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ABSTRACT

Aluminium matrix composites (AMCs) promise numerical applications in industries
mainly due to their superior strength to conventional materials. The addition of AMC
to the metal matrix increases performance compared to conventional engineering
materials. This report examines the properties of AMCs and their advantages and
disadvantages. Major issues such as production impairment, matrix strength,
production costs and reinforcement in the particles are reviewed. The introduction of
various ceramics reinforcing elements on AMCs and its micro structural and
mechanical properties such as stiffness, compression, durability, wear are also
discussed in detail. AMC industrial applications are also reflected in this work.
Aluminum metal matrix composites have properties that no other monolithic material
can match. Due to their superior strength to conventional materials, aluminium matrix
composites (AMCs) have a broad variety of industrial applications. The nature of
reinforcing, that can take the form of constant or undefined fibres, has a big influence
on the properties of aluminum metal matrix composites. Thus it depends on the
fabrication methods for aluminium matrix composites, which are influenced by a
number of factors including the type of reinforcement and matrix used, its required
degree with surface morphology integrity, as well as physical, mechanical,
electro-chemical, and thermal properties. The present report offers a description of the
synthesis, mechanical behaviour, and utilisation of aluminium metal matrix
composites. The main processing methods for making or production of aluminium
metal matrix composites(AMCs) are thoroughly discussed. The development and
characterization of Aluminium Silicon Carbide (Al-SiC) composite materials is the
subject of this report. Aluminium (Al) was used as the pure matrix material in this
report, and Silicon carbide (SiC) was used as the reinforcement material to stabilise
the matrix. Stir casting was used to make aluminium matrix composites (AMC) with
varying SiC content (0 to 5% wt.%). In stir casting technique, a motor with mild steel
four blade stirrer was used with a speed of 550 rpm to stir the molten mold
.Mechanical as well as micro structural properties of Al-SiC composites were studied
in detail to characterize their properties. In the result, it was found that the mechanical
properties have been improved considerably with the addition of SiC in the Al matrix.
Also there has been uniform distribution of SiC over the Al matrix and it was possible
due to continuous stirring for 20 min in the mould. Micro structural observation also
revealed little clustering.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Materials and innovation that reflect human ability and comprehension are frequently used to
distinguish history. In general, scales began well with neolithic period, progressing through
the Bronze, Iron, Steel, Aluminum, and Alloy epochs as refinement as well as purification
increased, since technology enabled all of these epochs to progress toward the discovery of
more composite materials.

From the E glass/Phenolic cockpit canopy constructions of the mid-1940s towards the
graphite/polyimide composite used for the spacecraft orbiter, the advancement in cutting-edge
composite has been astounding. This development in the evolution of fortifications, grids, and
composites manufacturing is due to the knowledge of the potential low weight that can be
realised by employing high-level composites, that implies reduced costs but also more
efficacy. If advancements in manufacturing process were seen in the first twenty years,
precise examination of characteristics and break mechanics reached a point of confluence in
the 1960s. Since then, there has been an ever-increasing demand for more current, more
stable, stiffer yet lightweight weight in industries such as aerospace, transport, vehicles, and
development. Composites are emerging mostly as a result of unprecedented demand from
innovators as a result of rapidly propelling workouts in the aeroplane, aircraft, and automobile
industries. Such material have such a low explicit gravity, which means they have superior
modulus and strength than many customary design materials like as metals. As a result of
targeted inquiries into the core idea of material and a fuller sense of their architectural
characteristic relationships, innovative composites with improved mechanical and physical
capabilities have been developed. Polymer grid composites [1,2], Ceramic framework
composites [3, 4], as well as Metal lattice composites [5] are among the enhanced composites
used in these inns. Ongoing developments led to composites being used in a growing number
of novel applications. The importance of composites as design material being demonstrated
by the fact that more than 200 of the more over 1600 design materials currently available in
the market are composite [6].

1.2 COMPOSITES

1.2.1 WHY A COMPOSITES?
Composites, plastics, and earthenware seem to be the most common emerging materials over
the last 30 years [7]. Composites have constantly increased in volume and number of
applications, invading and conquering emerging business areas. Composites currently account
for a sizable percentage of the advanced equipment market, with applications range from very
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simple to complex.
While composites have confirmed to be valuable as poundage materials, the current issue is to
make them smart. In the composites sector, attempts to make financially appealing reinforced
composites have led to a wide range of inventive assembly procedures. It's indeed
self-evident, especially in the case of composites, that advancements in assembly technology
alone will not be enough to overcome the cost barrier. A concentrated attempt in architecture,
composition, measurement, machining, product testing, production, and perhaps even
programme management is required for composite to compete with metals. Because of the
sheer magnitude of the transportation industry, the composites industry has begun to recognise
that business applications of composites promise to give much larger business opportunities
than the aviation industry. As a result, in recent times, the shift of advanced composites from
aeroplanes to several other corporate applications has been apparent.
The infiltration of such high-level materials has experienced a steady growth in employment
and quantity, aided by the introduction of more up-to-date polymer sap foundation elements
and elite supporting strands of glass, carbon, and aramid. The increased volume has resulted
in a regular cost reduction. Composites reinforcing meant to counteract unstable effects, fuel
chambers for petrol gas vehicles, windmill sharp corners, mechanical drive shafts, support
light emissions connects, and even paper producing rollers would all benefit from superior
FRP. A few models are falls for motors, bended fairing and filets, trades for welded metallic
parts, chambers, tubes, conduits, edge regulation groups and so on

Furthermore, the demand for composites for lighter construction materials and much more
seismic-safe designs has placed a premium on the use of new and advanced materials that
reduce unnecessary weight while retaining shock and vibrations via specific microstructures.
Composite are now commonly used to recover/reinforce older designs that need to be
upgraded to become seismically safe, or to refurbish spoil cause by seismic motion.

Despite traditional materials (such as steel), the properties of a composites could be planned
from various angles. Material and basic layout are both included in the design of a primary
part made of composite. Composites features (such as solidity, warm growth, and so on) can
be varied repeatedly across a wide range of attributes that are highly impacted by the
fashioner. The final item attributes can be adjusted to practically whatever design need with
appropriate choice of supporting type.

And and that the use of composite materials would become a rational option in so many cases,
the material choice in other would be depending on criteria like as operating lifelong
requisites, the number of objects to be delivered (run distance), the intricacy of the item
structure, potential exchange funds in gathering expenses, and indeed the fashioner's
knowledge and talents in pressing composite materials to their maximum capability. In certain
occasions, best outcomes might be accomplished using composites related to conventional
materials.

1.2.2  What Is A Composite?

On a visible scale, the common composite is an arrangement of materials made out of at least
two materials (blended & strengthened).

Support (strands, particles, droplets, and occasionally fillers) are organised in a lattice pattern
in a composite (metals, ceramics, or polymers). The lattice holds the resources in place,
enabling it to frame the ideal shape while also increasing the on the whole mechanical
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property of the conceptual platform. When planned appropriately, the original joint material
exceeds all the other methods in terms of strength and durability.
According to Jartiz, composites are multiplexing frameworks that provide features that are not
possible with surface run. They're strong designs combining at least two materials with
different origins, characteristics, and building methods.
Kelly [8] emphasises that composite should not be considered solely as a combination of two
components. In terms of greater significance, the mix has distinct characteristics. It is stronger
than anyone of the pieces alone or deeply different from all of them in order to determine the
strength, heat insulation, or any other appealing feature.

"The composites are contain recycled that differ from amalgams in the sense that the separate
segments retain their attributes but are so combined into the composite as to exploit just of
their properties and not of their deficiencies," according to Berghezan [9], to obtain a better
substance.

Composites, according to Van Suchetclan [10], are material qualities made up of at least two
strong phases that are in close proximity on a microscopic level. On an infinitesimal scale,
these could also be thought as such homogeneous materials because every portion of them has
same material characteristics.

1.2.3 Characteristics of the Composites

At least one interrupted stage is installed in a nonstop stage in composite. The'support' or
'building up material' stage is often harder and more grounded than the constant stage,
whereas the 'grid' stage is named after the constant stage.

The qualities of composite are inextricably linked to the qualities of their material properties,
as well as their distribution and interconnection. The composite attributes could be the
volumetric portion quantity of the constituents' attributes, or the constituents could interact
synergistically to produce enhanced or superior properties. Apart from of the concept of the
individual components, the support calculation (form, size, and size circulation) has a
significant impact on the composite's qualities. The characteristics are also influenced by the
fixation distribution and orientation of the supports.

The state of the intermittent stage (which can be circular, tube-shaped, or rectangle
cross-endorsed crystals or platelets), the shape and size dispersion (which controls the
material's surface), and the volume part all play a role in determining the degree of
coordination between both the assistance and the lattice, which all help to determine the
degree of coordination between assistance as well as the lattice.

Fixation, which is commonly quantified as a volume or weight part, determines the
involvement of a particular constituent to the entire attributes of composite. It's not only the
most critical boundary determining composite properties, and it's also a highly controlled
assembly variable that may be used to change them.

1.2.4 Classification of Composites

There are various types of composite materials [11]. Because the geometries of the reinforcing
cause the mechanical structure and low performance of composites, classification based upon
on shape of a typical unit of reinforcing is useful. A common classification system is shown
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in Table1.

1.2.4.1 Particulate Composites

The backing is of a molecular nature, as the name implies (platelets are additionally
remembered for this class). This can be circular, cubic, tetrahedral, platelet-shaped, or indeed
any symmetric or asymmetric shape as long as it is generally equiaxed. After all is said and
done, particles aren't particularly effective at increasing crack blockage; nonetheless, they
improve the composite's stiffness to a degree. Molecule fillers have been widely used to
determine the characteristics of lattice materials, including changing the warm and electronics
conductivities, improving execution at high temperatures, reducing erosion, increasing wear
and scraped spot resistance, improving machinability, increasing solidity value, and reducing
contraction.

1.2.4.2 Fibrous composites

When compared to its cross-sectional measures, the length of a fibre is far more conspicuous.
The support's elements determine its capacity to contribute characteristics towards the
composites. Filaments can help improve the grid's breaking resistance since a support with a
lengthy measure inhibits the growth of ordinary beginning breaks to the support, which can
lead to disappointment in some cases, particularly for weaker lattices.

Because massive flaws, which may be present in the mass material, are confined by the small
trans elements of the fibre, man-made fibres or strands of non-polymeric materials have a far
higher strength along their length. The orientation of the sub-atomic design is responsible for
strong strength and solidity in polymer composites.

Strands are difficult to use in application design due to their modest cross-sectional
dimensions. In this way, they are put into lattice materials to frame stringy composite. The
grid connects the strands, transfers burdens to the filament, and protects them from natural
attacks and injury caused by interacting with. In intermittent fiber supported composites, the
heap move capacity of the framework is more basic than in ceaseless fiber composites.

1.3 COMPONENTS OF A COMPOSITE MATERIAL

In its simplest form, a composite material is one which is made up of at least two elements
that act together to provide material qualities that are distinct from those of the individual
constituents. In practise, most composites are made up of a bulk material (the "matrix") and
some form of reinforcements, which is added to boost the matrix's stiffness and strength.

1.3.1  Role of matrix in a composite
Many substances have exceptional tensile strength when arranged in a sinewy structure, but to
achieve such capabilities, the filaments must be supported by a suitable matrix. The
framework confines the strands from each other to forestall scraped area and development of
new surface imperfections and goes about as an extension to hold the filaments set up. A
decent matrix ought to have the capacity to twist effectively under applied burden, move the
heap onto the filaments and equitably appropriated pressure fixation.

An research into the idea of holding powers in covers [12] reveals that the cement connection
between the support and the matrix is prone to breaking once stacking begins. The super
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strength characteristics of the covers are represented by the friction powers among both.

1.3.2  Materials used as matrices in composites
In its simplest form, a composite is one that is made up of at least two elements that act
together to provide material qualities that are distinct from those of the individual
constituents. In practise, most composites are made up of a bulk material (the matrix) and
some form of reinforcement, which is added to boost the matrix's stiffness and strength.

1.4 BULK PHASES

1.4.1 Metal Matrices
When compared to natural framework, metal lattice composites offer certain desirable
features. These include (I) increased strength at higher temperatures, (ii) increased cross-over
strength, (iii) improved electrical conductivity, (iv) unequalled warm conductivity, (v)
increased disintegration resistance, and so on. Nonetheless, the significant hindrance of metal
grid composites is their higher densities and therefore lower explicit mechanical properties
contrasted with polymer matrix composites. Another outstanding trouble is the high-energy
prerequisite for manufacture of such composites.

Superior has primarily been focused on fiber-supported aluminium and titanium in the
avionics industry. Boron and, to a lesser extent, silicon carbide (SiC) have been investigated
as support filaments. A variety of ways have been used to supply aluminium composites
containing boron. Titanium built up with SiC, boron (covered with SiC) and even with
beryllium, utilized for blower sharp edges.

Even if the holding between the strands or stubbles is inadequate, unidirectional aggregation
of strands or stubbles in the metal grid can achieve high versatile modulus characteristics.
Solid metallic matrixes, rather than flimsy metal or polymer grids, are essential for
appropriate cross over elasticity and stiffness.

Because most important fabrication processes entail high temperatures that alter the fibre,
carbon/graphite strands have only been used with metal matrixes on a research centre trial
scale. In any case, research along similar lines is underway, taking into consideration the
composites' capabilities.

