

A Project Report

on

Violence Detection in Real Life Videos

using Convolutional Neural Networks

Submitted in partial fulfillment of the

 requirement for the award of the degree of

B.Tech Computer Science and Engineering

with Specialization in Artificial Intelligence

& Machine Learning

Submitted By

NANDINI BAGGA GAJANAND SINGH

 18021180008 18021180028

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

DECEMBER, 2021

Under The Supervision of

Dr. B. Balamururgan

Professor

Department of Computer Science and Engineering

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled

“Violence Detection in Real Life Videos using Convolutional Neural Networks”

in partial fulfillment of the requirements for the award of the BACHELOR OF

TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING submitted

in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of JULY-2021 to

DECEMBER-2021, under the supervision of Dr. B. Balamurugan, Professor,

Department of Computer Science and Engineering of School of Computing

Science and Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the

award of any other degree of this or any other place.

18SCSE1180008 - NANDINI BAGGA

18SCSE1180029 - GAJANAND SINGH

This is to certify that the above statement made by the candidates is correct to

the best of my knowledge.

Supervisor

 (Dr. B. Balamurugan, Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1180008

- NANDINI BAGGA, 18SCSE1180029 - GAJANAND SINGH has been held on

_________________ and his/her work is recommended for the award of

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

Abstract

Detecting violence in video recordings through artificial intelligence is critical for

law requirements and also keeping track of public security with the help of

surveillance cameras. Additionally, it very well might be an incredible tool for

protecting children from accessing inappropriate content and assist guardians with

settling on a better choice with regards to what their children should watch. This is

a difficult issue since the actual meaning of violence is expansive and exceptionally

abstract. Subsequently, detecting such subtleties from recordings with no human

management isn't just technical, yet in addition a theoretical issue. In light of this, in

this work we will investigate how to more readily depict the idea of violence using

a convolutional neural network.

At first by breaking it into more even handed and concrete related ideas, like fights,

explosions, blood, and so on, for later combining them in a meta-order to depict

violence. We will likewise investigate approaches to address time-based events for

the network, since numerous violent demonstrations are portrayed in terms of

development. And at long last we will investigate how to localize violent events,

since numerous video transfers don't contain just violence, yet are a combination of

violent and non-violent scenes.

There are a lot of pretrained convolutional neural networks which can be used for

image classification. These models have learned to extract powerful and informative

features from natural images and use it as a starting point to learn a new task. These

networks have been trained on more than a million images and can classify images

into 1000 object categories. We will be using a pretrained network with transfer

learning because it's typically much faster and easier than training a network from

scratch. For this project we will be exploring which model will give the best accuracy

for detecting violence in videos using various deep learning techniques.

We have taken a dataset of 500 videos of violence and non-violence each. We have

tried video classification using two pre-trained CNNs InceptionV3 and

MobilenetV2 models. Out of these two models MobileNetV2 gave a better result.

InceptionV3 gave an accuracy of 60% while MobilenetV2 gave a validation

accuracy of 90%. We were able to reduce the loss using the MobileNetV2 model.

In future we want to make better use of PCA and validation techniques in order to

improve the accuracy and reduce loss. We can also extend this project to violence

recognition in crowds. The model can give better results when it's trained with more

data.

Keywords: Violence detection; violence recognition; deep learning; convolutional

neural network; inception v3; MobileNetV2

List of Figures

S.no Figure Page number

1 Proposed framework for violence detection using DL 4

2 Training and Validation Loss and Accuracy Graphs 41

 List of Tables

S.no Table Page number

1 Classification report for the MobileNetV2 model. 37

2 MobileNetV2 Model Performance with respect to
accuracy.

42

Table of Contents

Title Page No.

Candidates Declaration

Acknowledgement

Abstract

List of Figures

List of Tables

Chapter 1 Introduction 1

Chapter 2 Literature Survey 6

Chapter 3 Functionality/ Working of Project 8

 3.1 Dataset 8

 3.2 Extracting Frames 8

 3.3 MobileNetV2 9

 3.4 InceptionV3 10

 3.5 Implementation Details 13

 3.6 Code 14

Chapter 4 Results and Discussion 40

Chapter 5 Conclusion 45

References 46

1

CHAPTER-1

Introduction

The acknowledgment of human activities from surveillance videos has turned into a

functioning and reformist research area in machine learning. The classification of

media content as recordings depends on human activity, which portrays general

human conduct. Human conduct and activities are perceived dependent on various

video includes that arrange activities as typical i.e. Normal or strange i.e. abnormal.

Movements of every kind of regular daily existence, including strolling, running on

the ground, eating food, plunking down and ascending from a seat, lying in bed,

picking a thing from a table or floor, and diving steps, are called ordinary activities.

Abnormal activities, additionally called dubious activities, veer off from normal

human activities [1]. The actions are abnormal for one situation but may be

considered normal for another situation. For example, running on a playground is

normal, yet running in a bank or a commercial center is considered unusual. The

most pivotal and critical unusual exercises are brutal exercises that truly portray

activities to cause mischief or harm with forceful practices. Fighting, killing, and

beating somebody are the most well-known instances of savagery in public places.

Violent behavior in public settings poses a real threat to individual safety and society

stability. Currently, a great amount of equipment is deployed in public locations,

putting a huge pressure on security personnel. As a result, identifying violent

occurrences from vast amounts of surveillance video data [2] is critical. Violent

activities are physically examined through the screen of a surveillance camera in a

semi-computerized system. This isn't useful because regular observation is required,

yet it is inconvenient to constantly watch screens to see fierce exercises. Because

2

such workouts can occur at any time, there is no space for error when performing

them. It is important to convert such a semi-robotized system into a completely

automated system capable of identifying and detecting aggressive behaviors without

human intervention. Fully mechanized systems, as opposed to semi-robotized

systems, are more capable and capable of detecting object developments and

perceiving human action thanks to computer vision and AI. Due to a variety of

circumstances such as real-time classification, low video quality of security cameras,

and fluctuating light intensity during monitoring, detecting human action is a

difficult process.

There is a demand for an effective and easy to use violence detection tool which can

be integrated with live surveillance cameras so that detection of violence becomes

automated and in this way we can take a step forward in preventing violence. A

violence detection tool can help reduce violence in various situations like, domestic

violence, public violence, violence in crowds, violence at different institutions like

schools, colleges, law and enforcement departments, etc.

Violent crimes shouldn’t go unnoticed, there should be a notification system for

when violent behavior is identified, it should be notified to the nearest station. It will

be really helpful for people who cannot speak for themselves due to fear and other

situational reasons, like differently abled people, youngsters and old-aged

individuals. Studies have identified the fact that violent activities take a toll on

mental health. We should make sure that we protect the mental health of everyone,

especially when at a young age, traumatic experiences can haunt you for life. AI

has provided ways, many in number, to automate the strenuous activities that would

otherwise take human presence and hours of work to accomplish a simple but

3

important task at hand. Computer vision is a branch of deep learning and artificial

intelligence which allows computers to see the world through the lens of cameras,

for recognition, classification and detection of objects and classes.

