'Date', 'Time']

 attendance = pd.DataFrame(columns=col_names)

 while True:

 ret, im = cam.read()

 gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

 faces = faceCascade.detectMultiScale(gray, 1.2, 5)

 for (x, y, w, h) in faces:

 global Id

 Id, conf = recognizer.predict(gray[y:y + h, x:x + w])

 if (conf <70):

 print(conf)

 global Subject

 global aa

 global date

 global timeStamp

 Subject = tx.get()

 ts = time.time()

 date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')

 timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

33

 aa = df.loc[df['Enrollment'] == Id]['Name'].values

 global tt

 tt = str(Id) + "-" + aa

 En = '15624031' + str(Id)

 attendance.loc[len(attendance)] = [Id, aa, date, timeStamp]

 cv2.rectangle(im, (x, y), (x + w, y + h), (0, 260, 0), 7)

 cv2.putText(im, str(tt), (x + h, y), font, 1, (255, 255, 0,), 4)

 else:

 Id = 'Unknown'

 tt = str(Id)

 cv2.rectangle(im, (x, y), (x + w, y + h), (0, 25, 255), 7)

 cv2.putText(im, str(tt), (x + h, y), font, 1, (0, 25, 255), 4)

 if time.time() > future:

 break

 attendance = attendance.drop_duplicates(['Enrollment'], keep='first')

 cv2.imshow('Filling attedance..', im)

 key = cv2.waitKey(30) & 0xff

 if key == 27:

 break

 ts = time.time()

 date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')

 timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')

 Hour, Minute, Second = timeStamp.split(":")

 fileName = "Attendance/" + Subject + "_" + date + "_" + Hour + "-" + Minute + "-" +

Second + ".csv"

 attendance = attendance.drop_duplicates(['Enrollment'], keep='first')

 print(attendance)

 attendance.to_csv(fileName, index=False)

 ##Create table for Attendance

 date_for_DB = datetime.datetime.fromtimestamp(ts).strftime('%Y_%m_%d')

 DB_Table_name = str(Subject + "_" + date_for_DB + "_Time_" + Hour + "_" + Minute

+ "_" + Second)

 import pymysql.connections

 ###Connect to the database

 try:

 global cursor

 connection = pymysql.connect(host='localhost', user='root', password='',

db='Face_reco_fill')

 cursor = connection.cursor()

 except Exception as e:

 print(e)

 sql = "CREATE TABLE " + DB_Table_name + """

 (ID INT NOT NULL AUTO_INCREMENT,

34

 ENROLLMENT varchar(100) NOT NULL,

 NAME VARCHAR(50) NOT NULL,

 DATE VARCHAR(20) NOT NULL,

 TIME VARCHAR(20) NOT NULL,

 PRIMARY KEY (ID)

);

 """

 ####Now enter attendance in Database

 insert_data = "INSERT INTO " + DB_Table_name + "

(ID,ENROLLMENT,NAME,DATE,TIME) VALUES (0, %s, %s, %s,%s)"

 VALUES = (str(Id), str(aa), str(date), str(timeStamp))

 try:

 cursor.execute(sql) ##for create a table

 cursor.execute(insert_data, VALUES)##For insert data into table

 except Exception as ex:

 print(ex) #

 M = 'Attendance filled Successfully'

 Notifica.configure(text=M, bg="Green", fg="white", width=33, font=('times', 15, 'bold'))

 Notifica.place(x=20, y=250)

 cam.release()

 cv2.destroyAllWindows()

 import csv

 import tkinter

 root = tkinter.Tk()

 root.title("Attendance of " + Subject)

 root.configure(background='snow')

 cs = 'C:\Users\Soumya Shree\Downloads\Project

material\Attendace_management_system/' + fileName

 with open(cs, newline="") as file:

 reader = csv.reader(file)

 r = 0

 for col in reader:

 c = 0

 for row in col:

 # i've added some styling

 label = tkinter.Label(root, width=8, height=1, fg="black", font=('times', 15, ' bold