1.4.2 Polymer Matrices
The matrix materials for the composite are made up of a broad number of polymeric
polymers, including thermoplastic and thermosetting. Following table lists a few of the
primary benefits and drawbacks of resin composites.

Table 1

Polymeric matrix materials' benefits and drawbacks
Advantages Limitations

Low densities Low transverse strength

Good corrosion resistance Low operational temperature limits
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Low thermal conductivities

Low electrical conductivities

Translucence

Aesthetic Colour effects

Resinous fasteners (polymer lattices) are often selected based on adhesive strength, wear
resistance, heat resistance, material and moisture resistance, and so on. The pitch's mechanical
strength should be comparable to that of the support. It should be simple to choose and use in
the production contact, as well as to deal with the help circumstances. Apart from such
characteristics, the pitch structure should be capable of soaking and infiltrating into the heaps
of filaments that provide support, so replacing the silent gaps and providing those genuine
traits capable of improving strand display.

The gum determines the shear, synthetic, and electrical characteristics of a composite. Once
again, the tar's concept will determine the usefulness of the coverings in the face of a
deteriorating climate.
In general, regardless of how large the volumetric part of the fibre seems (on the order of 0.7),
the framework material completely covers the support in composite, and it is the matrix that
must endure the negative atmosphere when the composite is exposed to elevated temperature.
The strength properties of the composite appear to be degrading, which could be related to the
effect of temperature on interfacial interaction. As a result, the composite's elevated
temperatures resistance is linked directly to the grid instead of the support. In the quest for
high-temperature-resistant polymers, the upper limit of assistance temperatures has been
pushed to around 300-3500C. Polyimides, which are now the best in class high temps
polymers, can withstand this range of operating temperatures.

The inexact assistance temperature ranges for saps and composites are shown in Tables 2 [13,
14]. It's important to remember that when it comes to the notion of the matrix material,
especially with regard to the composite's application temperature, there's no place for wiggle
space. On the off chance that the application temperature surpasses 300-3500C metal
framework has all the earmarks of being the solitary other option, in any event for the present.

Table 2

Application temperatures of some matrix material

Matrix material Limit of  long term
exposure, C

Limit of short term
exposure, C

Unsaturated polyesters 70 100

Epoxies 125 200

Phenolics 250 1600

Polyimides 315 400
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Aluminium 300 350

Table - 3

Trends for temperature application of heat resistant composites

Fibre reinforced
Composite

Maximum service
temperature, C

Specific weight
gm/cm3

Carbon / Epoxy 180 1.4

Boron/Epoxy 180 2.1

Borsic / Aluminium 310 2.8

Carbon/Polyimide 310 1.4

Boron/Polyimide 310 2.1

Carbon/Polyaminoxaline 350 1.4

Carbon/Polybenzimidazole 400 14

Borsic/Titanium 540 3.6

Carbon/Nickel 930 5.3

Whisker/Metals 1800 2.8-5.6

1.4.3 Ceramic Matrices
High-temperature uses and settings where corrosion seems to be a problem benefit from
ceramic fibres such as alumina and SiC (Silicon Carbide). The bulk of uses for reinforcements
are in the particulate form due to ceramics' limited stress and shear capabilities (e.g. zinc and
calcium phosphate). Ceramic Matrix Composites (CMCs) are materials that use a ceramic as
the matrix and are reinforced using small fibres or whiskers consisting of silicon carbide or
boron nitride. They are employed in very high temperatures.

1.5 REINFORCEMENT

The primary function of reinforcements in a composite is to improve the neat resin system's
mechanical characteristics. Every one of the fibres used during composite possess distinct
qualities, which influence the composite's qualities in diverse situations. To enable
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manipulation conceivable, the fibres must be organized into a kind of type of sheets, termed
as a fabric, throughout most purposes. Various methodologies for building fibres in sheet, as
well as the various fibre orientation that can be used to create various features.
1.6 INTERFACE

It possesses qualities that aren't represented by some of the individual elements. An interface
is a bounded region or zone in which a disruption, particularly physically, mechanical,
chemical, or otherwise, occurs. The fibre must be “wet” by the matrix substance. To enhance
wettability, coupling compounds are routinely utilised. Fibers that are well "wetted" increase
the surface of the contact. To achieve attractive characteristics in a composite, the load
applied must be successfully delivered out from matrix towards the fibres via the interface.
This needs a high contact area between the fibres and the matrix, as well as high adherence.
Debonding (breakdown at the interface) may not be desired.

1.7 METAL MATRIX COMPOSITE

Composite materials are made up of at least two sections: one would be the metal grid, and
the other is the support. Although the grid is often described as being made of metal, the
matrix is rarely made of pure metal. It is, for the most part, a mix. In the usefulness of the
composite the grid and the support are combined as one.

In recent years, the advancement of metal matrix (MMCs) has gotten a lot of attention
because of their superior strength and solidity, as well as high wear resistance and creep
resistance as compared to its related manufactured combination. The pliable structure allows
for the plastic deformation of fractures and stress focuses, which improves the substance's
crack toughness.

Factories have long produced cast composite in which the volume and condition of stages are
controlled by stage charts, such as Cast iron and Aluminum-silicon combinations.
Cutting-edge composites differ in that any volume, form, or size of reinforcement can be
incorporated into the lattice. Advanced composite are non-balanced metal-pottery
combinations with no thermodynamic constraints upon overall volume rates, forms, or sizes
of earthenware stages [15].

Many unique primary uses of metallic composite are attracted to the great durability and
impact power of metals and combos such as aluminium, titanium, magnesium, and
nickel-chromium combinations that go through plastics deformity under swaying. To increase
their qualities, such substances have even been remarkably reinforced by various fortified
standards (such as grain limit fortification, cooling rate, powerful organization fortification,
and so on). In any event, these techniques have been found to have an impact on strength and
solidity at elevated temperatures or even under specific assistance settings. In just this way,
another of the major goals of iron frame composite is to create a material with a balanced mix
of sturdiness and hardness in order to reduce the material's susceptibility to fractures and
faults while potentially maintaining dynamic and static qualities.

This demand ultimately leads to the excellent structure of metal and metal composites using
unidirectional or multi - directional weeds or uninterrupted threads. Because of it's extremely
high strength of stubbles and strands with distances of less than a few micrometres, the
supporting impact occurs. As a result, the discipline of Composite Materials (MMCs) began
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in the 1960s with the recognition that stubble-built MMCs may compete with long-fiber
supported composites in case of mechanical qualities [16].

The perplexing manufacture courses, restricted fabric ability [17, 18] and the little contrast in
property upgrade among bristle and particulate support [19] and additionally, the wellbeing
dangers related with taking care of SiC hairs [20, 21] have moved the accentuation as of late
more towards particulate or slashed filaments instead of stubble support of metals,
particularly aluminum, in view of its low weight and great wettability with silicon carbide
[22]. Mostly during 1980s, a dramatic shift in metal matrix development occurred, with
spasmodic support gradually replacing consistent support such as carbides, nitrides, oxides,
and natural materials such as carbon as well as silicon.

Whilst also spastic stubble endorsed MMCs are still being developed for aerospace
applications, car sections made from particles in the air and intermittent fibre built up MMCs,
which have essentially isotropic properties, are already being mass produced in large
quantities, thanks to Toyota's introduction of a diesel combustion chamber in 1983,
accompanied by Honda's motor and chamber blocks [23,24].

As a result, the current trend appears to be towards to the development of infrequently
supported metal grid composite materials, when compared to uni- and multi-directional
constant fibre built up MMCs, and the ease of access to benchmark or near-standard metal
working strategies that can be used to shape these MMCs, they have been acquiring wide
acceptance mainly since they have lately became more reachable for a moderately low cost
[25].. MMCs are really a subtype of irregularly sustained aluminium (DRA) composites,
which are formed of high-strength aluminium and its components, which are developed with
silicon carbide particles or bristles. Aluminum metal grid composites have an appealing
combination of characteristics and fabricability for some fundamental parts that require
high-solidity, good stiffness, and light weight [26].

Aluminium [27] is currently the focus of research around the world due to its distinctive
combination of good utilization blockage, low thickness, and excellent mechanical qualities.
Aluminum composites' unique thermal features, such as metallic conductance with a
coefficient of extension that can be custom fit down substantially, expand their use in
aerospace and other fields.

As a result, entire families of lightweight material composites that were formerly considered
unthinkable have either been available or hovering on the precipice of commercialisation.
Duralcan USA, Div. Alcan Aluminum corp., San Diego, California [28], for example, has
developed a series of Aluminum grids composite anchored by silicon carbide particles. Timet
for McDonnell Douglas developed a high-temperature freak titanium amalgam as a matrix
material for the National Aerospace facility. Textron is heated isostatically squeezing titanium
composite Ti-6Al-4V supplemented with continuous silicon carbide fibres for turbine motor
shafts [29]. Aluminum and rare metals are currently used as structural materials for MMC
goods by CERAMTEC AG (Germany). Besides being relatively low-priced in evaluation to
certain other light metals (e.g., magnesium and titanium), it has produced excellent results in a
variety of automobile and aerospace uses and is known for its ease of handling. Eventually,
the structure might be made of nearly any lightweight composite or non-ferrous metal,
particularly magnesium. They are likewise growing new clay cutting devices, and furthermore
prevalent material for chamber linings.
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Even with its greater increased temperature blocking property, titanium [30] has been used in
air motors primarily for blowers sharp corners and plates. Magnesium is indeed the best
material for producing composites for engine response sections, cylinder, gudgeon pins, and
spring coverings [31]. It is additionally utilized in aviation because of its low coefficient of
warm extension and high solidness properties joined with low thickness. The usage of Silicon
Carbide as an aid in Aluminum composite is principally intended to replace specialised
beryllium parts in rocket navigation frameworks since the underpinning exhibition is nicer
without the need for particular care in development as requested by the last's hazard [32, 33].
As of late Aluminum-lithium composite has been drawing in the consideration of analysts
because of it's acceptable wettability attributes [34].

Effective turn of events and sending of metal framework composites are basic to arriving at
the objectives of many progressed aviation drive and force advancement programs.
High-temperature, high-warm conductivity, and high-strength materials are required for the
specific space impetus and force application. Metal grid composites either meet or are capable
of meeting these requirements [35]. Metal structure composites additionally provide good
assurance to help car developers meet ongoing and prospective demand issues.

As a result of this writing, it is obvious that the Aluminum metal matrix composites
composition may efficiently support SiC, Al2O3, TiB2, boron, and graphite. The supporting
Aluminum metal matrix composites chemicals have made significant progress from of the
research center to commercialization. In any event, the components that influence the
mechanical and physical properties of these substances are a test [36] since they have been
receptive to the type as well as nature of support, the way of assembly, and the nuances of
creative management of the composites after it starts manufacturing.

Ceramic composites are widely used in situations where large weight investment expenditures
are required. Nonetheless, Aluminum composites' fairly weak wear resistance has limited
their use in elevated situations. The bulk of the studies to analyse the wear conduct of
Aluminum baffles have been conducted, according to the literature available on the subject.

Its protection from wear of MMCs is generally agreed upon, as well as the larger the
volumetric portion of particles, the greater the obstructions [37-39]. However, there is an ideal
value of the supporting that provides the most extreme contract duration from the material.

The diffraction and wearing demonstrations of supported aluminium composite may be
divided into two classes by the head tribological boundaries. Mechanical and real factors are
one, and material components are the other [40]. Sliding speed and typical burden have been
identified as mechanical and actual aspects, while volume part and type of for constituent
materials have been identified. Several researchers have concentrated on the volume part
support, which has the most solid impact on wear opposition [41]. MMCs have been planned
using various types of fortification as part of the exploration [42-43]. Introducing hard
intermetallic into the aluminium matrix improves wear characteristics dramatically, as a result
of most of these findings.