We propose in this paper to use a pre-trained 3D Convolutional Neural Network

called MobileNetV2 in conjunction with InceptionV3. This work makes the

following unique contributions to the best in class in violence detection:

● It demonstrates how a deep neural network, pre-trained on datasets that are not

expected to be used for violence detection, can be used to calculate video feature

descriptors, which can subsequently be used to train a classifier to distinguish

between videos that are violent and non-violent.

● It provides a system capable of detecting both individual-to-individual and group-

to-individual violence with great precision.

● Through correlation tests on three common datasets, it depicts the improvement

in exactness as for existing algorithms.

Our proposed framework for detecting violence using a deep learning-based

technique: - In this Proposed System the framework takes the video as input and

generates it into frames. Afterwards the keyframe extraction technique will be used

to eliminate or delete consecutive duplicate multiple frames. These extracted frames

are then used for training the DL models. Convolutional neural networks and

Inceptionv3 deep learning architectures were used for feature selection and

classification.

4

The proposed violence detection method's framework is taking the input video,

extracting frames from the video, performing image augmentations on the frames,

separating the labelled image data into a training and a test set,Finally, using the

training and testing data, the CNN model is trained to attain the desired loss and

accuracy.

A video stream is acquired in the first phase, and frames are extracted. In the next

phase, a 3D CNN model is feeded a selected series of frames and deep features are

extracted that recognises violent behavior. Detection in Videos is different from

detection in images as we have to store the predictions of a few images in a queue

and then calculate the probability of violence or non-violence, based on that

probability value we can predict the category of the frames.

This method of storing the prediction values of a few frames in a queue in order to

predict the category of the frames is done to avoid fluctuations in prediction. If we

consider the prediction value of each frame then there is a high change of

fluctuations in prediction in the output video.

5

Our output video clearly shows whether the incidents in the video are violent or non-

violent which can be noticed by the label on the top left corner. Finally, if a violent

behavior is identified, we may notify the nearest station so that prompt action can be

taken before any injury or disaster occurs.

6

CHAPTER-2

Literature Survey

Traditional machine learning algorithms such as Adaboost, KNN, and others have

been used as a classifier in violence detection using machine learning techniques.

Motion blobs are considered to have specified places and forms in "Fast Violence

Detection" [2]. It outperformed state-of-the-art approaches that use a classifier like

KNN, SVM, or Adaboost. RIMOC [3] (Rotation-Invariant Feature Modeling

Motion Coherence) is a novel and problem-specific approach. Two sites were used

to construct a dataset: in-lab simulated trains and real-world train stops. The

proposed strategy beat current state-of-the-art methods in terms of false-positive

rate. Motion-based analysis was given to detect conflicts in a natural manner

[4].Using the Bag of words approach, a collection of visual words is formed.. The

histogram is then utilised as a vector to find aggression among the visual words.

For crowd aggression detection, a spatio-temporal model based Lagrangian direction

field has been developed [5]. Violent crowds, hockey fights, and movie violence

have all been employed as data sources. The proposed method for detecting breaking

violence in crowded scenes [6] investigates statistics for how vector flow varies over

time. When it comes to 2D CNNs, they solely supply spatial data. A 3D CNN model

outperforms the competition, with a 91 percent accuracy rate [7]. Spatial-temporal

interest points is a widely used method for recognising and classifying actions in

films. It also has a feature that incorporates audio from the videos. It considers

characteristics from both the geographical and temporal dimensions [8]. It has been

claimed that, pretrained imagenet models like ResNet50, VGG19, VGG16 when

used for extraction of features, only one of the models, that is ResNet50 is proved to

7

be effective in detecting violence [10]. Action movies video dataset has been really

useful in detecting fight actions and non-fight actions with 90 percent accuracy using

the traditional STIP and MoSIFT methods along with bag-of-words model network

[11]. 3D ConvNets have been used on the hockey dataset and showed superior

performance with automatic feature learning [12]. A few researchers used LSTM as

a temporal features extraction method [10, 13]. LSTM - Long Short Term Memory

networks are well suited for time series data prediction. That’s why in the case of

video datasets, by taking temporal features from the data LSTM can be put to use

for prediction and for the purpose of classification. Handcrafted networks are also

of interest in this research field, FighNet is trained with different kinds of formalities

and showed better robustness and accuracy score [14].

8

CHAPTER-3

Functionality/ Working of Project

Detection of violence in real-life videos has taken a global lead. In this work, we

intend to utilize MobileNetV2 CNN on data from 1000 violent videos for efficient

detection and prediction accuracy of 90.26 percent.

3.1. Dataset

Our goal is to work on a novel video dataset built exclusively for testing violence

detection algorithms, in which both routine and violent actions occur under similar,

dynamic conditions. We have used a video dataset from Kaggle [9]. This dataset is

a real life video dataset of violence and non-violence containing 1000 videos of each

category. Many real street combat situations in various environments are depicted in

the violence videos and conditions and Nonviolence videos are compiled from a

variety of human activities such as sports, eating, strolling, and so on.

3.2. Extracting Frames

For recognition or detection in videos we need to extract image frames from the

video first so that we can use those frames as a training dataset. You can either

extract frames from the videos as images and store them in a file folder and later use

computer vision library OpenCV for reading those images or you can directly read

the images from the video using OpenCV library features and store the image data

in a list. We have tried both the methods and the latter is more efficient, where we

directly store the image data in a list.

9

3.3. MobileNetV2

Depth-wise separable convolution was implemented in MobileNetV1, to reduce the

number of parameters and computations. Depth wise separable convolution is made

up of two types of convolutions: pointwise and depth wise. Depth wise convolution

spatially filters each input channel with a convolution filter, whereas pointwise

convolution mingles the channels by performing 1 x 1 convolution to the depth wise

convolution output.

MobileNetV2 is a convolutional neural network architecture that seeks to perform

well on mobile devices. It is based on an inverted residual structure where the

residual connections are between the bottleneck layers. The intermediate expansion

layer uses lightweight depthwise convolutions to filter features as a source of non-

linearity. As a whole, the architecture of MobileNetV2 contains the initial fully

convolution layer with 32 filters, followed by 19 residual bottleneck layers. The

architecture delivers high accuracy results while keeping the parameters and

mathematical operations as low as possible to bring deep neural networks to mobile

devices. Keras includes a number of pretrained networks ('applications') that you can

download and use straight away. One of these is MobileNetV2, which has been

trained to classify images. Neural networks are picky when it comes to the kind of

input that they expect. If you provide input in a format that the network doesn't

expect, then the predictions won't make sense (if the structure of the input is

superficially compatible with the network) or the code will simply crash (if the

structure of the input is incompatible).

MobileNetV2 expects images of 224 × 224 pixels with three color channels. In other

words, it expects input of shape (224, 224, 3). You can pass multiple images at once

10

to the model.