'),

 bg="lawn green", text=row, relief=tkinter.RIDGE)

 label.grid(row=r, column=c)

 c += 1

 r += 1

 root.mainloop()

 print(attendance)

 ###windo is frame for subject chooser

35

 windo = tk.Tk()

 windo.iconbitmap('AMS.ico')

 windo.title("Enter subject name...")

 windo.geometry('580x320')

 windo.configure(background='snow')

 Notifica = tk.Label(windo, text="Attendance filled Successfully", bg="Green", fg="white",

width=33,

 height=2, font=('times', 15, 'bold'))

 def Attf():

 import subprocess

 subprocess.Popen(r'explorer /select,"C:\Users\Soumya Shree\Downloads\Project

material\Attendace_management_system\Attendance\-------Check atttendance-------"')

 attf = tk.Button(windo, text="Check Sheets",command=Attf,fg="black" ,bg="lawn green"

,width=12 ,height=1 ,activebackground = "Red" ,font=('times', 14, ' bold '))

 attf.place(x=430, y=255)

 sub = tk.Label(windo, text="Enter Subject", width=15, height=2, fg="white", bg="blue2",

font=('times', 15, ' bold '))

 sub.place(x=30, y=100)

 tx = tk.Entry(windo, width=20, bg="yellow", fg="red", font=('times', 23, ' bold '))

 tx.place(x=250, y=105)

 fill_a = tk.Button(windo, text="Fill Attendance", fg="white",command=Fillattendances,

bg="deep pink", width=20, height=2,

 activebackground="Red", font=('times', 15, ' bold '))

 fill_a.place(x=250, y=160)

 windo.mainloop()

def admin_panel():

 win = tk.Tk()

 win.iconbitmap('AMS.ico')

 win.title("LogIn")

 win.geometry('880x420')

 win.configure(background='snow')

 def log_in():

 username = un_entr.get()

 password = pw_entr.get()

 if username == 'soumya9525' :

 if password == 'Soumya123@':

 win.destroy()

 import csv

 import tkinter

 root = tkinter.Tk()

 root.title("Student Details")

36

 root.configure(background='snow')

 cs = 'C:\Users\Soumya Shree\Downloads\Project

material\Attendace_management_system\StudentDetails\StudentDetails.csv'

 with open(cs, newline="") as file:

 reader = csv.reader(file)

 r = 0

 for col in reader:

 c = 0

 for row in col:

 # i've added some styling

 label = tkinter.Label(root, width=8, height=1, fg="black", font=('times', 15, ' bold

'),

 bg="lawn green", text=row, relief=tkinter.RIDGE)

 label.grid(row=r, column=c)

 c += 1

 r += 1

 root.mainloop()

 else:

 valid = 'Incorrect ID or Password'

 Nt.configure(text=valid, bg="red", fg="black", width=38, font=('times', 19, 'bold'))

 Nt.place(x=120, y=350)

 else:

 valid ='Incorrect ID or Password'

 Nt.configure(text=valid, bg="red", fg="black", width=38, font=('times', 19, 'bold'))

 Nt.place(x=120, y=350)

 Nt = tk.Label(win, text="Attendance filled Successfully", bg="Green", fg="white", width=40,

 height=2, font=('times', 19, 'bold'))

 # Nt.place(x=120, y=350)

 un = tk.Label(win, text="Enter username", width=15, height=2, fg="white", bg="blue2",

 font=('times', 15, ' bold '))

 un.place(x=30, y=50)

 pw = tk.Label(win, text="Enter password", width=15, height=2, fg="white", bg="blue2",

 font=('times', 15, ' bold '))

 pw.place(x=30, y=150)

 def c00():

 un_entr.delete(first=0, last=22)

 un_entr = tk.Entry(win, width=20, bg="yellow", fg="red", font=('times', 23, ' bold '))

 un_entr.place(x=290, y=55)

 def c11():