1.8 NEED FOR THE REINFORCEMENT OF SILICON CARBIDE INTO
ALUMINIUM MATRIX

The improvement of supporting framework, particularly composites assembly, can be
attributed to a better understanding of the lightweight materials that composites may provide,
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resulting in cheaper prices and better execution. There seems to be an rise in demand for
more contemporary, heavier, stronger, as well as lighter weight in areas such as aviation.
Composites are advancing mostly as a result of unusual customised demand arising from
rapidly driving activities in the aircraft, flying, and automobile industries. Because the their
low explicit gravity, these material outperform several traditional design elements like as
metals in terms of effectiveness and modulus. It is currently ready to make new composites
with improved mechanical and actual properties as an outcome of far reaching examination
into the presence of substances and a more profound comprehension of their design property
relationship. Constant advancement has prompted the utilization of composites in a more
extensive scope of uses, including elite composites, for example, PMCs, CMCs, and MMCs.
The ability to achieve a good mix of solidarity, solidness, strength, and thickness with
traditional solid particles is limited. Composites are the most promising materials of
continued interest for overcoming these flaws and addressing the ever-increasing need for
new technology. Metal grid composites (MMCs) have essentially improved properties over
unreinforced compounds, like high explicit strength, explicit modulus, damping force, and
high wear obstruction. AMCs have a wide scope of utilizations in our day by day lives.
Increased strength and explicit modulus, enhanced solidity, light weight, low warm growth
coefficient, high warm conductivity, enhanced electronic characteristics, increased wear
obstruction, and improved damping capacities are some of the advantages of using particles
fortified AMCs components over un - reinforced materials .Inside the framework, particles,
short strands, persistent filaments, and mono fibers would all be able to be utilized as
supporting constituents. Aviation, temperature control, modern materials, and car applications
like motor cylinders and brake circles currently use it. High solidity and durability, low
thickness, high temperature soundness, excellent voltage and warm conductivity, flexible
coefficient of warm extension, consuming opposing, expanded wear obstruction, and other
important qualities of composites. The support keeps the matrix in place and improves the
grid's overall material qualities, allowing it to frame the required stuff. When properly
prepared, the most current consolidated material outperforms all of the individual materials.
Composite are spectral features structures with features that separate materials cannot match.
Rational designs by meticulously mixing many or more comparable elements from diverse
organisations, highlights, and shapes.When contrasted with their fashioned amalgam partners,
metal lattice composites (MMCs) have gotten a ton of consideration lately as a result of their
prevalent strength and solidness, just as their high wear and creep obstruction. Another
important goal of lattice composite is to create a combination with a fine balance of strength
and hardness that reduces break and deformation weaknesses while improving dynamic and
static properties. Complex manufacturing methods, tiny texture restrictions, and a
microscopic variation in appropriate framework among brushes, as well as fine molecular
upgrade, are all factors to consider. Because of the health risks associated with cleaning SiC
stubbles, the focus has recently shifted to particle strands rather than aluminium hair support,
which is lightweight and more wettable with silicon carbide. MMCs are a form of DRA
constructed of high-strength aluminium amalgams with silicon carbide particulates or
bristles. Aluminum metal matrix composites give superb focuses to a few structure
components requiring high solidness, high strength, and low weight inferable from the blend
of properties and fabricability. Because fundamental performance is excellent and there is no
requirement for extraordinary manufacture the board required by that of the last's
poisonousness, SiC as a building up in Aluminum Composite is generally planned to
substitute some beryllium components in rocket directing frameworks. Aluminum-based
composite are commonly used in weight-saving purposes. Mixed Cast is a liquid state
composite material creation technology in which a distributed stage (clay particles, short
filaments) is accurately merged together with a liquid frame metal. The fluid composite



23

material is projected using traditional projecting tactics, and it can also be treated using
standard metal frame processes. The main goal of this work is to use mix projections to create
an Al-SiC composite that can be tested mechanically and metallurgically.

CHAPTERT2

LITERATURETSURVEY

2.1TINTRODUCTION
As part of the thesis study, a literature review is conducted to gain a better understanding of
the manufacturing processes, characteristics, and wear behavior of metal matrix composites.
Composite structures have consistently demonstrated a cost savings of at least 20% over
metal counterpart, as well as lower operational and maintenance costs. As more data on
composite structural service life becomes accessible, this can be reliably stated that they are
robust, preserve dimensional integrity, withstand stress load, and are simple to maintain and
repair. Composite should continue to develop new uses, but as the market for these materials
expands, less expensive methods of processing will be required, as well as the chance of
recycling [44].

TheTliteratureTsurveyTisTcarriedToutTasTaTpartTofTtheTthesisTworkTtoThaveTanTovervi
ewofTtheTproductionTprocesses,TpropertiesTandTwearTbehaviourTofTmetalTmatrixTcomp
osits.TCompositeTstructuresThaveTshownTuniversallyTaTsavingsTofTatTleastT20%ToverT
metalTcounterpartsTandTaTlowerToperationalTandTmaintenanceTcost.TAsTtheTdataTonT
theTserviceTlifeTofTcompositeTstructuresTisTbecomingTavailable,TitTcanTbeTsafelyTsaid
thatTtheyTareTdurable,TmaintainTdimensionalTintegrity,TresistTfatigueTloadingTandTareT
easilyTmaintainableTandTrepairable. Composite would continue to develop new uses, but as
the market for these materials grows, less expensive processing methods, as well as the
possibility of recycling, will be necessary [45].

ItThasTbeenTreportedTthatTtheTenergyTconsumedTwhenTaluminiumTisTrecycledTisTonly
TaboutT5%TofTthatTrequiredTinTtheTprimaryTproductionTofTaluminiumT[46].TThereT
are,Thowever,TcertainTdisadvantagesTassociatedTwithTtheTrecyclingTofTaluminiumTsuch
asTtheTpresenceTofTimpurities,TwhichTtoTaTlargeTextentTimpairTtheTmechanicalTproper
tiesTofTtheTrecycledTmaterial.TThisTproblemTcanTbeTovercomeTbyTaTcarefulTselection
TofTtheTconstituentsTandTalsoTtheTfabricationTtechnique,TasTtheyTcanTleadTtoTthe
formationTandTpilingTupTofTintermediateTphasesTthatTareTdetrimentalT[47].

ThereTareTmanyTinterdependentTvariablesTtoTconsiderTinTdesigningTanTeffectiveTMMC
Tmaterial.TSinceTtheTupperTboundTonTMMCTpropertiesTisTestablishedTbyTtheTproperti
esTofTtheTmatrixTandTreinforcementTmaterial,TcarefulTselectionTofTtheseTcomponentsT
isTnecessary.
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2.2TMATERIALTSELECTIONT

2.2.1TMatrixTMaterialT

Because the matrix alloy in MMC is responsible for so much more than just distributing glue,
it should only be chosen after a thorough examination of its chemical inertness with that of
the composite, capacity to wet this same reinforcement, own qualities, qualities, and
processing behaviour patterns [ 48].T

OneTveryTcrucialTissueTtoTconsiderTinTselectionTofTtheTmatrixTalloyTcompositionTinv
olvesTtheTnaturalTdichotomyTbetweenTwettabilityTofTtheTreinforcementTandTexcessiveT
reactivityTwithTitT[49].TGoodTloadTtransferTfromTtheTmatrixTtoTtheTreinforcementTdep
endsTonTtheTexistenceTofTaTstronglyTadherentTinterfaceT[50,T51].TInTturn,TaTstrongTi
nterfaceTrequiresTadequateTwettingTofTtheTreinforcementTbyTtheTmatrix.THowever,T
theTattainmentsTofwettingTandTaggressiveTreactivityTareTbothTfavoredTbyTstrongTchem
icalTbondingTbetweentheTmatrixTandTreinforcement.TAdjustingTtheTchemicalTcompositi
onTtoTaccomplishTthisTdelicateTcompromiseTisTdifficultTasTmanyTsubtletiesTareTinvolv
ed.TToTillustrateTtheTcomplexity,TseveralTexamplesTconcerningTalloyingTadditionsTtoT
aluminiumTmatrixTmetalTrelativeTtoTSiliconTcarbideTwhiskers,TboronTreinforcedTandT
GraphiteTreinforcedTaluminiumTcompositesTandTtheTeffectTofTinsidiousTimpuritiesT
fromTvariousToriginsThaveTbeenT documentedTbyTnumerousTinvestigatorsT[52-66].T

AsTaTruleTofTalloyingTelementTaddition,TtheTaddedTelementTshouldTnotTformT
intermetalicTcompoundsTwithTtheTmatrixTelementsTandTshouldTnotTformThighlyT
stableTcompoundsTwithTtheTreinforcements.TTheTbestTpropertiesTcanTbeTobtainedTin
aTcompositeTsystemTwhenTtheTreinforcementTwhiskersTorTparticulatesTandTmatrixTare
TasTphysicallyTandTchemicallyTcompatibleTasTpossible. To improve the performance of
specific metallic composites, special matrix alloy composition and unique whisker coatings
has been developed [67-71]. T

T
2.3TWhyTAlTMatrixTSelection?
MMCTmaterialsThaveTaTcombinationTofTdifferent,TsuperiorTpropertiesTtoTanTunreinfor
cedmatrixTwhichTare;TincreasedTstrength,ThigherTelasticTmodulus,ThigherTservicTtempe
rature,TimprovedTwearTresistance,ThighTelectricalTandTthermalTconductivity,TlowTcoeffi
cientofTthermalTexpansionTandThighTvacuumTenvironmentalTresistance.TheseTproperties
TcanTbeTattainedTwithTtheTproperTchoiceTofTmatrixTandTreinforcementT

CompositeTmaterialsTconsistTofTmatrixTandTreinforcement.TItsTmainTfunctionTisTtoTtra
nsferTandTdistributeTtheTloadTtoTtheTreinforcementTorTfibres.TThisTtransferTofTloadT
dependsonTtheTbondingTwhichTdependsTonTtheTtypeTofTmatrixTandTreinforcementTand
TtheTfabricationTtechnique.T

TheTmatrixTcanTbeTselectedTonTtheTbasisTofToxidationTandTcorrosionTresistanceTorT
otherpropertiesT[34].TGenerallyTAl,TTi,TMg,TNi,TCu,TPb,TFe,TAg,TZn,TSnTandTSiTare
TusedT asTtheTmatrixTmaterial,TbutTAl,TTi,TMgTareTusedTwidely.T
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NowadaysTresearchersTallToverTtheTworldTareTfocusingTmainlyTonTaluminiumT[27]Tbe
causeTofTitsTuniqueTcombinationTofTgoodTcorrosionTresistance,TlowTdensityTandTexcel
lentTmechanicalTproperties.TTheTuniqueTthermalTpropertiesTofTaluminiumTcompositesTs
uchTasmetallicTconductivityTwithTcoefficientTofTexpansionTthatTcanTbeTtailoredTdown
TtoTzero,TaddTtoTtheirTprospectsTinTaerospaceTandTavionics.TTitaniumT[30]ThasTbeen
TusedTinTaeroenginesTmainlyTforTcompressorTbladesTandTdiscsTdueTtoTitsThigherT
elevatedTtemperatureTresistance.TMagnesiumTisTtheTpotentialTmaterialTtoTfabricateT
compositeTforTmakingTreciprocatingTcomponentsTinTmotorsTandTforTpistons,Tgudgeon
TpinsTandTspringTcapsT[31].T
ItTisTalsoTusedTinTaerospaceTdueTtoTitsTlowTcoefficientTofTthermalTexpansionTandT
highTstiffnessTpropertiesTcombinedTwithTlowTdensity.TtheTchoiceTofTSiliconTCarbideT
asTtheTreinforcementTinTaluminiumTcompositeTisTprimarilyTmeantTtoTuseTtheTcomposi
teTinTmissileTguidanceTsystemTreplacingTcertainTberylliumTcomponentsTbecauseTstruct
uralTperformanceTisTbetterTwithoutTspecialThandlingTinTfabricationTdemandedTbyTtheT
latter'sTtoxicitT[32,33].TRecentlyTaluminiumlithiumTalloyThasTbeenTattractingTtheTattent
ionTofTresearchersTdueTtoTitsTgoodTwettabilityTcharacteristicsT[72].T

InTaddition,TliteratureTalsoTrevealsTthatTmostTofTtheTpublishedTworkThasTconsideredT
aluminiumTcompositesTwithTtheirTattractionsTofTlowTdensity,TwideTalloyT23Trange,T
heatTtreatmentTcapabilityTandTprocessingTflexibility.TManyTofTtheseTfeaturesTareTalsoT
exhibitedTbyTmagnesiumbasedTsystemsTandTwithTitsTlowerTelasticTmodulus.TMagnesiu
mToftenTachievesTaTlargerTpropertyTimprovementTwithTreinforcementTthanTaluminium.
TAlsoTmanyTofTtheTcompositeTfabricationTprocessesTareTcommonTtoTbothTAlTandTM
gTbasedTsystemsT[35,T73].T

MagnesiumTandTmagnesiumTalloysTareTamongTtheTlightestTcandidateTmaterialsTforTpr
acticalTuseTasTtheTmatrixTphaseTinTmetalTmatrixTcomposites.TWhenTcomparedTtoToth
erTcurrentlyTavailableTstructuralTmaterials.TMagnesiumTisTveryTattractiveTbecauseTofT
itsTuniquecombinationTofTlowTdensityTandTexcellentTmachinability.THowever,TitThasT
beenTreportedTbyTseveralTauthorsT[74]TthatTtheirTlowTdensityT(35%TlowerTthanTthatT
ofTAl)TmakesTthemTcompetitiveTinTtermsTofTstrength/densityTvalues.TMagnesiumTallo
ysTdoTnotTcompareTfavorablyTwithTaluminiumTalloysTinTtermsTofTabsoluteTstrength.