MobileNetV2 is very similar to the original MobileNet, except that it uses inverted

residual blocks with bottlenecking features. It has a drastically lower parameter

count than the original MobileNet. MobileNets support any input size greater than

32 x 32, with larger image sizes offering better performance.

You can simply import MobileNetV2 from keras.applications and create an instance

of it. The first time that you do this, the network will be downloaded from the

internet.

If you don't pass any keywords to MobileNetV2(), then the network will have

random weights; that is, you will get the architecture of the network, but not the

weights, and you will therefore have to train it yourself. By specifying

weights='imagenet', you indicate that you want the network to be pretrained.

MobileNetV2 introduced two main methods: 1. linear bottleneck, 2. inverted

residual blocks. The input channel dimension is enlarged in the linear bottleneck

layer to lessen the possibility of information loss due to nonlinear functions like

ReLU.

We have used sigmoid activation function as there are only two classes, violence and

non-violence, and we have used MobileNetV2 model with Adam optimizer.

3.4. InceptionV3

The Inception network, on the opposite hand, is complex. It defines various things

11

in its architecture to improve performance, in terms of speed and accuracy both.

Deep neural networks are computationally expensive. To make it computationally

cheaper, the authors add an extra 1x1 convolution, in order to try to limit the number

of input channels. To improve on the InceptionV2, possibilities were to be

investigated without drastically changing the modules. InceptionV3 utilises a Root

Mean Squared Propagation optimizer in the auxiliary classifiers, as well as factors

such as access 7x7 convolutions and BatchNorm.

Inception v3 is a convolutional neural network for assisting in image analysis and

object detection, and got its start as a module for Googlenet. It is the third edition of

Google's Inception Convolutional Neural Network, originally introduced during the

ImageNet Recognition Challenge. Inception v3 is a widely-used image recognition

model that has been shown to attain greater than 78.1% accuracy on the ImageNet

dataset. The model is the culmination of many ideas developed by multiple

researchers over the years.

Inception v3 was trained on ImageNet and compared with other contemporary

models, as shown below. As shown in the table, when augmented with an auxiliary

classifier, factorization of convolutions, RMSProp, and Label Smoothing, Inception

v3 can achieve the lowest error rates compared to its contemporaries.

Since InceptionV3 is usually preferred for huge datasets, it didn’t perform well in

our case. We observed overfitting in the model while using the Inception Network

model.

The architecture of an Inception v3 network is progressively built, step-by-step, as

12

explained below:

1. Factorized Convolutions: this helps to reduce the computational efficiency as it

reduces the number of parameters involved in a network. It also keeps a check on

the network efficiency.

2. Smaller convolutions: replacing bigger convolutions with smaller convolutions

definitely leads to faster training. Say a 5 × 5 filter has 25 parameters; two 3 × 3

filters replacing a 5 × 5 convolution has only 18 (3*3 + 3*3) parameters instead.

3. Asymmetric convolutions: A 3 × 3 convolution could be replaced by a 1 × 3

convolution followed by a 3 × 1 convolution. If a 3 × 3 convolution is replaced by a

2 × 2 convolution, the number of parameters would be slightly higher than the

asymmetric convolution proposed.

4. Auxiliary classifier: an auxiliary classifier is a small CNN inserted between layers

during training, and the loss incurred is added to the main network loss. In

GoogLeNet auxiliary classifiers were used for a deeper network, whereas in

Inception v3 an auxiliary classifier acts as a regularizer.

5. Grid size reduction: Grid size reduction is usually done by pooling operations.

However, to combat the bottlenecks of computational cost, a more efficient

technique is proposed:

13

3.5. Implementation Details

Our networks were built using the Jupyter Notebook. The photographs in the input

were resized to a fixed size of 128 x 128 pixels. To avoid duplication of frames it

was set for each video to guarantee that The input frame count was a multiple of

seven., and frames were placed at regular intervals. Due to the differing lengths of

films in various databases, the time intervals between frames vary. InceptionV3,

MobileNetV2, and CNN were chosen as backbones. We also employed image

augmentations like brightness jittering, random horizontal flips, zooming and

rotations, to avoid model overfitting and to make the model more robust. The

labelled picture data is separated into two sets: training and test.

The proposed violence detection method's framework is taking the input video,

extracting frames from the video, performing image augmentations on the frames,

separating the labelled image data into a training and a test set. Finally, using the

training and testing data, the CNN model is trained to attain the desired loss and

accuracy. A video stream is acquired in the first phase, and frames are extracted. In

the next phase, a 3D CNN model is fed a selected series of frames and deep features

are extracted that recognises violent behaviour. Detection in Videos is different from

detection in images as we have to store the predictions of a few images in a queue

and then calculate the probability of violence or non-violence, based on that

probability value we can predict the category of the frames. This method of storing

the prediction values of a few frames in a queue in order to predict the category of

the frames is done to avoid fluctuations in prediction. If we consider the prediction

value of each frame then there is a high change of fluctuations in prediction in the

output video. Our output video clearly shows whether the incidents in the video are

violent or non-violent which can be noticed by the label on the top left corner.

14

Finally, if a violent behaviour is identified, we may notify the nearest station so that

prompt action can be taken before any injury or disaster occurs.

3.6 Code:

import os

import platform

from IPython.display import clear_output

print(platform.platform())

def resolve_dir(Dir):

 if not os.path.exists(Dir):

 os.mkdir(Dir)

def reset_path(Dir):

 if not os.path.exists(Dir):

 os.mkdir(Dir)

 else:

 os.system('rm -f {}/*'.format(Dir))

Output Window:

Linux-5.4.120+-x86_64-with-debian-buster-sid

import tensorflow as tf

tf.random.set_seed(73)

TPU_INIT = False

15

if TPU_INIT:

 try:

 tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()

 tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu)

 except ValueError:

 raise BaseException('ERROR: Not connected to a TPU runtime!')

else:

 !nvidia-smi;

print("Tensorflow version " + tf.__version__)

Output Window:

MyDrive = '/kaggle/working'

PROJECT_DIR = '../input/real-life-violence-situations-dataset'

16

!ls {PROJECT_DIR}

Output Window:

'Real Life Violence Dataset' 'real life violence situations'

Preprocessing

● Getting frames form video

● Some image augmentations

import cv2

import os

import imageio

import imgaug.augmenters as iaa

import imgaug as ia

IMG_SIZE = 128

ColorChannels = 3

def video_to_frames(video):

 vidcap = cv2.VideoCapture(video)

 import math

 rate = math.floor(vidcap.get(3))

17

 count = 0

 ImageFrames = []

 while vidcap.isOpened():

 ID = vidcap.get(1)

 success, image = vidcap.read()

 if success:

 # skipping frames to avoid duplications

 if (ID % 7 == 0):

 flip = iaa.Fliplr(1.0)

 zoom = iaa.Affine(scale=1.3)

 random_brightness = iaa.Multiply((1, 1.3))

 rotate = iaa.Affine(rotate=(-25, 25))

 image_aug = flip(image = image)

 image_aug = random_brightness(image = image_aug)

 image_aug = zoom(image = image_aug)