37

 pw_entr.delete(first=0, last=22)

 pw_entr = tk.Entry(win, width=20,show="*", bg="yellow", fg="red", font=('times', 23, ' bold '))

 pw_entr.place(x=290, y=155)

 c0 = tk.Button(win, text="Clear", command=c00, fg="black", bg="deep pink", width=10,

height=1,

 activebackground="Red", font=('times', 15, ' bold '))

 c0.place(x=690, y=55)

 c1 = tk.Button(win, text="Clear", command=c11, fg="black", bg="deep pink", width=10,

height=1,

 activebackground="Red", font=('times', 15, ' bold '))

 c1.place(x=690, y=155)

 Login = tk.Button(win, text="LogIn", fg="black", bg="lime green", width=20,

 height=2,

 activebackground="Red",command=log_in, font=('times', 15, ' bold '))

 Login.place(x=290, y=250)

 win.mainloop()

###For train the model

def trainimg():

 recognizer = cv2.face.LBPHFaceRecognizer_create()

 global detector

 detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

 try:

 global faces,Id

 faces, Id = getImagesAndLabels("TrainingImage")

 except Exception as e:

 l='please make "TrainingImage" folder & put Images'

 Notification.configure(text=l, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))

 Notification.place(x=350, y=400)

 recognizer.train(faces, np.array(Id))

 try:

 recognizer.save("TrainingImageLabel\Trainner.yml")

 except Exception as e:

 q='Please make "TrainingImageLabel" folder'

 Notification.configure(text=q, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))

 Notification.place(x=350, y=400)

 res = "Model Trained" # +",".join(str(f) for f in Id)

 Notification.configure(text=res, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))

 Notification.place(x=250, y=400)

def getImagesAndLabels(path):

 imagePaths = [os.path.join(path, f) for f in os.listdir(path)]

38

 # create empth face list

 faceSamples = []

 # create empty ID list

 Ids = []

 # now looping through all the image paths and loading the Ids and the images

 for imagePath in imagePaths:

 # loading the image and converting it to gray scale

 pilImage = Image.open(imagePath).convert('L')

 # Now we are converting the PIL image into numpy array

 imageNp = np.array(pilImage, 'uint8')

 # getting the Id from the image

 Id = int(os.path.split(imagePath)[-1].split(".")[1])

 # extract the face from the training image sample

 faces = detector.detectMultiScale(imageNp)

 # If a face is there then append that in the list as well as Id of it

 for (x, y, w, h) in faces:

 faceSamples.append(imageNp[y:y + h, x:x + w])

 Ids.append(Id)

 return faceSamples, Ids

window.grid_rowconfigure(0, weight=1)

window.grid_columnconfigure(0, weight=1)

window.iconbitmap('AMS.ico')

def on_closing():

 from tkinter import messagebox

 if messagebox.askokcancel("Quit", "Do you want to quit?"):

 window.destroy()

window.protocol("WM_DELETE_WINDOW", on_closing)

message = tk.Label(window, text="Face-Recognition-Based-Attendance-Management-System",

bg="cyan", fg="black", width=50,

 height=3, font=('times', 30, 'italic bold '))

message.place(x=80, y=20)

Notification = tk.Label(window, text="All things good", bg="Green", fg="white", width=15,

 height=3, font=('times', 17, 'bold'))

lbl = tk.Label(window, text="Enter Enrollment", width=20, height=2, fg="black", bg="deep pink",

font=('times', 15, ' bold '))

lbl.place(x=200, y=200)

def testVal(inStr,acttyp):

 if acttyp == '1': #insert

 if not inStr.isdigit():

 return False

 return True

39

txt = tk.Entry(window, validate="key", width=20, bg="yellow", fg="red", font=('times', 25, ' bold