The high wettability, design flexibility, and tough bonding at the interface are said to be the
major reasons for aluminium's success over magnesium.T

2.4TReinforcementT

ReinforcementTincreasesTtheTstrength,TstiffnessTandTtheTtemperatureTresistanceTcapacit
yTandTlowersTtheTdensityTofTMMC.TInTorderTtoTachieveTtheseTpropertiesTtheTselecti
onTdependsTonTtheTtypeTofTreinforcement,TitsTmethodTofTproductionTandTchemicalT
compatibilityTwithTtheTmatrixTandTtheTfollowingTaspectsTmustTbeTconsideredTwhileT
selectingTtheT reinforcementTmaterial.T

•TSizeT–TdiameterTandTaspectTratio:T

•TShapeT–TChoppedTfiber,Twhisker,TsphericalTorTirregularTparticulate,Tflake,Tetc:T
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•TSurfaceTmorphologyT–TsmoothTorTcorrugatedTandTrough:T
•TPolyT–TorTsingleTcrystal:T

•TStructuralTdefectsT–Tvoids,ToccludedTmaterial,TsecondTphases:T

•TSurfaceTchemistryT–Te.g.TSiO2TorTCTonTSiCTorTotherTresidualTfilms:T

•TImpuritiesT–TSi,TNaTandTCaTinTsapphireTreinforcement;T

•TInherentTpropertiesT–Tstrength,TmodulusTandTdensity.T

EvenTwhenTaTspecificTtypeThasTbeenTselected,TreinforcementTinconsistencyTwillTpersi
stTbecauseTmanyTofTtheTaspectsTcitedTaboveTinTadditionTtoTcontaminationTfromTproc
essingTequipmentTandTfeedstockTmayTvaryTgreatlyT[75].TSinceTmostTceramicsTareT
availableTasTparticles,TthereTisTaTwideTrangeTofTpotentialTreinforcementsTforTparticleT
reinforcedTcompositesT[76-81].T

TheTuseTofTgraphiteTreinforcementTinTaTmetalTmatrixThasTaTpotentialTtoTcreateTaT
materialTwithTaThighTthermalTconductivity,TexcellentTmechanicalTpropertiesTandTattract
iveTdampingTbehaviourTatTelevatedTtemperaturesT[82,83].THowever,lackTofTwettabilityb
etweenTaluminiumTandTtheTreinforcement,TandToxidationTofTtheTgraphiteT[84,85]T
leadTtoTmanufacturingTdifficultiesTandTcavitationsTofTtheTmaterialTatThighTtemperature
.T

AluminaT[86]TandTotherToxideTparticlesTlikeTTiO2T[87]Tetc.ThaveTbeenTusedTasTtheT
reinforcingTparticlesTinTAl.TAluminaThasTreceivedTattentionTasTaTreinforcingTphaseTas
itTisTfoundTtoTincreaseTtheThardness,TtensileTstrengthTandTwearTresistanceT[88,89]Tof
aluminiumTmetalTmatrixTcomposites.TRohatgiT[90]ThaveTstudiedTmica,Talumina,T
siliconTcarbide,Tclay,Tzircon,TandTgraphiteTasTreinforcementsTinTtheTproductionTofT
composites.TNumerousToxides,Tnitrides,TboridesTandTcarbidesTwereTstudiedTbyTZedalis
Tet.al.[91,92]TasTreinforcementsTforTreinforcingThighTtemperatureTdiscontinuouslyT
reinforcedTaluminiumT(HTDRA).TItThasTbeenTinferredTfromTtheirTstudiesTthatTHTDR
ATcontainingTTiCTTiB2,TB4C,TAl2O3,TSiCTandTSi3N4TexhibitTtheThighestTvaluesTofT
specificTstiffness.T

TItTisTprovenTthatTtheTceramicTparticlesTareTeffectiveTreinforcementTmaterialsTinTalu
miniumTalloyTtoTenhanceTtheTmechanicalTandTotherTpropertiesT[93,94].TTheTreinforce
mentTinTMMCsTareTusuallyTofTceramicTmaterials,TtheseTreinforcementsTcanTbeTdivid
edTintoTtwoTmajorTgroups,TcontinuousTandTdiscontinuous.TTheTMMCsTproducedTbyT
themTareTcalledTcontinuouslyT(fibre)TreinforcedTcompositesTandTdiscontinuouslyTreinfo
rcedTcomposites.THowever,TtheyTcanTbeTsubdividedTbroadlyTintoTfiveTmajorTcategorie
s:TcontinuousTfibres,TshortTfibresT(choppedTfibres,TnotTnecessarilyTtheTsameTlength),T
whiskers,TparticulateTandTwireT(onlyTforTmetal).TWithTtheTexceptionTofTwires,Treinfor
cementsTareTgenerallyTceramics,TtypicallyTtheseTceramicsTbeingToxides,TcarbidesTandT
nitrides.TtheseTareTusedTbecauseTofTtheirTcombinationsTofThighTstrengthTandTstiffness
TatTbothTroomTandTelevatedTtemperatures.TCommonTreinforcementTelementsTareTSiC,
TA1203,TTiB2,TboronTandTgraphite.T
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2.2.3.1TContinuousTfibreTreinforcementT

AccordingTtoTASTMT[95]TtheTtermTfibreTmayTbeTusedTforTanyTmaterialTinTanTelon
gatedTformTthatThasTaTminimumTlengthTtoTaTmaximumTaverageTtransverseTdimension
TofT10:1,TaTmaximumTcrossTsectionalTareaTofT5.1X10Tcm2TandTaTmaximumTtransver
seTdimensionTofT0.0254Tcm.TContinuousTfibersTinTcompositesTareTusuallyTcalledTfila
ments,TtheTmainTcontinuousTfibresTincludeTboron,Tgraphite,TaluminaTandTsiliconT
carbide.T

TheTfibreTisTuniqueTforTunidirectionalTloadTwhenTitTisTorientedTinTtheTsameT
directionTasTthatTofTloading,TbutTitThasTlowTstrengthTinTtheTdirectionTperpendicularT
toTtheTfibreTorientation.TAsTregardsTcost,TcontinuousTfibresTareTaboutT200TtimesThig
herTthanTdiscontinuousTfibres.TThereforeTforTspecificTpurposesTonly,TthatTcontinuousTf
ibreTisTused.TTheTotherTadvantageTofTdiscontinuousTfibresTisTthatTtheyTcanTbeTshape
dTbyTanyTstandardT metallurgicalTprocessesTsuchTasTforging,Trolling,TextrusionTetc.T

2.2.3.2TShortTfibresT

ShortTfibresTareTlongTcomparedTtoTtheTcriticalTlengthT(lcT=TdTSfT/TSmTwhereTdTisT
theTfibreTdiameter,TSfTisTtheTreinforcementTstrengthTandTSmTisTtheTmatrixTstrength)T
andThenceTshowThighTstrengthTinTcomposites,TconsideringTalignedTfibres.TNevertheles
s,TmisorientedTshortTfibresThaveTbeenTusedTwithTsomeTsuccessTasTAMCT(Aluminium
TMatrixTComposite)TreinforcementT[96].TShortTfibresTareTstillTusedTmainlyTforTrefract
oryTinsulationTpurposesTdueTtoTtheirTlowTstrengthTcomparedTwithTothers,TbutTtheyT
areTcheaperTthanTfibreTandTwhiskers.T

2.2.3.3TWhiskersT

WhiskersTareTcharacterizedTbyTtheirTfibrous,TsingleTcrystalTstructures,TwhichThaveTno
TcrystallineTdefect.TNumerousTmaterials,TincludingTmetals,Toxides,Tcarbides,ThalidesT
andTorganicTcompoundsThaveTbeenTpreparedTunderTcontrolledTconditionsTinTtheTform
TofTwhiskers.TGenerally,TaTwhiskerThasTaTsingleTdislocation,TwhichTrunsTalongTtheTc
entralTaxis.T

TheTrelativeTfreedomTfromTdiscontinuousTmeansTthatTtheTyieldTstrengthTofTaTwhisker
TiscloseTtoTtheTtheoreticalTstrengthTofTtheTmaterialT[97].T

SiliconTcarbide,TsiliconTnitride,TcarbonTandTpotassiumTtitanateTwhiskersTareTavailablea
lready.TAmongTthese,TsiliconTcarbideTwhiskersTseemTtoTofferTtheTbestTopportunitiesT
forTMMCTreinforcement.TPresently,TsiliconTcarbideTwhiskerTreinforcementTisTproduced
TfromTriceThusk,TwhichTisTaTlowTcostTmaterial.TTheTphysicalTcharacteristicsTofTwhis
kersTareTresponsibleTforTdifferentTchemicalTreactivityTwithTtheTmatrixTalloyT[99]Tand
TalsoThealthThazardsTposedTinTtheirThandling.TThereforeTtheTinherentTinterestTshownT
byTtheTresearchersTinTwhiskersTreinforcementThasTdeclined.T

2.2.3.4TParticulatesT



28

ParticulatesTareTtheTmostTcommonTandTcheapestTreinforcementTmaterials.TheseT
produceTtheTisotropicTpropertyTofTMMCs,TwhichTshowsTaTpromisingTapplicationTinT
structuralTfields.TInitially,TattemptsTwereTmadeTtoTproduceTreinforcedTAluminiumT
alloysTwithTgraphitepowder,TbutTonlyTlowTvolumeTfractionsTofTreinforcementThadT
beenTincorporatedT(<10%).PresentlyThigherTvolumeTfractionsTofTreinforcementsThaveT
beenTachievedTforTvariousTkindsTofTceramicTparticlesT(oxide,Tcarbide,Tnitride).

Wear-resistant materials made from SiC particulate-reinforced aluminium matrix composites
seem promising. Particulates, on the other hand, have a favourable effect on properties
including toughness, durability, and compressive. The selection of reinforcements is guided
by a number of factors [100], and is not as random because this set of composite may appear.

TheTapplication:TIfTtheTcompositeTisTtoTbeTusedTinTaTstructuralTapplication,TtheTmo
dulus,Tstrength,TandTdensityTofTtheTcompositeTwillTbeTimportant,TwhichTrequiresTaT
highTmodulus,TlowTdensityTreinforcement.TParticleTshapeTmayTbeTimportant,TsinceT
angularTparticlesTcanTactTasTlocalTstressTraisers,TreducingTductility.TIfTtheTcompositeT
isTtoTbeTusedTinTthermalTmanagementTapplications,TtheTcoefficientTofTthermalTexpans
ionTandTthermalTconductivityTareTimportant.TIfTtheTcompositeTisTtoTbeTusedTinT
wearTresistantTapplications,ThardnessTisTimportant.T
TheTmethodTofTcompositeTmanufacture:TThereTareTtwoTgenericTmethodsTforTcomp
ositeTmanufacture,TpowderTmetallurgyT(P/M)TandTmethodsTinvolvingTmoltenTmetal.T
ForTcompositesTprocessedTinTtheTmoltenTstate,TthereTareTdifferentTconsiderationsTsuch
TasTcompatibility.TAluminaTisTstableTinTmostTMgTfreeTAlTalloys,TbutTunstableTinT
MgTalloys,TreactingTtoTformTAl2MgO4.TReactionTofTtheTreinforcementTcanTseverelyT
degradeTtheTpropertiesTofTtheTcomposites,TsoTtheTreinforcementThasTtoTbeTchosenT
afterTconsideringTtheTmatrixTalloy,TandTtheTprocessingTtimeTandTtemperature.T

Cost: The cost of the composites is a big consideration when employing particles. As a result,
repeatable grade reinforcement must be readily available in the quantities, sizes, and shapes
necessary at a low cost.
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CHAPTERT3

METHODOLOGY

3.1TFABRICATIONTMETHODSTOFTMMCsT

Metal-matrix composite (MMC) materials' potential for considerable performance

improvements over traditional alloys has been extensively acknowledged in recent years.

Their manufacturing expenses, on the other hand, are still quite substantial. MMC materials

can be made using a variety of fabrication procedures; there is no one-size-fits-all solution.

Fabrication procedures can differ significantly depending on the material and reinforcement

used, as well as the types of reinforcement used. The following are the different processing

processes utilised to make particle reinforced MMCs.

● Diffusion bonding, hot rolling, extrusion, drawing, explosive welding, PM route,

pneumatic impaction, and other solid-phase fabrication methods [101].

● Liquid-metal infiltration, squeeze casting, compocasting, pressure casting, spray

codeposition, stir casting, and other liquid-phase production methods[102].

● Rheocasting [103] and Spray atomization are two-phase (solid/liquid) techniques.

Because solid-phase processing takes longer, the liquid-phase fabrication method is usually

more efficient [104] than the solid-phase fabrication approach. In various fabrication
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procedures, the matrix metal is used in diverse forms. Powder is typically utilised in

pneumatic impaction and powder metallurgy, while a liquid matrix is utilised in liquid-metal

infiltration, plasma spray, spray casting, squeeze casting, pressure casting, gravity casting, stir

casting, investment casting, and other processes. Electroforming uses a molecular form of the

matrix, while diffusion bonding, rolling, and extrusion utilise vapour deposition and metal

foils.

ThereTareTcertainTmainTmanufacturingTprocessesTwhichTareTusedTpresentlyTinTlaborat

orieTasTwellTasTinTindustriesTareTdiffusionTbonding,TtheTpowderTmetallurgyTroute,T

liquid,metalTinfiltration,TsqueezeTcasting,TsprayTcodeposition,TstirTcastingTandTcompoT

casting.TBriefTDescriptionTofTtheseTprocessesTisTgivenTbelow.T

3.2TSOLIDTPHASETFABRICATIONTMETHODST

There are various methods for fabricating MMC from solid-phase materials, although

diffusion bonding and powder metallurgy are the most common.