18

 image_aug = rotate(image = image_aug)

 rgb_img = cv2.cvtColor(image_aug, cv2.COLOR_BGR2RGB)

 resized = cv2.resize(rgb_img, (IMG_SIZE, IMG_SIZE))

 ImageFrames.append(resized)

 count += 1

 else:

 break

 vidcap.release()

 return ImageFrames

%%time

from tqdm import tqdm

VideoDataDir = PROJECT_DIR + '/Real Life Violence Dataset'

print('we have \n{} Violence videos \n{} NonViolence videos'.format(

 len(os.listdir(VideoDataDir + '/Violence')),

 len(os.listdir(VideoDataDir + '/NonViolence'))))

X_original = []

y_original = []

19

print('i choose 700 videos out of 2000, cuz of memory issue')

CLASSES = ["NonViolence", "Violence"]

#700 <- 350 + 350

for category in os.listdir(VideoDataDir):

 path = os.path.join(VideoDataDir, category)

 class_num = CLASSES.index(category)

 for i, video in enumerate(tqdm(os.listdir(path)[0:350])):

 frames = video_to_frames(path + '/' + video)

 for j, frame in enumerate(frames):

 X_original.append(frame)

 y_original.append(class_num)

Output Window:

 0%| | 1/350 [00:00<01:07, 5.19it/s]

we have

1000 Violence videos

1000 NonViolence videos

i choose 700 videos out of 2000, cuz of memory issue

100%|██████████| 350/350 [01:17<00:00, 4.52it/s]

100%|██████████| 350/350 [02:29<00:00, 2.33it/s]

CPU times: user 5min 53s, sys: 14.7 s, total: 6min 8s

20

Wall time: 3min 48s

import numpy as np

X_original = np.array(X_original).reshape(-1 , IMG_SIZE * IMG_SIZE * 3)

y_original = np.array(y_original)

len(X_original)

Output Window:

13583

from sklearn.model_selection import StratifiedShuffleSplit

stratified_sample = StratifiedShuffleSplit(n_splits=2, test_size=0.3, random_state=73)

for train_index, test_index in stratified_sample.split(X_original, y_original):

 X_train, X_test = X_original[train_index], X_original[test_index]

 y_train, y_test = y_original[train_index], y_original[test_index]

X_train_nn = X_train.reshape(-1, IMG_SIZE, IMG_SIZE, 3) / 255

X_test_nn = X_test.reshape(-1, IMG_SIZE, IMG_SIZE, 3) / 255

Model Training

!pip install imutils

clear_output()

21

import cv2

import os

import numpy as np

import pickle

import matplotlib

matplotlib.use("Agg")

from keras.layers import Input

from keras.models import Model

from keras.layers.core import Dropout,Flatten,Dense

import matplotlib.pyplot as plt

epochs = 150

from keras import regularizers

kernel_regularizer = regularizers.l2(0.0001)

from keras.applications import MobileNetV2

def load_layers():

 input_tensor = Input(shape=(IMG_SIZE, IMG_SIZE, ColorChannels))

 baseModel = MobileNetV2(pooling='avg',

 include_top=False,

 input_tensor=input_tensor)

 headModel = baseModel.output

 headModel = Dense(1, activation="sigmoid")(headModel)

 model = Model(inputs=baseModel.input, outputs=headModel)

 for layer in baseModel.layers:

 layer.trainable = False

 print("Compiling model...")

 model.compile(loss="binary_crossentropy",

 optimizer='adam',

 metrics=["accuracy"])

 return model

22

if TPU_INIT:

 with tpu_strategy.scope():

 model = load_layers()

else:

 model = load_layers()

model.summary()

from tensorflow.keras.callbacks import Callback, ModelCheckpoint, LearningRateScheduler,

TensorBoard, EarlyStopping, ReduceLROnPlateau

patience = 3

start_lr = 0.00001

min_lr = 0.00001

max_lr = 0.00005

batch_size = 4

if TPU_INIT:

 max_lr = max_lr * tpu_strategy.num_replicas_in_sync

 batch_size = batch_size * tpu_strategy.num_replicas_in_sync

rampup_epochs = 5

sustain_epochs = 0

exp_decay = .8

def lrfn(epoch):

 if epoch < rampup_epochs:

 return (max_lr - start_lr)/rampup_epochs * epoch + start_lr

 elif epoch < rampup_epochs + sustain_epochs:

 return max_lr

 else:

 return (max_lr - min_lr) * exp_decay**(epoch-rampup_epochs-sustain_epochs) + min_lr

class myCallback(Callback):

 def on_epoch_end(self, epoch, logs={}):

 if ((logs.get('accuracy')>=0.999)):

 print("\nLimits Reached cancelling training!")

23

 self.model.stop_training = True

end_callback = myCallback()

lr_callback = LearningRateScheduler(lambda epoch: lrfn(epoch), verbose=False)

early_stopping = EarlyStopping(patience = patience, monitor='val_loss',

 mode='min', restore_best_weights=True,

 verbose = 1, min_delta = .00075)

PROJECT_DIR = MyDrive + '/RiskDetection'

lr_plat = ReduceLROnPlateau(patience = 2, mode = 'min')

os.system('rm -rf ./logs/')

import datetime

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard_callback = TensorBoard(log_dir = log_dir, write_graph=True, histogram_freq=1)

checkpoint_filepath = 'ModelWeights.h5'

model_checkpoints = ModelCheckpoint(filepath=checkpoint_filepath,

 save_weights_only=True,

 monitor='val_loss',

 mode='min',

 verbose = 1,

 save_best_only=True)

callbacks = [end_callback, lr_callback, model_checkpoints, tensorboard_callback,

early_stopping, lr_plat]

if TPU_INIT:

 callbacks = [end_callback, lr_callback, model_checkpoints, early_stopping, lr_plat]

print('Training head...')

#model.load_weights('./Model_Weights.h5')

history = model.fit(X_train_nn ,y_train, epochs=epochs,

 callbacks=callbacks,

 validation_data = (X_test_nn, y_test),

 batch_size=batch_size)

print('\nRestoring best Weights for MobileNetV2')

24

model.load_weights(checkpoint_filepath)

Output Window:

Training head...