'))

txt['validatecommand'] = (txt.register(testVal),'%P','%d')

txt.place(x=550, y=210)

lbl2 = tk.Label(window, text="Enter Name", width=20, fg="black", bg="deep pink", height=2,

font=('times', 15, ' bold '))

lbl2.place(x=200, y=300)

txt2 = tk.Entry(window, width=20, bg="yellow", fg="red", font=('times', 25, ' bold '))

txt2.place(x=550, y=310)

clearButton = tk.Button(window, text="Clear",command=clear,fg="black" ,bg="deep pink"

,width=10 ,height=1 ,activebackground = "Red" ,font=('times', 15, ' bold '))

clearButton.place(x=950, y=210)

clearButton1 = tk.Button(window, text="Clear",command=clear1,fg="black" ,bg="deep pink"

,width=10 ,height=1, activebackground = "Red" ,font=('times', 15, ' bold '))

clearButton1.place(x=950, y=310)

AP = tk.Button(window, text="Check Register students",command=admin_panel,fg="black"

,bg="cyan" ,width=19 ,height=1, activebackground = "Red" ,font=('times', 15, ' bold '))

AP.place(x=990, y=410)

takeImg = tk.Button(window, text="Take Images",command=take_img,fg="white" ,bg="blue2"

,width=20 ,height=3, activebackground = "Red" ,font=('times', 15, ' bold '))

takeImg.place(x=90, y=500)

trainImg = tk.Button(window, text="Train Images",fg="black",command=trainimg ,bg="lawn

green" ,width=20 ,height=3, activebackground = "Red" ,font=('times', 15, ' bold '))

trainImg.place(x=390, y=500)

FA = tk.Button(window, text="Automatic Attendace",fg="white",command=subjectchoose

,bg="blue2" ,width=20 ,height=3, activebackground = "Red" ,font=('times', 15, ' bold '))

FA.place(x=690, y=500)

quitWindow = tk.Button(window, text="Manually Fill Attendance", command=manually_fill

,fg="black" ,bg="lawn green" ,width=20 ,height=3, activebackground = "Red" ,font=('times', 15, '

bold '))

quitWindow.place(x=990, y=500)

window.mainloop()

40

testing.py

import cv2

import numpy as np

recognizer = cv2.face.LBPHFaceRecognizer_create()

recognizer.read('TrainingImageLabel/trainner.yml')

cascadePath = "haarcascade_frontalface_default.xml"

faceCascade = cv2.CascadeClassifier(cascadePath)

font = cv2.FONT_HERSHEY_SIMPLEX

cam = cv2.VideoCapture(0)

while True:

 ret, im =cam.read()

 gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

 faces=faceCascade.detectMultiScale(gray, 1.2,5)

 for(x,y,w,h) in faces:

 Id, conf = recognizer.predict(gray[y:y+h,x:x+w])

 # # else:

 # # Id="Unknown"

 # cv2.rectangle(im, (x-22,y-90), (x+w+22, y-22), (0,255,0), -1)

 cv2.rectangle(im, (x, y), (x + w, y + h), (0, 260, 0), 7)

 cv2.putText(im, str(Id), (x,y-40),font, 2, (255,255,255), 3)

 # cv2.putText(im, str(Id), (x + h, y), font, 1, (0, 260, 0), 2)

 cv2.imshow('im',im)

 if cv2.waitKey(10) & 0xFF==ord('q'):

 break

cam.release()

cv2.destroyAllWindows()

41

training.py

import cv2,os

import numpy as np

from PIL import Image

recognizer = cv2.face.LBPHFaceRecognizer_create()

recognizer=cv2.face.createFisherFaceRecognizer_create()

detector= cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

def getImagesAndLabels(path):

 #get the path of all the files in the folder

 imagePaths=[os.path.join(path,f) for f in os.listdir(path)]

 #create empth face list

 faceSamples=[]

 #create empty ID list

 Ids=[]

 #now looping through all the image paths and loading the Ids and the images

 for imagePath in imagePaths:

 #loading the image and converting it to gray scale

 pilImage=Image.open(imagePath).convert('L')

 #Now we are converting the PIL image into numpy array

 imageNp=np.array(pilImage,'uint8')