3.2.1TDiffusionTbondingT

ThisTmethodTisTnormallyTusedTtoTmanufactureTfibreTreinforcedTMMCTwithTsheetsTor

TfoilsTofTmatrixTmaterial.TFigureT1T[104]TshowsTtheTdifferentTstepsTinTfabricatingT

MMCTbyTdiffusionTbonding.THereTprimarilyTtheTmetalTorTmetalTalloysTinTtheTformT

ofTsheetsTandTtheTreinforcementTmaterialTinTtheTformTofTfibreTareTchemicallyT

surfaceTtreatedTforTtheTeffectivenessTofTinterdiffusion.TThenTfibresTareTplacedTonTthe

TmetalTfoilTinTpredeterminedTorientationTandTbondingTtakesTplaceTbyTpressTformingT

directly,TasTshownTbyTtheTdottedTline.THoweverTsometimesTtheTfibresTareTcoatedTby

TplasmaTsprayingTorTionTplatingTforTenhancingTtheTbondingTstrengthTbeforeTdiffusion

Tbonding,TtheTsolidTlineTshowsTthis.TAfterTbonding,TsecondaryTmachiningTworkTisT

carriedTout.TtheTappliedTpressureTandTtemperatureTasTwellTasTtheirTdurationsTforT

diffusionTbondingTtoTdevelop,TvaryTwithTtheTcompositeTsystems.THowever,TthisTisT

theTmostTexpensiveTmethodTofT fabricatingTMMCTmaterials.T
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Fig.1TFlowTchartTforTcompositeTfabricationTbyTdiffusionTbonding

3.2.2TPowderTmetallurgyT(PM)Ttechnique

TheTPMTtechniqueTshownTinTFig.2TisTtheTmostTcommonlyTusedTmethodTforTtheTpre

parationTofTdiscontinuousTreinforcedTMMCsT[105].TThisTtechniqueTisTusedTtoTmanufa

ctureTMMCsTusingTeitherTparticulatesTorTwhiskersTasTtheTreinforcementTmaterials.TIn

TtheTgeneralTprocessTtheTpowdersTofTmatrixTmaterialsTandTreinforcementTareTfirstTbl

endedT
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andTfedTintoTaTmouldTofTtheTdesiredTshape.TPressureTisTthenTappliedTtoTfurtherT

compactTtheTpowderT(coldTpressing).TInTorderTtoTfacilitateTtheTbondingTbetweenTtheT

powderTparticles,TtheTcompactTisTthenTheatedTtoTaTtemperatureTthatTisTbelowTtheTm

eltingTpointTbutTsufficientlyThighTtoTdevelopTsignificantTsolidstateTdiffusionT

(sintering).TTheTconsolidatedTproductTisTthenTusedTasTaTMMCTmaterialT

afterTsomeTsecondaryToperation.T

ThisTmethodTisTpopularTbecauseTitTisTreliableTcomparedTwithTotherTalternativeTmetho

ds,TbutTitTalsoThasTsomeTdemerits.TTheTblendingTstepTisTaTtimeTconsuming,Texpensi

veTandTpotentiallyTdangerousToperation.TInTaddition,TitTisTdifficultTtoTachieveTanT

evenTdistributionTofTparticulateTthroughoutTtheTproductTandTtheTuseTofTpowdersT

requiresTaThighTlevelTofTcleanliness,TotherwiseTinclusionsTwillTbeTincorporatedTintoT

theTproductTwithTaTdeleteriousTeffectTonTfractureTtoughness,TfatigueTlife,Tetc.T

Fig.2.GeneralTflowTchartTforTfabricationTofTcompositeTbyTpowderTmetallurgyT
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techniqueT

3.2.3TLiquidTphaseTfabricationTtechniquesT

MostTofTtheTMMCsTareTproducedTbyTthisTtechnique.TInTthisTtechnique,TtheTceramic

TparticlesTareTincorporatedTintoTliquidTmetalTusingTvariousTprocesses.TtheTliquidT

compositeTslurryTisTsubsequentlyTcastTintoTvariousTshapesTbyTconventionalTcastingT

techniquesTorTcastTintoTingotsTforTsecondaryTprocessing.TTheTprocessThasTtheTmajorT

advantageTthatT theTproductionTcostsTofTMMCsTareTveryTlow. The process has the key

advantage of having very low MMC production costs. The non-wettability of the particles by

liquid aluminium and the resulting denial of the particles from the melt, as well as

non-uniform particle dispersion due to favored segregation and significant interfacial

reactivity, are the key challenges in such operations.

3.2.4TLiquidTmetalTinfiltrationT

ThisTprocessTcanTalsoTbeTcalledTfibreTinfiltration.TFiberTtowsTcanTbeTinfiltratedTbyT

passingTthroughTaTbathTofTmoltenTmetal.TUsuallyTtheTfibresTmustTbeTcoatedTinTline

TtoTpromoteTwetting.TOnceTtheTinfiltratedTwiresTareTproduced,TtheyTmustTbeTassembl

edTintoTaTpreformTandTgivenTaTsecondaryTconsolidationTprocessTtoTproduceTaTcomp

onent.TSecondaryTconsolidationTisTgenerallyTaccomplishedTthroughTdiffusionTbondingT

orThotTmouldingTinTtheTtwo-phaseTliquidTandTsolidTregion.T

TheTfabricationTprocessTofTMMCTbyTvacuumTmetalTinfiltrationTusedTbyTChapmanTet

Tal.T[106]TisTshownTinTFig.T2.3.TTheseTauthorsTusedTAluminiumToxideTfibreTFPT(po

lycrystallineTfibre)TofTDuTPontTCompany.TInTthisTtechnique,TasTtheTfirstTstep,TFPTis

TmadeTintoTaThandleableTFPTtapeTwithTaTfugitiveTorganicTbinderTinTaTmannerT

similarTtoTproducingTaTresinTmatrixTcompositeTprepreg.TFibreTFPTtapesTareTthenTlaid

TinTtheTdesiredTorientation,TfibreTvolumeTloading,TandTshape,TandTareTthenTinsertedT

intoTaTcastingTmoldTofTsteelTorTotherTsuitableTmaterial.TTheTfugitiveTorganicTbinder

TisTburnedTaway,TandTtheTmoldTisTinfiltratedTwithTmoltenTmetalTandTallowedTtoTsol

idify.TMetalsTsuchTasTAluminium,Tmagnesium,TsilverTandTcopperThaveTbeenTusedTas

TtheTmatrixTmaterialsTinTthisTliquidTinfiltrationTprocessTbecauseTofTtheirTrelativelyT

lowerTmeltingTpoints.TThisTmethodTisTdesirableTinTproducingTrelativelyTsmallTcompos
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iteTspecimensThavingTunidirectionalTproperties.

3.2.5TSqueezeTcasting

Squeeze casting is a one-step metal forming method that produces close-tolerance,

high-integrity finished shapes by rapidly solidifying a measured quantity of liquid metal in a

reusable die at high pressures (50 to 100 MPa).

TTheTfabricationTprocessTofTMMCTbyTsqueezeTcastingTisTshownTinTFig.T3.TTheT

preformTofTtheTceramicTfibreTisTpreheatedTtoTseveralThundredTdegreesTcentigradeTbel

owTtheTmeltingTtemperatureTofTtheTmatrixTandTthenTsetTintoTaTmetalTdie.TtheTAlTor

TMgTalloyTisTheatedTtoTjustTaboveTitsTmeltingTtemperatureTandTisTthenTsqueezedT

intoTtheTfibreTpreformTbyTaThydraulicTpressTtoTformTaTmixtureTofTfibreTandTmolten

Tmetal.T

ThisTprocessTcanTbeTusedTforTlargeTscaleTmanufacturingTbutTitTrequiresTcarefulTcontr

olTofTtheTprocessTvariables,TincludingTtheTfiberTandTliquidTmetalTpreheatTtemperature

,TtheTmetalTalloyingTelements,TexternalTcooling,TtheTmeltTquality,TtheTtoolingTtemper

ature,TtheTtimeTlagTbetweenTdieTclosureTandTpressurization,TtheTpressureTlevelsTandT

durationTandTtheTplungerTspeed.TImperfectTcontrolTofTtheseTprocessTvariablesTresultsT

inTvariousTdefects,TincludingTfreezeTchoking,TpreformTdeformation,TfiberTdegradation,

ToxideTinclusionsTandTotherTcommonTcastingTdefects.THowever,TinTpracticalTuse,T

squeezeTcastingTisTtheTmostTeffectiveTmethodTofTconstructingTmachineTpartsTwithTaT

complexTshapeTinTaTshortTtime.T
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Fig.3.SequencesTofTtheTSqueezeTcastingTprocessTwithTaTverticalTmachineT(a)Tpo
uringT(b)TcastingT(c)TsqueezingTandT(d)Tejecting

3.2.6TSprayTco-depositionTmethod

Spray-deposition is a low-cost approach for creating particle composites. The Alcan spray

deposition method is seen schematically in Figure 4. The alloys to have been spray in a

beaker is melted using induction heating. The crucible is pressured, and the metal is expelled

throughout a nozzle into an atomizer, where particles (reinforcement) are injected and

deposited on a warmed substrate in the line of flight. On the collector, a substantial deposit is

built up. When the deposited strip has cooled, it is removed from the substrate and rolled. The

final product's shape is determined by the atomizing condition as well as the collector's form

and speed.

Fig.4.TSchematicTofTsprayTdepositionTequipmentT
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3.2.7TStirTcasting

Stir-casting processes, as demonstrated in Fig. 5, are now the most straightforward and

marketable method of making MMCs. This method entails mechanically addition the

reinforcing particles into a melt bath and then moving the mixture to a formed mould before it

solidifies completely. The most important aspect of this technique is to get adequate wetting

between the particle reinforcement and the molten metal.

MicrostructuralTinhomogeneityTcanTcauseTparticleTagglomerationTandTsedimentationTin

theTmeltTandTsubsequentlyTduringTsolidification.TInhomogeneityTinTreinforcementT

distributionTinTtheseTcastTcompositesTcouldTalsoTbeTaTproblemTasTaTresultTofT

interactionTbetweenTsuspendedTceramicTparticlesTandTmovingTsolid,liquidTinterfaceT

duringTsolidification.TThisTprocessThasTtheTmajorTadvantageTthatTtheTproductionTcosts

TofTMMCsT areTveryTlow.
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Fig.5TMMCTbyTcastingTrouteTthroughTStirTCastingTmethod

3.2.8TCompocasting

This has been the most cost-effective way of producing a composite using discontinuity

fibres, except from PM, thermal spraying, diffusion bonding, and high-pressure squeeze

casting (chopped fibre, whisker and particulate). This is an upgraded version of the slush- or

stir-casting method.

Figure 6 shows the schematic representation of the compo casting apparatus used to make the

composites. An inductive power supply (50 kW, 3000 Hz), a water-cooled vacuum chamber

with mechanical and diffusion pumps, and a furnace and mixing equipment for agitating the

composite make up the device.

First,TaTmetalTalloyTisTplacedTinTtheTsystemTwithTtheTbladeTassemblyTinTplace.T

ThenTtheTchamberTisTevacuatedTandTtheTalloyTisTsuperheatedTaboveTitsTmelting

TtemperatureTandTstirringTisTinitiatedTbyTtheTDCTmotorTtoThomogenizeTtheT

temperature.TTheTinducingTpowerTisTloweredTgraduallyTuntilTtheTalloyTisT40TtoT50%

Tsolid,TatTwhichTpointTtheTnonmetallicTparticlesTareTaddedTtoTtheTslurry,THowever,T

theTtemperatureTisTraisedTduringTaddingTinTsuchTaTwayTthatTtheTtotalTamountTofT

solid,TwhichTconsistsTofTfibresTandTsolidTglobulesTofTtheTslurry,TdoesTnotTexceedT

50%.TstirringTisTcontinuedTuntilTinterfaceTinteractionsTbetweenTtheTparticulatesTandT

theTmatrixTpromoteTwetting.T

TheTmeltTisTthenTsuperheatedTtoTaboveTitsTliquidTtemperatureTandTbottomTpouredT

intoTtheTgraphiteTmouldTbyTraisingTtheTbladeTassembly.TTheTmeltTcontainingTtheTno

nmetallicTparticlesTisTthenTtransferredTintoTtheTlowerThalfTofTtheTpressTandTtheTtopT

dieTisTbroughtTdownTtoTshapeTandTsolidifyTtheTCompositeTbyTapplyingTtheTpressure.

TThisTisTusedTtoTmakeTtheTcompositeTofTtheThighestTvaluesTofTvolumeTfractionsTof

Treinforcement.T

MMCs are less forgiving in terms of processing practise than unreinforced alloys, according

to the literature, but with the right technique, desirable combinations of mechanical and

physical qualities can be created.
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Fig.6.TCompocasting:TmixingTfibresT(orTParticulates)TwithTmetalT
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CHAPTERT4

STIRTCASTINGTFABRICATIONTMETHOD

4.1TIntroduction
Stir casting is one of the many production processes accessible for discontinuity metal matrix
composites, and it is presently used economically. Its merits include its simplicity, flexibility,
and adaptability to large-scale production, as well as its low price, because it allows for the
use of a traditional metal preparation method in theory. This liquid metallurgical approach is
perhaps the most cost-effective of all the metal matrix production pathways [107], allowing
for the fabrication of very mass production while maintaining high productivity rates.
However according Skibo et al [108], the cost of manufacturing composites employing a
casting approach is roughly one-third to just one that of comparable technologies, with costs
expected to reduce to one-tenth for large volumes manufacturing.