Epoch 1/150

2377/2377 [==============================] - 28s 10ms/step - loss: 0.8119 -

accuracy: 0.5507 - val_loss: 0.6402 - val_accuracy: 0.6466

Epoch 00001: val_loss improved from inf to 0.64018, saving model to ModelWeights.h5

Epoch 2/150

2377/2377 [==============================] - 19s 8ms/step - loss: 0.6116 - accuracy:

0.6719 - val_loss: 0.5003 - val_accuracy: 0.7504

Epoch 00002: val_loss improved from 0.64018 to 0.50028, saving model to ModelWeights.h5

Epoch 3/150

2377/2377 [==============================] - 20s 8ms/step - loss: 0.4879 - accuracy:

0.7587 - val_loss: 0.4211 - val_accuracy: 0.8091

Epoch 00003: val_loss improved from 0.50028 to 0.42114, saving model to ModelWeights.h5

Epoch 4/150

2377/2377 [==============================] - 20s 8ms/step - loss: 0.4039 - accuracy:

0.8131 - val_loss: 0.3778 - val_accuracy: 0.8312

Epoch 00004: val_loss improved from 0.42114 to 0.37776, saving model to ModelWeights.h5

Epoch 5/150

2377/2377 [==============================] - 19s 8ms/step - loss: 0.3658 - accuracy:

0.8322 - val_loss: 0.3500 - val_accuracy: 0.8520

Epoch 00005: val_loss improved from 0.37776 to 0.35003, saving model to ModelWeights.h5

Epoch 6/150

2377/2377 [==============================] - 20s 8ms/step - loss: 0.3401 - accuracy:

0.8518 - val_loss: 0.3323 - val_accuracy: 0.8591

Epoch 00006: val_loss improved from 0.35003 to 0.33229, saving model to ModelWeights.h5

Epoch 7/150

2377/2377 [==============================] - 19s 8ms/step - loss: 0.3100 - accuracy:

25

0.8658 - val_loss: 0.3155 - val_accuracy: 0.8690

Epoch 00007: val_loss improved from 0.33229 to 0.31555, saving model to ModelWeights.h5

Epoch 8/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2960 - accuracy: 0.8764 - val_loss: 0.3087 - val_accuracy: 0.8726

Epoch 00008: val_loss improved from 0.31555 to 0.30868, saving model to ModelWeights.h5

Epoch 9/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2900 - accuracy: 0.8774 - val_loss: 0.3015 - val_accuracy: 0.8766

Epoch 00009: val_loss improved from 0.30868 to 0.30154, saving model to ModelWeights.h5

Epoch 10/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2887 - accuracy: 0.8755 - val_loss: 0.2947 - val_accuracy: 0.8790

Epoch 00010: val_loss improved from 0.30154 to 0.29472, saving model to ModelWeights.h5

Epoch 11/150

2377/2377 [==============================] - 20s 8ms/step - loss: 0.2891 - accuracy:

0.8750 - val_loss: 0.2910 - val_accuracy: 0.8810

 Epoch 00011: val_loss improved from 0.29472 to 0.29102, saving model to ModelWeights.h5

Epoch 12/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2671 - accuracy: 0.8915 - val_loss: 0.2890 - val_accuracy: 0.8822

Epoch 00012: val_loss improved from 0.29102 to 0.28900, saving model to ModelWeights.h5

Epoch 13/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2642 - accuracy: 0.8927 - val_loss: 0.2846 - val_accuracy: 0.8829

Epoch 00013: val_loss improved from 0.28900 to 0.28458, saving model to ModelWeights.h5

Epoch 14/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2761 - accuracy: 0.8863 - val_loss: 0.2836 - val_accuracy: 0.8854

Epoch 00014: val_loss improved from 0.28458 to 0.28362, saving model to ModelWeights.h5

Epoch 15/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2667 - accuracy: 0.8897 - val_loss: 0.2807 - val_accuracy: 0.8861

Epoch 00015: val_loss improved from 0.28362 to 0.28072, saving model to ModelWeights.h5

26

Epoch 16/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2574 - accuracy: 0.8918 - val_loss: 0.2790 - val_accuracy: 0.8869

Epoch 00016: val_loss improved from 0.28072 to 0.27903, saving model to ModelWeights.h5

Epoch 17/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2554 - accuracy: 0.8931 - val_loss: 0.2765 - val_accuracy: 0.8869

Epoch 00017: val_loss improved from 0.27903 to 0.27648, saving model to ModelWeights.h5

Epoch 18/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2506 - accuracy: 0.8964 - val_loss: 0.2778 - val_accuracy: 0.8888

Epoch 00018: val_loss did not improve from 0.27648 Epoch 19/150 2377/2377

[==============================] - 20s 8ms/step - loss: 0.2538 - accuracy: 0.8954 -

val_loss: 0.2747 - val_accuracy: 0.8883

Epoch 00019: val_loss improved from 0.27648 to 0.27467, saving model to ModelWeights.h5

Epoch 20/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2460 - accuracy: 0.8969 - val_loss: 0.2728 - val_accuracy: 0.8879

Epoch 00020: val_loss improved from 0.27467 to 0.27283, saving model to ModelWeights.h5

Epoch 21/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2609 - accuracy: 0.8897 - val_loss: 0.2711 - val_accuracy: 0.8896

Epoch 00021: val_loss improved from 0.27283 to 0.27108, saving model to ModelWeights.h5

Epoch 22/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2536 - accuracy: 0.8953 - val_loss: 0.2720 - val_accuracy: 0.8893

Epoch 00022: val_loss did not improve from 0.27108 Epoch 23/150 2377/2377

[==============================] - 19s 8ms/step - loss: 0.2442 - accuracy: 0.8976 -

val_loss: 0.2688 - val_accuracy: 0.8913

Epoch 00023: val_loss improved from 0.27108 to 0.26883, saving model to ModelWeights.h5

Epoch 24/150 2377/2377 [==============================] - 19s 8ms/step - loss:

27

0.2503 - accuracy: 0.8967 - val_loss: 0.2695 - val_accuracy: 0.8910

Epoch 00024: val_loss did not improve from 0.26883 Epoch 25/150 2377/2377

[==============================] - 20s 8ms/step - loss: 0.2473 - accuracy: 0.9001 -

val_loss: 0.2670 - val_accuracy: 0.8915

Epoch 00025: val_loss improved from 0.26883 to 0.26700, saving model to ModelWeights.h5

Epoch 26/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2354 - accuracy: 0.9083 - val_loss: 0.2658 - val_accuracy: 0.8923

Epoch 00026: val_loss improved from 0.26700 to 0.26583, saving model to ModelWeights.h5

Epoch 27/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2443 - accuracy: 0.9006 - val_loss: 0.2652 - val_accuracy: 0.8923

Epoch 00027: val_loss improved from 0.26583 to 0.26520, saving model to ModelWeights.h5

Epoch 28/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2378 - accuracy: 0.9005 - val_loss: 0.2638 - val_accuracy: 0.8940

Epoch 00028: val_loss improved from 0.26520 to 0.26376, saving model to ModelWeights.h5

Epoch 29/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2284 - accuracy: 0.9087 - val_loss: 0.2636 - val_accuracy: 0.8928

Epoch 00029: val_loss improved from 0.26376 to 0.26360, saving model to ModelWeights.h5

Epoch 30/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2359 - accuracy: 0.9052 - val_loss: 0.2637 - val_accuracy: 0.8937

Epoch 00030: val_loss did not improve from 0.26360

Epoch 31/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2351 - accuracy: 0.9069 - val_loss: 0.2612 - val_accuracy: 0.8937