 #getting the Id from the image

 Id = int(os.path.split(imagePath)[-1].split(".")[1])

 # extract the face from the training image sample

 faces=detector.detectMultiScale(imageNp)

 #If a face is there then append that in the list as well as Id of it

 for (x,y,w,h) in faces:

 faceSamples.append(imageNp[y:y+h,x:x+w])

 Ids.append(Id)

 return faceSamples,Ids

faces,Ids = getImagesAndLabels('TrainingImage')

recognizer.train(faces, np.array(Ids))

recognizer.save('TrainingImageLabel/trainner.yml')

42

CHAPTER-6

RESULTS

The existing system for managing attendance is simple and effective. After 20 minutes of lecture,

the camera records the photos. After receiving and acknowledging students, attendance is recorded

in the database, and a report is generated for each student. The Automated Face Recognition

Attendance System aids in the improvement of accuracy and speed, resulting in high-precision real-

time attendance to fulfil the demand for automatic classroom evaluation. This technique is intended

to reduce the amount of time and effort required by humans to manually take attendance at each

college. The amount of precision is determined by the image quality captured by the camera. It is

necessary to have appropriate illumination in order to see the face clearly. When using a high-

resolution camera, performance is likely to improve.

43

CHAPTER-7

Conclusion and Future Scope

The goal of our project is to capture images of students, convert them into frames, connect them to a

database to confirm their presence or absence, and record attendance for each student. Because the

attendance marking procedure is done without human intervention, which is the system's main scope.

Teachers benefit from automated attendance systems in terms of saving time and lowering workload.

However, this technique could be improved by displaying the number of pupils present on the class

display board right away. As a result, the teacher will be able to recognize the number of missing

students in order to rectify the situation.

Furthermore, by utilizing multiple facial detections to indicate attendance of all visible faces in a

single attempt, we may simplify and improve the system's efficiency. Face recognition will be used

for attendance marking in a more cost-effective and efficient manner. In the near future, we may

potentially develop an Android application for this system.

44

REFRENCES

[1] V. Shehu and A. Dika, “Using real time computer vision algorithms in automatic attendance

management systems,” Inf. Technol. Interfaces (ITI), 2010 32nd Int. Conf., pp. 397–402, 2010.

[2] A. S. S. NAVAZ and T. D. S. P. MAZUMDER, “Face Recognition using Principal Component

Analysis and Neural Networks,” vol. 1, no. April, pp. 91–94, 2001.

[3] Grundland M, Dodgson N (2007) Decolorize: Fast, contrast enhancing, color to grayscale

conversion. Pattern Recognition 40:

2891-2896.

[4] F. Ibikunle, Agbetuvi F. and Ukpere G. “Face Recognition Using Line Edge Mapping

Approach.” American Journal of

Electrical and Electronic Engineering 1.3(2013): 52-59

[5] T. Kanade, Computer Recognition of Human Faces. Basel and Stuttgart: Birkhauser Verlag

1997.

[6] Suman Kumar Bhattacharyya & Kumar Rahul. (2013), “Face Recognition by Linear

Discriminant Analysis”, International Journal of Communication Network Security, V2(2), pp 31-

35. (LDA)

[7] Varsha Gupta, Dipesh Sharma. (2014), “A Study of Various Face Detection Methods”,

International Journal of Advanced Research in Computer and Communication Engineering), vol.3,

no. 5.

[8] Viola, M. J. Jones. (2004), “Robust Real-Time Face Detection”, International Journal of

Computer Vision 57(2), 137– 154

[9] Pratiksha M. Patel (2016). Contrast Enhancement of Images and videos using Histogram

Equalization. International Journal on Recent and Innovation Trends in Computing and

Communication.V4 (11).

[10] Kasar, M., Bhattacharyya, D. and Kim, T. (2016). Face Recognition Using Neural Network: A

Review. International Journal of Security and Its Applications, 10(3), pp.81-100

45