Fig.7TMMCTbyTcastingTrouteTthroughTStirTCastingTmethod
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4.2TFabricationTProcess

InTgeneralTstirTcastingTofTMMCsTinvolvesTproducingTaTmeltTofTtheTselectedTmatrixT
material,TfollowedTbyTtheTintroductionTofTreinforcingTmaterialTintoTtheTmelt,obtaining
TaTsuitableTdispersionTthroughTstirringTTheTnextTstepTisTtheTsolidificationTofTtheT
meltTcontainingTsuspendedTparticlesTtoTobtainTtheTdesiredTdistributionTofTtheTdisperse
dTphaseTin,theTcastTmatrixTTheTschematicTdiagramTofTthisTprocessTisTasTshownTinT
FigureT8TincompositesTproducedTbyTthisTmethod,TparticleTdistributionTwillTchangeTsig
nificantlyTdependingTonTprocessTparametersTduringTbothTtheTmeltTandTsolidificationsta
gesTofTtheTprocessTTheTadditionTofTparticlesTtoTtheTmeltTdrasticallyTchangesTtheTvis
cosityTofTtheTmelt,TandTthisThasTimplicationsTforTcastingTprocessesTItTisTimportantTt
hatTsolidificationToccurTbeforeTappreciableTsettlingThasTbeenTallowedTtoTtakeT place.

T
Fig.8:TSchematicTdiagramTofTstirTcasting

TheTearlierTapproachesTtoTproducingTmetalTmatrixTcompositeTusedTsolidTparticlesTpro
ducedTwithinTtheTmeltTthroughTaTchemicalTreactionTThisTresultsTinTdispersedTphases
TasTinTprecipitationThardeningTofTAl4wt%TcuTalloyTOtherTapproachesTtoTproduceTme
talTmatrixTcompositesTinvolveTtheTintroductionTofTsecondTphasesTparticlesTinTtheTmet
alTmelt.T
TheTfoundryTtechniqueTinvolvesTtheTmixingTofTreinforcementTparticlesTbyTstingTtheT
moltenTalloyTmatrix.

TheTprocessTisTgenerallyTearnedToutTatTtwoTdifferentTrangesTofTtemperatureTofTtheT
melt,TbeyondTtheTliquidusTtemperatureT[109]TorTatTtheTmeltTtemperatureTmaintainedT
withinTtheTpartiallyTsolidTrangeToTfTtheTalloyT[110]TTheTtechniqueTinvolvingTtheT
latterTrangeTofTtemperatureTisTcalledTtheTcompocastingTprocessTandTitTisTveryTeffecti
veTinTmakingTcastTcompositesTwithThigherTparticleTcontentT[111]TtheTreinforcementT
particlesTareTaddedTgraduallyTwhileTstirringTcontinuesTatTaTconstantTrate.
As per Miwa [112], in order to achieve good integration, the adding rate must be lowered in
tandem with size reduction. Salvo [113] takes roughly 5-10 minutes to integrate silicon
carbide particle into the melt, while Lee et al [114] added particles at a rate of 4-5g/hour. The
particles were sometimes supplied via a nitrogen gas stream [115,116].
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TheTreinforcementTparticlesTusedTnormallyTareToneTofTtwoTtypesTeitherTinTasTreceiv
edTcondition,TorTheattreatedT(artificiallyToxidized)TOxidationThasTtakeTplaceTatT
1000°CTforT1T5ThoursTinTairT[117]TatT1100°CTforT12ThoursT[118]TorToneTandThalf
ThoursT[119],TandTatT850°CTforT8ThourTAdditionally,TgasTabsorbedTonTtheTsurfaceTo
fTSiC,TwhichTwasTpreparedTinTair,TcanTbeTremovedTbyTpreheatingTatTaTcertainT
temperatureTforTaTcertainTperiodTofTtimeTForTexampleTparticlesThaveTbeenTheatedTto
T554°CTforToneThourT[120,121],T850°CTforT8ThoursT[122],TorTatTtheTtemperatureTof
T900°C,T799°CT[123,124]TandT1100°CT[125]

MostTpreviousTresearchesThaveTusedTtheTmatrixTmetalTalloyTinTtheTingotTformT[126,
127,128]TorTextrudedTbarT[129]TAsTaTstartingTpointTtheTingotTisTgenerallyTmeltedTto
aboveTtheTliquidusTtemperature,TforTexampleTtoT50°CTaboveTtheTliquidusTtemperature
[130].TATdifferentTapproachThasTbeenTproposedTbyTYoungTandTClyneT[131]TandTinTt
heirTworkTslurryTwasTpreparedTfromTpowderedTmaterialTCompositeTmeltTmayTbeT
preparedTinTaTgraphiteTcrucibleT[132,133],TsiliconTcarbideTcrucibleT[134,35],Talumina
TcrucibleT[136,137],TorTconcreteTcrucibleT[138]TInTorderTtoTkeepTtheTmeltTasTcleanT
aspossibleTtheTingotTisTmeltedTunderTaTcoverTofTanTinertTgasTsuchTasTnitrogen,TorTi
nTaTvacuumTchamberT[139]TorTinTaTpressureTchamberTthereTalsoThelpsTtoTminimize
TtheToxidationTofTtheTmoltenTmetalT[140],TorTreducesTporosityT(underTpressure)T
McCoyTetTalT[141]TpreparedTcompositeTwithTtheTwholeTapparatusTbeingTsealedTwith
TaTgloveTboxTwhichTwasTfilledTwithTnitrogenTgasTAccordingTtoTYamadaTetTalT
[142]TtheTmoltenTaluminiumTshouldTbeTsubjectedTtoTaThighTvacuumTatmosphereTtoT
degasThydrogen,TbeforeTtheTreinforcementTmaterialsTareTcompletelyTaddedTGuptaTand
TSurappaT[143]TtreatedTtheTmetalTingotTinTdifferentTwaysTInTtheirTworkTtheTmetalT
ingot,TbeforeTmelting,TwasTtreatedTwithTaTwarmTalkalineTsolutionTandTwashedTwithT
aTmixtureTofTacids,TinTorderTtoTreduceTtheTthicknessTofT
theToxideTfilmTandTtoTeliminateTotherTsurfaceTimpurities.

TheTmostTsignificantTrequirementTwhenTusingTaTstirTcastingTtechniqueTisTcontinuousT
stirringTofTtheTmeltTwithTaTmotorTdrivenTagitatorTtoTpreventTsettlingTofTparticlesTIfT
theT
particlesTareTmoreTdenseTthanTtheThostTalloy,TtheyTwillTnaturallyTsinkTtoTtheTbottom
TofTtheTmeltT[144]TThisTmeansTthatTsomeTmethodTofTstirringTtheTmeltTmustTbeTintr
oducedTbeforeTcastingTtoTensureTthatTtheTparticlesTareTproperlyTdistributedTthroughout
TtheTcastingTSomeTofTtheTstirrerTwhichTareTnormallyTbeTusedTisTshownTinTFigureT9
.
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Figure.9.TSeveralTtypeTofTstirrer.

4.3TSolidificationTofTMetalTMatrixTComposites

DuringTsolidificationTitTisTimportantTtoThaveTanTunderstandingTofTparticleTmovements
andTdistribution,TasTtheTpropertiesTofTcompositeTareTknownTtoTcriticallyTdependTonT
theTdistributionToTfTtheTreinforcementTTheTsolidificationTsynthesisTofTcastTmetal,cera
micTparticleTcompositesTinvolvesTproducingTaTmeltTofTmatrixTmaterial,TfollowedTbyTt
heTintroductionTofTtheTparticlesTintoTtheTmelt,TandTtheTfinalTstepTisTsolidificationT
ofTtheTmeltTintoTaTcertainTshape,TsuchTasTanTmgotTorTaTbilletTformTTheTsolidTparti
clesTareTpresentTvirtuallyTinTunchangedTform,TbothTmTtheTliquidTandTtheTsolidT
metalTTheTincorporationTofTtheTreinforcementTparticleTwillTimmediatelyTincreaseTtheT
viscosityTofTtheTmatrixTmeltTForTexample,TifT15TvolumeTpercentTofTreinforcementT
particlesTisTaddedTintoTtheTfullyTmeltedTmatrixTmixture,TthisTmeansTthatTtheTmeltT
willTbeToccupiedTbyT15TpercentTofTsolidTparticle,TorTinTtheTotherTword,TtheTslurryT
isTpartiallyTsolidifiedT[145].T
ItTisTestablishedTthatTtheTformationTofTtheTmicrostructureTinTcastTparticleTreinforcedT
compositesTisTmainlyTinfluencedTbyTtheTfollowingTphenomenaTparticleTpushingTorTen
gulfedTbyTtheTsolidificationTfront,TparticleTsettlingTorTfloatationTinTtheTmelt,TtheTsoli
dificationTrateTofTtheTmelt,TandTchemicalTreactionTbetweenTparticlesTandTtheTmatrix.
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4.4TParticlesTPushingTorTEngulfed

DuringTsolidificationTtheTreinforcementTparticleTactsTasTaTbarrierTtoTsoluteTdiffusionT
aheadTofTtheTliquidTsolidTinterface,TandTtheTgrowingTsolidTphaseTwillTavoidTtheTrein
forcementTinTtheTsameTwayTthatTtwoTgrowingTdendritesTavoidToneTanotherTTheTindi
vidualTparticlesTmayTbeTpushedTbyTtheTmovingTsolid,liquidTinterfaceTintoTtheTlastT
freezingTinterdendriticTregions,TorTtheTgrowingTcellTmayTcaptureTthemT[146]TTheT
ceramicTparticles,TwhichTgenerallyThaveTlowerTthermalTconductivityTthanTthatTofTthe
melt,TareToftenTsurroundedTbyTtheTlastTfreezingTfractionTofTtheTmoltenTalloyTduring
solidificationTofTslurry.TTThisTphenomenonThasTbeenTinterpretedTbyTseveralTresearcher
sTsuchTasTUlhmannTetTalT[147],TmTtermsTofTparticleTpushingTbyTtheTsolidificationTf
ront,TorTinteractionTofTparticleTwithTaTplanarTsolidificationTfrontTTheyTobservedT
thatTforTeveryTsizeTofTparticle,TthereTisTaTcriticalTvelocityTofTsolidificationTfront,T
belowTwhichTtheTparticlesTareTpushedTbyTtheTfront,TandTaboveTwhichTtheTparticlesT
aretoTbeTengulfedTbyTtheTsolidifyingTphaseT[148]TThereTareTseveralTpredictionTmodel
ofTparticleTpushingTincludingTtheTUlhman,TChalmersTandTJackson’sTmodelT[149]Tand
TBollingTandTCisse’sTmodelT[150]TTheTfirstTmodelTisTaTkineticTapproachTtoTparticle
Tpushing,TwhichTassumesTthatTaTparticleTisTpushedTmTfrontToTfTtheTsolid,liquidTinte
rfaceTRepulsionTbetweenTtheTparticlesTandTtheTsolidToccursTwhenTtheTsumTofTtheT
particle,liquidTandTliquid,solidTinterfacialTfreeTenergiesTisTlessTthanTtheTparticle,solidTi
nterfacialTfreeTenergy.ThisTmodelTintroducedTcriticalTvelocities,above,TwhichTtheT
particlesTshouldTbeTentrapped,TandTbelowTwhichTtheTparticlesTareTrejectedTbyTtheT
movingTsolid-liquidTinterface.

4.5TPostTSolidificationTProcessingT

TTheTsecondaryTprocessingTwillTmodifyTtheTparticleTdistributionTAccordingTtoTLloyd
TetTal,T[151]TsecondaryTfabricationTprocesses,TsuchTasTextrusion,TcanTmodifyTtheTpar
ticleTdistributionTbutTcompleteTdeclusteringTcannotTbeTachievedTevenTatTtheThighestT
extrusionTratioTFigureT1T11TshowsTtheTeffectTofTextrusionTratioTonTtheTparticleTdistr
ibutionT[152]TitTshowsTthatTextrusionTrapidlyThomogenizeTtheTdistributionTatTquiteT
lowTextrusionTratio,TandTtheTparticleTdistributionTdoesTnotTchangeTsignificantlyTwithT
greaterTdegreeTofTextrusionTHoweverTsecondaryTprocessingTmayTchangeTtheTparticleT
distributionTbyTcracking,theTparticleT[153]TUseTofTanTappropriateTreinforcementTpartic
leTsizeTrange,TandTcorrectTfabricationTpracticeTminimisesTparticleTfracture.

4.6TProblemsTInTStirTCastingT

InTpreparingTmetalTmatrixTcompositesTbyTstirTcasting,TthereTareTseveralTfactorsTthatT
needTconsiderationTincludingT

ITTheTdifficultyTofTachievingTaTuniformTdistributionTofTreinforcementTmaterialT
IITTheTpoorTwettabilityTbetweenTtheTtwoTmainTsubstances.
IIITTheTpropensityTforTporosityTinTtheTcastTmetalTmatrixTcompositeT
IVTChemicalTreactionTbetweenTreinforcementTmaternalTandTmatrixTalloy.
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InTorderTtoTachieveTtheToptimumTpropertiesTofTtheTmetalTmatrixTcomposite,TtheTdistr
ibutionTofTtheTreinforcementTmaterialsTmTtheTmatrixTalloyTmustTbeTuniform,TandT
theTwettabilityTofTbondingTbetweenTtheseTtwoTsubstancesTshouldTbeToptimizedTTheT
chemicalTreactionTbetweenTreinforcementTmaterialsTandTtheTmatrixTalloyTandTporosity
TmustTbeTavoidedTorTminimisedTTheThighTAlSiCTinterfaceTbondingTstrengthTisTtheT
mamTreasonTforTtheTcompositeTrelativelyThighTspecificTmechanicalTpropertiesTATsuffi
cientTbondTisTachievedTonlyTwhenTgoodTwettingTofTtheTreinforcementTbyTtheTmatrix
TisTobtained,TandTthisTisTdependentTonTtheTsurfaceTpropertiesTofTtheTtwoTphasesT
[154]TItTisTbelievedTthatTaTstrongTinterfaceTpermitsTtransferTandTdistributionTofTload
TfromTtheTmatrixTtoTtheTreinforcement,TresultingTmTanTincreaseTinTelasticTmodulusT
andTstrengthT[155]TFractureTinTdiscontinuouslyTreinforcedTcompositesTcanTresultT
mainlyTfromTdebondingTofTparticlesTfromTtheTmatrixT[156]T

4.7TParticleTDistribution

Three primary phases, the melting phase, solidification, and post-solidification phase, have a
considerable impact on the distribution of particle reinforcement particles alloy. The steps of
melting and solidification are intertwined and must be monitored continuously. The
post-solidification procedure may aid in the homogenization of particle dispersion in the
finished product.T

ParticleTdistributionTinTtheTmatrixTmaterialTduringTtheTmeltTstageToTfTtheTcastingTpr
ocessTmainlyTdependsTonTtheTviscosityTofTtheTslurry,TtheTextendTtoTwhichTparticlesT
areTsuccessfullyTincorporatedTinTtheTmelt,TandTtheTcharacteristicsToTfTtheTreinforceme
ntTparticlesTTheTcharacteristicsToTfTtheTreinforcementTparticlesTinfluenceTsettlingTrate,
TandTtheTeffectivenessTofTmixingTinTbreakingTupTagglomerates,TminimisingTgasTentra
pmentTandT attainingTdistributionTofTtheTparticles..