Epoch 00031: val_loss improved from 0.26360 to 0.26125, saving model to ModelWeights.h5

Epoch 32/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2327 - accuracy: 0.9061 - val_loss: 0.2607 - val_accuracy: 0.8947

28

Epoch 00032: val_loss improved from 0.26125 to 0.26069, saving model to ModelWeights.h5

Epoch 33/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2324 - accuracy: 0.9102 - val_loss: 0.2598 - val_accuracy: 0.8942

Epoch 00033: val_loss improved from 0.26069 to 0.25977, saving model to ModelWeights.h5

Epoch 34/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2350 - accuracy: 0.9058 - val_loss: 0.2594 - val_accuracy: 0.8960

Epoch 00034: val_loss improved from 0.25977 to 0.25942, saving model to ModelWeights.h5

Epoch 35/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2372 - accuracy: 0.9032 - val_loss: 0.2586 - val_accuracy: 0.8960

Epoch 00035: val_loss improved from 0.25942 to 0.25859, saving model to ModelWeights.h5

Epoch 36/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2334 - accuracy: 0.9048 - val_loss: 0.2573 - val_accuracy: 0.8972

Epoch 00036: val_loss improved from 0.25859 to 0.25732, saving model to ModelWeights.h5

Epoch 37/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2350 - accuracy: 0.9047 - val_loss: 0.2574 - val_accuracy: 0.8962

Epoch 00037: val_loss did not improve from 0.25732 Epoch 38/150 2377/2377

[==============================] - 20s 8ms/step - loss: 0.2293 - accuracy: 0.9068 -

val_loss: 0.2562 - val_accuracy: 0.8974

Epoch 00038: val_loss improved from 0.25732 to 0.25622, saving model to ModelWeights.h5

Epoch 39/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2392 - accuracy: 0.9030 - val_loss: 0.2553 - val_accuracy: 0.8984

Epoch 00039: val_loss improved from 0.25622 to 0.25532, saving model to ModelWeights.h5

Epoch 40/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2316 - accuracy: 0.9033 - val_loss: 0.2553 - val_accuracy: 0.8982

29

Epoch 00040: val_loss did not improve from 0.25532 Epoch 41/150 2377/2377

[==============================] - 19s 8ms/step - loss: 0.2310 - accuracy: 0.9062 -

val_loss: 0.2538 - val_accuracy: 0.8989

Epoch 00041: val_loss improved from 0.25532 to 0.25381, saving model to ModelWeights.h5

Epoch 42/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2278 - accuracy: 0.9119 - val_loss: 0.2535 - val_accuracy: 0.8989

Epoch 00042: val_loss improved from 0.25381 to 0.25347, saving model to ModelWeights.h5

Epoch 43/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2272 - accuracy: 0.9073 - val_loss: 0.2533 - val_accuracy: 0.8984

Epoch 00043: val_loss improved from 0.25347 to 0.25327, saving model to ModelWeights.h5

Epoch 44/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2207 - accuracy: 0.9140 - val_loss: 0.2519 - val_accuracy: 0.9009

Epoch 00044: val_loss improved from 0.25327 to 0.25195, saving model to ModelWeights.h5

Epoch 45/150 2377/2377 [==============================] - 20s 9ms/step - loss:

0.2226 - accuracy: 0.9091 - val_loss: 0.2517 - val_accuracy: 0.8989

Epoch 00045: val_loss improved from 0.25195 to 0.25169, saving model to ModelWeights.h5

Epoch 46/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2179 - accuracy: 0.9133 - val_loss: 0.2513 - val_accuracy: 0.8989

Epoch 00046: val_loss improved from 0.25169 to 0.25134, saving model to ModelWeights.h5

Epoch 47/150 2377/2377 [==============================] - 20s 9ms/step - loss:

0.2179 - accuracy: 0.9134 - val_loss: 0.2512 - val_accuracy: 0.8969

Epoch 00047: val_loss improved from 0.25134 to 0.25117, saving model to ModelWeights.h5

Epoch 48/150 2377/2377 [==============================] - 20s 9ms/step - loss:

0.2250 - accuracy: 0.9098 - val_loss: 0.2502 - val_accuracy: 0.8989

30

Epoch 00048: val_loss improved from 0.25117 to 0.25020, saving model to ModelWeights.h5

Epoch 49/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2235 - accuracy: 0.9107 - val_loss: 0.2491 - val_accuracy: 0.9001

Epoch 00049: val_loss improved from 0.25020 to 0.24913, saving model to ModelWeights.h5

Epoch 50/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2164 - accuracy: 0.9140 - val_loss: 0.2499 - val_accuracy: 0.8972

Epoch 00050: val_loss did not improve from 0.24913 Epoch 51/150 2377/2377

[==============================] - 19s 8ms/step - loss: 0.2198 - accuracy: 0.9135 -

val_loss: 0.2493 - val_accuracy: 0.8979

Epoch 00051: val_loss did not improve from 0.24913 Epoch 52/150 2377/2377

[==============================] - 19s 8ms/step - loss: 0.2132 - accuracy: 0.9136 -

val_loss: 0.2479 - val_accuracy: 0.8989

Epoch 00052: val_loss improved from 0.24913 to 0.24795, saving model to ModelWeights.h5

Epoch 53/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2123 - accuracy: 0.9154 - val_loss: 0.2484 - val_accuracy: 0.8991

Epoch 00053: val_loss did not improve from 0.24795 Epoch 54/150 2377/2377

[==============================] - 19s 8ms/step - loss: 0.2191 - accuracy: 0.9122 -

val_loss: 0.2462 - val_accuracy: 0.9023

Epoch 00054: val_loss improved from 0.24795 to 0.24619, saving model to ModelWeights.h5

Epoch 55/150 2377/2377 [==============================] - 20s 8ms/step - loss:

0.2127 - accuracy: 0.9184 - val_loss: 0.2457 - val_accuracy: 0.9028

Epoch 00055: val_loss improved from 0.24619 to 0.24569, saving model to ModelWeights.h5

Epoch 56/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2203 - accuracy: 0.9086 - val_loss: 0.2454 - val_accuracy: 0.9013

31

Epoch 00056: val_loss improved from 0.24569 to 0.24539, saving model to ModelWeights.h5

Epoch 57/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2204 - accuracy: 0.9112 - val_loss: 0.2455 - val_accuracy: 0.8999

Epoch 00057: val_loss did not improve from 0.24539 Epoch 58/150 2377/2377

[==============================] - 20s 8ms/step - loss: 0.2148 - accuracy: 0.9158 -

val_loss: 0.2442 - val_accuracy: 0.9026

Epoch 00058: val_loss improved from 0.24539 to 0.24418, saving model to ModelWeights.h5

Epoch 59/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2196 - accuracy: 0.9118 - val_loss: 0.2438 - val_accuracy: 0.9021

Epoch 00059: val_loss improved from 0.24418 to 0.24377, saving model to ModelWeights.h5

Epoch 60/150 2377/2377 [==============================] - 19s 8ms/step - loss:

0.2103 - accuracy: 0.9176 - val_loss: 0.2441 - val_accuracy: 0.9006

Epoch 00060: val_loss did not improve from 0.24377 Epoch 61/150 2377/2377

[==============================] - 20s 8ms/step - loss: 0.2192 - accuracy: 0.9165 -

val_loss: 0.2451 - val_accuracy: 0.8999

Epoch 00061: val_loss did not improve from 0.24377

Restoring model weights from the end of the best epoch.

Epoch 00061: early stopping

Restoring best Weights for MobileNetV2

32

%matplotlib inline

def print_graph(item, index, history):

 plt.figure()

 train_values = history.history[item][0:index]

 plt.plot(train_values)

 test_values = history.history['val_' + item][0:index]

 plt.plot(test_values)

 plt.legend(['training','validation'])

 plt.title('Training and validation '+ item)

 plt.xlabel('epoch')

 plt.show()

 plot = '{}.png'.format(item)

 plt.savefig(plot)

def get_best_epoch(test_loss, history):

 for key, item in enumerate(history.history.items()):

 (name, arr) = item

 if name == 'val_loss':

 for i in range(len(arr)):

 if round(test_loss, 2) == round(arr[i], 2):

 return i

def model_summary(model, history):

 print('---'*30)

 test_loss, test_accuracy = model.evaluate(X_test_nn, y_test, verbose=0)

 if history:

 index = get_best_epoch(test_loss, history)

 print('Best Epochs: ', index)

 train_accuracy = history.history['accuracy'][index]

 train_loss = history.history['loss'][index]

 print('Accuracy on train:',train_accuracy,'\tLoss on train:',train_loss)

33

 print('Accuracy on test:',test_accuracy,'\tLoss on test:',test_loss)

 print_graph('loss', index, history)

 print_graph('accuracy', index, history)

 print('---'*30)

model_summary(model, history)

Output Window:

--

Best Epochs: 57

Accuracy on train: 0.9151241183280945 Loss on train: 0.2140893042087555

Accuracy on test: 0.9020859003067017 Loss on test: 0.2437741458415985

34

Evaluation on Test Set

evaluate the network

print("Evaluating network...")

predictions = model.predict(X_test_nn)

preds = predictions > 0.5

import seaborn as sns

from sklearn import metrics

from sklearn.metrics import roc_curve, roc_auc_score, plot_roc_curve, accuracy_score,

classification_report, confusion_matrix

corr_pred = metrics.confusion_matrix(y_test, preds)

n_correct = np.int((corr_pred[0][0] + corr_pred[1][1]))

35

print('> Correct Predictions:', n_correct)

n_wrongs = np.int((corr_pred[0][1] + (corr_pred[1][0])))

print('> Wrong Predictions:', n_wrongs)

sns.heatmap(corr_pred,annot=True, fmt="d",cmap="Blues")

plt.show()

print(metrics.classification_report(y_test, preds,

 target_names=["NonViolence", "Violence"]))

Output Window:

> Correct Predictions: 3676

> Wrong Predictions: 399

36

Classification metrics:

When performing classification predictions, there's four types of outcomes that

could occur.

True positives are when you predict an observation belongs to a class and it

actually does belong to that class.

True negatives are when you predict an observation does not belong to a class and

it actually does not belong to that class.

False positives occur when you predict an observation belongs to a class when in

reality it does not.

False negatives occur when you predict an observation does not belong to a class

when in fact it does.

These four outcomes are often plotted on a confusion matrix. The following

confusion matrix is an example for the case of binary classification. You would

generate this matrix after making predictions on your test data and then identifying

each prediction as one of the four possible outcomes described above.

37

 precision recall f1-score support

NonViolence 0.90 0.88 0.89 1874

Violence 0.90 0.92 0.91 2201

accuracy 0.90 4075

macro avg 0.90 0.90 0.90 4075

weighted avg 0.90 0.90 0.90 4075

 Table 1: Classification report for the MobileNetV2 model.

The three main metrics used to evaluate a classification model are accuracy,

precision, and recall.

Accuracy is defined as the percentage of correct predictions for the test data. It can

be calculated easily by dividing the number of correct predictions by the number of

total predictions.

Precision is defined as the fraction of relevant examples (true positives) among all

of the examples which were predicted to belong in a certain class.

38

Recall is defined as the fraction of examples which were predicted to belong to a

class with respect to all of the examples that truly belong in the class.

Precision and recall are useful in cases where classes aren't evenly distributed.

We can evaluate the performance of the model using the measures shown in Fig 3

above. Precision, that is the measure of correctly predicted positive observations

than the amount of total predicted positive observations. Here in Fig 4 it can be seen

that precision score for non-violence category is 91 percent and for violence

category its 90 percent.

We can observe in Table 1 the recall for non-violence category is 88 percent and

violence category is 93 percent. Here the violence category has more recall, which

is good for the model as it increases scope for detecting violence.

Here in Table 1 we can observe that the F1 score for non-violence category is 89

percent and for violence category is 91 percent.

The support is the total number of samples of that class, that are observed in the

dataset. Here during the testing of the model, the model has observed 1874

occurrences of non-violence class and 2201 occurrences of violence class out of total

4075 occurrences of both the classes included.

39

In the Fig 2, we can see the gradual decrease of training loss and validation loss up

till 57 epochs. The training loss and validation loss are in decreasing motion which

is a good result from the model.

In the Fig 2, we can see the gradual increase of training accuracy and validation

accuracy up till 57 epochs. The training loss and validation loss are in increasing

motion which is a good result from the model.

40

CHAPTER-4

Results and Discussions

The purpose of frame-main grouping is to efficiently extract relevant features from

multiple frames utilising current CNN backbones. To determine a sampling method,

we looked at the appropriate time gap between consecutive frames. Because most of

the datasets we looked at were compiled from YouTube, even within the same

dataset, the frame rate of each video varied. As a result, establishing the optimal time

period is impossible. Some motion pictures, for example, are in slow movement, but

others have abnormally low frame rates. MobileNets focuses on reducing latency

and parameter count in mobile and embedded applications with limited resources.

The problem with most violence detection algorithms is that they must analyse a

high number of nonsensical frames, which consumes a lot of memory and takes a

long time. Given this considerable constraint, we chose a pre-trained MobileNet

convolutional neural network model because the InceptionV3 model did not perform

well due to overfitting. Due to a lack of data in typical datasets for violence detection

and a frequently low accuracy rate, existing mainstream approaches are unable to

learn effective patterns. Inspired by the concept of transfer learnings, in both interior

and outdoor surveillance, a 3D-Convolutional neural network was fine-tuned for

violence detection using publicly accessible standard datasets. It outperforms

traditional hand-engineered feature extraction algorithms in terms of accuracy in

tests.

Rather than processing the full video stream, we process only those sequences that

contain individuals, discarding unimportant frames. Instead of normal convolutions,

41

MobileNet uses depth wise separable convolutions to detect items. If pointwise and

depth wise convolutions are counted individually, there are 28 layers. with

nonlinearity batch norm and Sigmoid after each layer except the last fully linked

layer.