CastingTofTparticleTreinforcedTmetalTmatrixTcompositesTgenerallyToccursTinTtheTsemi
TsolidTstateTasTitTisTadvantageousTcomparedTwithTconventionalTcastingTwhereTtheT
alloyTisTcompletelyTmeltedTThisTisTbecauseTwhenTtheTcompositeTslurryTisTinTtheT
temperatureTrangeTwhereTtheTmatrixTitselfTisTpartlyTsolidTasTinTcompocasting,TlittleT
orTnoTgravityTinducedTsegregationTofTtheTceramicTreinforcementToccurs,TevenTifTtheT
slurryTisTatTrestT[157]TThisToccursTasTtheTsolidTmatrixTphaseThasTaboutTtheTsameTd
ensityTasTtheTliquidTmetal,TsoTitTneitherTsettlesTnorTfloatsTinTtheTslurry,TandTholdthe
TreinforcementTinT place.

4.8TParticleTIncorporation

InTgeneralTthereTareTtwoTtypesToTfTbarrierTtoTparticleTincorporationTintoTaTliquidTm
eltTTheseTareTmechanicalTbarriersTsuchTasTaTsurfaceToxideTfilm,TandTthermodynamic
Tbarriers,TwhichTareTusuallyTreferredTtoTinTtermsTofTwettabilityTMechanicalTbarriersT
canTbeTreducedTbyTgoodTfoundryTpractice,TbutTovercomingTthermodynamicTbarriers
TisTmoreTdifficultTGenerallyTceramicTreinforcementsTusedTinTMMCsTareTnon-wettable
TbyTtheTmetallicTmelt,TrequiringTanTexternalTdrivingTforceTtoTovercomeTtheTsurfaceT
energyTbarriersTThisTforceTisTprovidedTbyTstirringTtheTmeltTwithTaTmechanicalTstirre
rTorTusingTelectromagneticTstirringTItThasTbeenTshownTthatTalloyTchemistry,T
temperatureTofTparticleTadditionTandTstirringTrateTareTsomeToTfTtheTparametersTcontr
ollingTwettingofTtheTreinforcementTbyTtheTmeltT[158]TOnceTtheTparticlesTareTtransfer
redTintoTtheTliquidTandTtheTenergyTbarrierTisTovercome,TtheTsurfaceTenergyTorT
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surfaceTforcesTwillTnotTchangeTwithTpositionTinsideTtheTmeltTTheTdynamicsTofTparti
clesTinTtheTmeltTwillTbeTgovernedTbyTotherTforcesTincludingTgravity,TbuoyancyTorT
byTstirringTactionTHowever,TtwoproblemsTcomplicateTtheTincorporationTprocessT(i)Tpar
ticleTagglomeratesTmustTbeTbrokenTupTbeforeTcompleteTdispersionTandTwettingTcanTo
ccur,TandT(11)TitTisTenergeticallyTconduciveTforTtheTparticlesTtoTbecomeTattached
toTgasTbubbles.

DuringTparticleTaddition,TthereTisTsomeTlocalTsolidificationToTfTtheTmeltTinducedTbyp
articles,TandTtheTentireTmatrixTmeltTtemperatureTcanTfallTbelowTtheTsolidus,Tdependin
gTonTtheTtemperatureTofTtheTparticlesTItTwasTalsoTfoundTthatTtheTperturbationTinT
theTsoluteTfieldTdueTtoTtheTpresenceTofTparticlesTcanTchangeTtheTdendriteTtipTradius,
TandTtheTdendriteTtipTtemperatureT[159].T As the density of particles increases, these
actions cause a dendritic-to-cell transition. The length of the dendritic also decreases in the
presence of particles.

TheTmethodTofTparticleTintroductionTtoTtheTmatrixTmeltTisTaTveryTimportantTaspectT
ofTtheTcastingTprocess.TThereTareTaTnumberTofTtechniquesT[160]TforTintroducingTand
TmixingTtheTparticlesTHowever,TsomeTofTtheseTmethodsThaveTseveralTdisadvantagesT
GasTinjectionTofTparticlesTforTexampleTwillTintroduceTaTquantityTofTgasTintoTtheT
melt,TsomeTmethodsTareTnotTveryTeffectiveTdispersingTtheTparticlesTandTsome,TsuchT
asTtheTultrasonicTtechniqueTareTveryTexpensive,TandTareTdifficultTtoTscaleTtoTproduct
ionTlevelTWhereas,TbyTusingTcentrifugalTaction,TtheTdistributionToTfTtheTparticlesT
vanesTfromTtheTinnerTtoTouterTpartTofTaTbilletTbecauseTofTtheTdifferencesTinTcentrif
ugalTforceT[161].

4.9TParticleTCharacteristics

OneTmajorTprocessingTproblemTisTthatTparticlesTeitherTsinkTorTfloat,TdependingTonT
theTparticle,liquidTdensityTratioTInTfoundryToperations,TsegregationTofTtheTparticlesT
mayToccurTbetweenTtheTtimeTstirringThasTstopped,TandTtheTmeltThasTsolidifiedTClust
eringTofTtheTparticlesTisTaTcontributoryTproblem,TmakingTtheTparticlesTsettleTmoreT
quickly.TThereforeTtheTparticlesTmayTbeTunevenlyTdistributedTmacroscopicallyT(denude
regionTdueTtoTsettling)TandTmicroscopicallyT(clustersTofTparticles)T[162].TParticleTenri
chedTzonesTmayTformTeitherTasTaTconsequenceTofTgravityTsegregationTofTparticlesTin
meltsTduringTholding,TorTduringTslowTsolidificationTorTasTaTconsequenceTofTselective
TsegregationTunderTtheTactionTofTcentrifugalTaccelerationTinTcentrifugalTcastingT[163]
InTfoundryToperations,TwhereTcompositeTingotsTareTremeltedTforTproductTcasting,T
thereTmayTbeTproblemsTofTclusteringTifTtheTmeltTisTnotTintensivelyTstirredTAtTsuffici
entlyTlongTholdingTtimes,TtopTpartsofTtheTcastingTareTcompletelyTdenudedTofTparticle
whichTsettleTtoTtheTlowerTpartsTtheTcasting,TasTaTfunctionTofTtimeT[164]TThereforeT
theTmeltTmustTbeTrestirredTpriorTtoTcastingTifTlongTholdingTtimesTmTtheTmoltenT
stateTareTusedTAccordingTtoTGeigerTetTalT[165]TtheTsettlingTrateTwillTalsoTbeTaT
functionTofTtheTparticleTdensityTandTsize,TwithTparticleTshapeTandTsizeTpossiblyTplay
ingTaTroleT[166]TAtThighTvolumeTfractions,TparticlesTinteractTwithTeachTotherTandT
settlingTisThinderedT[167]THinderedTsettlingTforTsphericalTparticlesThasTbeenTmodelled
TbyTRichardsonTandTZakiT[168]TwithTtheTparticleTvelocity,TVcTisTgivenTbyTVcT=TV
0(lf)nTwhere,TV0TisTtheTStokes’sTvelocity,/TisTtheTvolumeTfractionTofTparticles,TandT
nTisTaTfactorTdependentTonTtheTReynoldsTnumber,TtheTparticleTdiameterTandTtheT
containerTdiameter,TandTwhichTincreasesTwithTincreasingTparticleTdiameterTTheTstudy
TonTtheTsettlingTindicateTthatTtheTfinerTtheTdispersionsTandTtheThigherTtheirTvolume
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Tfraction,TtheTslowerTtheTrateTofTsettlingTHanumanthTetTalT[169]TusingTanTaverageT
particlesTsizeToTfT90|imTfoundTaTslurryTofT02TvolumeTfractionTofTSiCTparticlesTsettl
edTcompletelyTinTaboutT300TsecondsTresultingTinTlooselyTpackedTparticlesTatTtheT
bottomTofTanTaluminiumTalloyTmatrixTAtTlowerTvolumeTfractionTofTparticlesTtheT
settlingTtimeTisTlessTSo,TitTisTapparentTthatTslurryTwithTlargeTsizeTparticlesTwillT
haveTtoTbeTstirredTallTtheTtimeTuntilTcastingTInTpracticeTtheTsituationTisTcomplicated
TbyTtheTfactTthatTthereTisTaTrangeTofTparticleTshapesTandTsizesTAsTlarge,TirregularT
particlesTsink,TtheTliquidTtheyTdisplaceTcanTinfluenceTtheTsettlingTrateTofTotherTpartic
leT[170]TsettlingTisTnotTaTconcernTduringTinitialTmixingTbecauseTofTtheTturbulenceT
inTtheTmixer,TbutTitTisTimportantTinTanyTsubsequentTmoltenTmetalTtransferTThomasT[
171]TstudiedTtheTstateTofTdispersionTofTparticlesTinTslurryTunderTdynamicTconditions
TofTflow,TandTinTthisTcontextTitTwasTfoundTthatTtheTparticleTshapeTandTsizeTareT
theTmostTimportantTparameters.TTheTflowTbehaviourToTfTtheTslurriesThasTbeenTsumm
arisedTasTfollows:

1.TParticlesTbelowT10TnmTsizeTareTalmostTalwaysTcarriedTfullyTsuspendedTinTtheTliq
uid,TandTgravitationalTeffectsTareTnegligibleT
2.TGravitationalTeffectTisTnotTnegligibleTforTparticlesTinTtheTsizeTrangeTofT10Tp.mTt
oT100Tim,TandTaTparticleTconcentrationTgradientTwillTdevelop.
3.TParticlesTrangingTfromT100TtoT1000T|imTinTsize,TareTfullyTsuspendedTatThighTvel
ocitiesTandToftenTdepositTatTtheTbottomTofTtheTchannelTatTlowerTflowTvelocitiesT

AccordingTtoTRayT[172],TwhenTtheTflowTvelocityTisTaboveTaTcriticalTvalueTforTaT
givenTsizeTofTparticle,TtheTsuspensionTwillTremainThomogeneousTduringTflowTIfTtheT
flowTvelocityTisTreducedTbelowTtheTcriticalTvalue,TtheTsuspensionTbecomesThomogene
ousTIfTtheTflowTvelocityTisTfurtherTreduced,TtheTparticlesTwillTsedimentTatTtheT
bottomTofTtheTchannelTandTmoveTbyTtumblingToverTeachTother.

4.10TMixing

ItTisTessentialTtoTproduceTasTuniformTaTdistributionTasTpossibleTwithoutTanyTgasT
entrapment,TsinceTanyTgasTbubblesTwillTattachTtoTreinforcementTparticlesTleadingTtoT
poorTbondingTwithTtheTmatrixTExcessiveTgasesTcontentTcanTresultTfromToverTagitated
Tmelts,TwhichTleadTtoTunacceptableTporosityTcontentTinTtheTingotTEvenTinTinertTgas
TorTvacuumToperatedTprocesses,TtopTmeltTsurfaceTagitationTisTknownTtoTcauseT
problems.
StirringTisTaTcomplexTphenomenon,TandTitTcanTbeTaTproblemTtoTcontrolTtheTprocess
TsuchTthatTaTuniformTdistributionToTfTparticlesTisTachievedTMechanicalTstirringTbeing
TusuallyTusedTduringTmeltTpreparationTorTholding,TtheTstirringTcondition,TmeltTtempe
rature,TandTtheTtype,TamountTandTnatureTofTtheTparticlesTareTsomeToTfTtheTmamT
factorsTtoTconsiderTwhenTinvestigatingTthisTphenomenonT[173,T174,175,176]TSettlingT
andTsegregationTareTbothTtoTbeTavoided.
InTcreatingTaThomogeneousTdistributionTofTparticlesTinTaTmoltenTalloy,TtheThighTshea
rTrateTcausedTbyTstirringTtheTslurryTshouldTresultTinTaTfairlyTuniformTparticleTdistrib
utionTinTtheTradialTdirection,TandTalsoTpreventTparticlesTfromTsettlingTsecondaryT
flowTinTtheTaxialTdirectionTresultsTmTtransferTofTmomentumTfromThighTtoTlowT
momentumTregionsTandTcausesTliftingTofTparticles.