Figure 2: Training and Validation Loss and Accuracy Graphs

For the MobileNetV2 model: A training accuracy of 91% and the loss is 21%. A test

42

accuracy of 90% and loss on the test set is 24%.

Table 2: MobileNetV2 Model Performance with respect to accuracy.

The lower the loss, the better a model (unless the model has over-fitted to the training

data). The loss is calculated on training and validation and its interperation is how

well the model is doing for these two sets. Unlike accuracy, loss is not a percentage.

It is a summation of the errors made for each example in training or validation sets.

In the case of neural networks, the loss is usually negative log-likelihood and

residual sum of squares for classification and regression respectively. Then

naturally, the main objective in a learning model is to reduce (minimize) the loss

function's value with respect to the model's parameters by changing the weight

vector values through different optimization methods, such as backpropagation in

neural networks.

43

Loss value implies how well or poorly a certain model behaves after each iteration

of optimization. Ideally, one would expect the reduction of loss after each, or several,

iteration(s).

The accuracy of a model is usually determined after the model parameters are

learned and fixed and no learning is taking place. Then the test samples are fed to

the model and the number of mistakes (zero-one loss) the model makes are recorded,

after comparison to the true targets. Then the percentage of misclassification is

calculated.

In the above table we can observe the total number of epochs for which the model

has executed. Since validation loss was not improving with increase of epochs, with

the execution of the model, so the best epochs were estimated to be 57 in total.

Due to its 3D convolution and pooling capabilities, a 3D Convolutional neural

network is well-suited for retrieving spatio-temporal properties and can preserve

temporal data better. Furthermore, 2D CNNs only collect spatial information, A 3D

Convolutional neural network, on the other hand, can collect all of the temporal

information about the input sequence. To increase the number of feature maps in late

layers, convolutional neural networks leverage the concept of creating many

different kinds of features from the similar feature maps. A succession of frames

serves as the network's input data. The volume mean of training and testing data is

computed before beginning the training operation. The network's design has been

optimised to accept these sequences as inputs. The Sigmoid layer determines

whether the final forecast is violent or not.

44

One Epoch is when an ENTIRE dataset is passed forward and backward through the

neural network only ONCE. Since one epoch is too big to feed to the computer at

once we divide it in several smaller batches. An epoch is a term used in machine

learning and indicates the number of passes of the entire training dataset the machine

learning algorithm has completed. Datasets are usually grouped into batches

(especially when the amount of data is very large).

Accuracy is defined as the percentage of correct predictions for the test data. It can

be calculated easily by dividing the number of correct predictions by the number of

total predictions. In other words, the test (or testing) accuracy often refers to the

validation accuracy, that is, the accuracy you calculate on the data set you do not use

for training, but you use (during the training process) for validating (or "testing") the

generalisation ability of your model or for "early stopping".

45

CHAPTER-5

Conclusion and Future Scope

To construct a viable violence detection system, we demonstrated frame-grouping

methods and spatial-temporal attention modules. Frame-grouping was introduced as

a way of averaging the channels. It was able to represent short-term dynamics, which

was a key aspect in classifying aggressive behaviours like kicking and punching. In

our research MobileNetV2 showed a better performance in detection with a

validation accuracy of 90.26%. To train a more robust model, in the future, we'll

train the model with more data and test a variety of data augmentation tactics. In

addition, for a more versatile use, we will widen our research to encompass a variety

of action recognition tasks.

46

References

1. W. Sultani, C. Chen and M. Shah, "Real-world anomaly detection in

surveillance videos", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp.

6479-6488, 2018.

2. O. Deniz, I. Serrano, G. Bueno and T.-K. Kim, "Fast violence detection in

video", Proc. Int. Conf. Comput. Vis. Theory Appl. (VISAPP), vol. 2, pp.

478-485, Jan. 2014.

3. P. C. Ribeiro, R. Audigier and Q. C. Pham, "RIMOC a feature to

discriminate unstructured motions: Application to violence detection for

video-surveillance", Comput. Vis. Image Understand., vol. 144, pp. 121-143,

Mar. 2016.

4. E. Y. Fu, H. Va Leong, G. Ngai and S. Chan, "Automatic fight detection in

surveillance videos'', Proc. 14th Int. Conf. Adv. Mobile Comput.

MultiMedia, pp. 225-234, Nov. 2016.

5. T. Senst, V. Eiselein, A. Kuhn and T. Sikora, "Crowd violence detection

using global motion-compensated Lagrangian features and scale-sensitive

video-level representation", IEEE Trans. Inf. Forensics Security, vol. 12, no.

12, pp. 2945-2956, Dec. 2017.

6. T. Hassner, Y. Itcher and O. Kliper-Gross, "Violent flows: Real-time

detection of violent crowd behavior", Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit. Workshops, pp. 1-6, Jun. 2012.

7. Dai, Qi, Jian Tu, Ziqiang Shi, Yu G. Jiang, and Xiangyang Xue. “Violent

Scenes Detection Using Motion Features and Part-Level Attributes.”

MediaEval Workshop, Oct. 2013.

8. Jiang, Yu G., Qi Dai, Xiangyang Xue, Wei Liu, and Chong W. Ngo.

“Trajectory-Based Modeling of Human Actions with Motion Reference

47

Points.” ECCV, 2012.

9. M. Soliman, M. Kamal, M. Nashed, Y. Mostafa, B. Chawky, D. Khattab, “

Violence Recognition from Videos using Deep Learning Techniques'', Proc.

9th International Conference on Intelligent Computing and Information

Systems (ICICIS'19), Cairo, pp. 79-84, 2019

10. Shakil Ahmed Sumon, Raihan Goni, Niyaz Bin Hashem, Tanzil Shahria and

Rashedur M. Rahman, “Violence Detection by Pretrained Modules with

Different Deep Learning Approaches”, Vietnam Journal of Computer

ScienceVol. 07, No. 01, pp. 19-40, 2020.

11. Enrique Bermejo NievasOscar Deniz SuarezGloria Bueno GarcíaRahul

Sukthankar, “Violence Detection in Video Using Computer Vision

Techniques”,International Conference on Computer Analysis of Images and

Patterns (Springer), 2011.

12. Chunhui DingShouke FanMing ZhuWeiguo FengBaozhi Jia, “Violence

Detection in Video by Using 3D Convolutional Neural Networks”,

International Symposium on Visual Computing ISVC, 2014.

13. Abdali, Almamon & Al-Tuma, Rana, “Robust Real-Time Violence

Detection in Video Using CNN And LSTM”, 2nd Scientific Conference of

Computer Sciences (SCCS), 2019.

14. Zhou Peipei, Ding Qinghai, Luo Haibo, Hou Xinglin, “Violent Interaction

Detection in Video Based on Deep Learning”, Journal of Physics:

Conference Series, 2017.