4.11TSolidification
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ThereTareTessentiallyTthreeTmechanisms,TwhichTwillTaffectTparticleTredistributionTduri
ngTsolidificationTprocessingTTheseTareTagglomeration,TsedimentationTandTparticleTengu
lfmentTorTrejectionT(pushing)TaheadToTfTtheTsolidificationTfrontTTheTprevalenceTofT
oneTorTmoreTofTtheseTmechanismsTisTdependentTuponTelementsTofTtheTprocessingT
techniqueTasTwellTasTtheTphysicalTandTchemicalTpropertiesTofTtheTparticleTandTtheT
matrixT[177,178,179].T
TheTdistributionTofTparticlesTinTtheTresultingTsolidTmayTorTmayTnotTfollowTtheTdistr
ibutionTinTtheTliquidTTheTactualTdistributionToTfTparticlesTthatToneTobtainsTinTtheT
solidifiedTmaterialTwillTlargelyTdependTuponTtheTmorphologyTofTtheTinterfaceTthatTis
TpresentTunderTgivenTexperimentalTconditionsTWhenTtheTparticlesTareTtrappedTbyTaT
planeTfrontTorTcells,TtheTdistributionTremainsTsimilarTtoTthatTpresentTinTtheTliquidT
priorTtoTsolidificationTOnTtheTotherThand,TwhenTaTdendriticTstructureTisTpresentT
duringTsolidification,TthenTtheTsolidificationToTfTparticlesTinTtheTsolidTcanTbeTsignifi
cantlyTdifferentTfromTthatTinTtheTliquidTTheTtrappingTofTparticlesTbetweenTdendritesT
usuallyToccursTjustTbehindTtheTtip,TwithinTtheTfirstTtenTsecondaryTbranchesTTheseT
secondaryTbranchesTcloseTtoTtheTdendriteTtipThaveTsmallerTbranchesTTheTparticlesT
whichTareTtrappedTbetweenTtheseTbranches,TasTcloseTtoTtheTtipTwillTremainTbetween
TtheseTbranchesTasTtheTdendritesTgrowsTTheTparticlesTthatThaveTbeenTtrappedTaTfew
TbranchesTbehindTtheTtipTmayTappearTtoTbeTtrappedTatTtheTbaseTofTtheTdendriteTin
TmetallicTsystems..

Excessive particle redistribution during processing can result in vast particle-free zones in a
casting, substantial particle agglomeration and clustering, and an mterdendntic reinforcing
distribution. A homogeneous distribution of the reinforcement phase is desirable in order to
generate uniform stress distributions during service, and it is suggested that this can be
achieved by reducing holding and casting times, thus avoiding extensive settling, and by
stimulating particle engulfment into the primary matrix gramme or dendrites during freezing.
DuringTsolidificationTofTliquidTcontainingTdispersedTsecondTphaseTparticles,TtheTpartic
lesTinTtheTliquidTmeltTcanTmigrateTtowards,TorTawayTfromTtheTfreezingTfront.TItThas
TbeenTfoundTthatTthoseTsmallTparticlesTareTentrappedTbetweenTtheTsecondaryTarms,T
whileTcomparativelyTlargeTparticlesTareTentrappedTbetweenTprimaryTdendriticTarmsT[1
80,181]TWhenTtheTcompositeTslurryTisTpouredTintoTaTcoldTmould,TtheTtemperatureT
ofTtheTmeltTdropsTrapidlyTatTtheTmouldTboundaryTThusTdendritesTappearTonTtheT
mouldTboundariesTfirstTandTpushTtheTparticlesTinTaTdirectionToppositeTtoTheatTtransfe
rTasTtheTtemperatureTinTtheTmouldTdecreasesTAccordingTtoTXiaoTetTalT[182],TinT
MMCTcastingsTthereTisTaTboundaryTlayerToverTwhichT(dueTtoTfrictionTatTtheTbounda
riesTandTtheTgrowingTmechanismTofTdendrites),TonlyTfewTparticlesTareTentrappedT
ThisTresultsTinTaTlowerTvolumeTfractionTofTparticlesTnearTtheTboundaries.

ItTisTnowTwellTestablishedTthatTdependingTonTtheTinterfacialTenergies,TaTgrowingT
crystalTcanTeitherTengulfTorTrejectTparticlesT[183,184,185]TEngulfmentTofTtheTreinforc
ementTmeansTthatTnotTonlyTtheTparticlesTunlikelyTtoTbeTassociatedTwithTbrittleTinter
metallicTphasesTandTotherTparticlesTinTtheTmtordendriticTandTintergranularTregions,but
theTfactTthatTengulfmentToccursTsuggestsTthatTreinforcementTwettingThasTtakenTplace,
andTthatTtheTinterfacialTbondingTbetweenTtheTparticlesTandTtheTmatrixTmustTbeTgood
TTwoTmechanismsThaveTbeenTsuggestedTforTparticleTpushingTfromTfluidTflowT[186,1
87]TInTtheTfirstmechanism,TtheTparticleTisTinTcontactTwithTtheTsolidTandTitTisTmove
dToverTtheTsurfaceTbyTtheTfluidTflowTasTtheTsolidTgrowsTWhereasTinTtheTsecondT
mechanism,TtheTparticleTwhichTisTiTlocatedTnearTtheTsolidificationTfrontTbecomesT
trappedTbecauseTofTtheTroughnessTofTtheTsolidificationTfrontTWhenTtheTparticleTisT
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rejectedTbyTtheTgrowingTcrystalsTandTpushedTaheadTofTtheTadvancingTinterface,TaT
viscousTforceTisTgeneratedTandTthisTtendsTtoTpreventTtheTpushingTofTtheTparticleTHe
nce,TitTisTtheTbalanceTofTtheseTcounteractingTforcesTwhichTdecidesTtheTrejectionTorT
engulfmentTofTtheTparticleTItTisTparametersTsuchTasTrelativeTdensityTdifference,Trelati
veTdifferenceTinTthermalTconductivityTandTheatTdiffusivityTbetweenTtheTparticleTandT
theTmetallicTmelt,TandTalloyTcompositionTwillTaffectTtheTshapeTofTtheTsolidificationTf
rontTanddetermineTtheTmagnitudeTofTtheseTforcesT[188,189]TparticleTpushingTsuggests
TthatTtheTsolidTmetalThasTnoTaffinityTforTtheTreinforcementTandTthatTtheTinterfacialT
bondingTisTweakTStrongTinterfacialTbondingTisTessentialTforTeffectiveTloadTtransferT
fromTtheTmatrixTtoTtheTparticleTandTforTdelayingTtheTonsetTofTmatrixTdecohesion,T
bothTofTwhichThaveTaTprofoundTeffectTonTtheTstrengthTandTstiffnessTofTtheTcomposit
e.

SolidificationTrateTwillTinfluenceTtheTsizeTofTdendriteTarmTspacingTAtThighTcoolingT
ratesTwhereTtheTdendriteTarmTspacingTisTsmallerTthanTtheTparticleTsize,TparticlesT
becomeTvirtuallyTimmobileTandTnoTsolidificationTinducedTsegregationTresults.Therefore
TfinerTDASsTeitherTcloseTto,TorTevenTgreaterTthan,TtheTaverageTparticleTsizeTwillT
produceTaTmoreTuniformTdistributionTofTtheTparticlesTinTtheTmatrixTIncreasingTtheT
dendriteTarmTspacingTleadsTtoTparticleTclustering,TandTclusteringTincreasesTwithT
increasesTmTparticleTcontentTHoweverTaccordingTtoTLloydT[190],TtheTreinforcementT
doesTnotTnormallyTnucleateTA1Tdendrites,andTdoesTnotTaffectTtheTcastTgrainTsize.T
EngulfmentTandTnucléationTbothTrequireTthatTaTlowTsolidTinterfacialTenergyTbeTprese
nt,TjustTasTparticleTincorporationTrequiresTaTlowTparticles-liquidTinterfacialTenergy.

ThisTisTusuallyTachievedTthroughTtheTsolidTandTparticlesTsharingTtheTsameTcrystalT
structureTandTlatticeTparameterTCeramicTmaterialTknownTtoTactTasTgramTrefinerTsuch
TasTT1B2TandTTiC,TareTlikelyTtoTbeTengulfedTwithinTtheTmetalTgramTratherTthanT
beTpushedTtoTtheTboundariesTItTisTalsoTestablishedTthatTaTfinerTgramTsizeTwillTgive
TbetterTmechanicalTpropertiesTInTthisTcontextTKennedyTetTalT[191]TincorporatedTparti
clesTofTTiB2,TTiCTandTB4CtintoTaluminiumTalloyTmeltTThisTwasTdoneTwithoutTtheT
useTofTexternalTmechanicalTagitationTATwettingTagentTwhichTproduceTKALFTbasedT
slagTinTtheTmeltTsurfacewasTalsoTaddedTATvarietyTofTcastingTtechniquesThaveTbeenT
usedTtoTcastTmoltenTalloysTcontainingTsuspendedTceramicTparticlesTTheTchoiceTofT
castingTtechniqueTandTconfigurationTmouldTareTimportantTATsandTmouldTwasTusedT
[192]TtoTcastTaluminiumcontainingTparticlesTAI2O3,TSiCTandTglass,TandTsomeT
settlingTofTcoarseTparticlesTwasTobservedTThisTisTbecauseTofTtheTslowTcoolingTrateT
allowedTbyTtheTsandTmouldTItTwasTsuggestedTthatTaTmetalTchipsTcouldTbeT
introducedTinTtheTsandTmouldTtoTenhancedTtheTsolidificationTandTreduceTtheTfloating
TorTsettlingTtendencyToTfTtheTparticlesT[193]TAluminiumTbasedTcompositesThaveT
alsoTbeenTcastTbyTDeonathTetTalT[194],TdemonstratingTgoodTdistributionTofTparticles
TasTaTresultTofTreasonablyTrapidTfreezingTWhileTinTcentrifugallyTcastTaluminium,grap
hiteT[195],TlighterTgraphiteTparticlesTsegregatedTtoTtheTinnerTperipheryTofTtheTcasting
,TandTsimilarTITresultsThaveTbeenTreportedTforTporousTaluminaT[196],TandTmicaT[19
7],TdispersedTinTaluminiumTalloys. During centrifugal casting of an aluminium alloy
containing zircon particles, however, the heavier zircon particles separate at the hollow
casting's outer periphery.



49

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction:

The breakthrough in the development of reinforcement matrices, including composite
manufacturing, may be attributed to a greater understanding of the lightweight materials that
composite materials can produce, resulting in lower costs and improved performance. There
has been an increase in demand for newer, heavier, stiffer, and lighter-weight materials in
fields such as aerospace and manufacturing [198]. Composite materials are evolving primarily
in response to unprecedented technical demands resulting from rapidly advancing activities in
the aerospace, aviation, and automotive industries. These materials outperform many
traditional engineering materials like metals in terms of strength and modulus due to their low
specific gravity. [199]. It is now able to make new composites with improved mechanical and
physical properties as a consequence of comprehensive research into the existence of
substances and a deeper understanding of their structure-property relationship. Continuous
progress has led to the use of composites in a wider range of applications, including
high-performance composites such as PMCs, CMCs, and MMCs [200]. With traditional
monolithic materials, the ability to achieve a good combination of strength, stiffness,
durability, and density is limited. Composites [201] are the most promising materials of recent
interest for overcoming these shortcomings and meeting modern technology's ever-increasing
demand. Metal matrix composites (MMCs) have significantly improved properties over
unreinforced alloys, such as high specific strength, specific modulus, damping power, and
high wear resistance. AMCs have a wide range of applications in our daily lives [202]. The
advantages of using particles strengthened AMCs materials over unreinforced materials
include increased strength and specific modulus, improved stiffness, light weight, low thermal
expansion coefficient, high thermal conductivity, optimised electrical properties, increased
wear resistance, and improved damping capabilities [203]. Within the matrix, particles, short
fibres, continuous fibres, and mono filaments can all be used as reinforcing constituents.
Aerospace, temperature control, industrial materials, and automotive applications such as
engine pistons and brake discs now use it [204]. Some of the key properties of composite
materials are high stiffness and strength, low density, high temperature stability, high
electrical and thermal conductivity, adjustable coefficient of thermal expansion, corrosion
resistance, increased wear resistance, and so on [205]. The reinforcement holds the matrix in
place and enhances the matrix's total material properties, enabling it to form the required
shape. The latest combined material outperforms each of the individual materials when
correctly crafted [206]. Composites are multifunctional material structures with properties that
are unmatched by discrete materials. Coherent structures are created by mechanically merging
multiple or more similar materials of different compositions, features, including shapes
[207].When compared to their wrought alloy counterparts, metal matrix composites (MMCs)
have received a lot of attention in recent years because of their superior strength and stiffness,
as well as their high wear and creep resistance [208]. Another of the primary goals of matrix
composites is to create a composite with a fine balance of hardness and strength which
reduces crack and defect vulnerability while simultaneously enhancing static and dynamic
properties[209]. Complex fabrication paths, minimal fabric capacities, and a tiny change in
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property enhancement among whiskers as well as fine particle enhancement are all things to
keep in mind. Because of the health risks associated with handling SiC whiskers, the
emphasis has recently shifted to particulate fibres rather than aluminium whisker
reinforcement, which is lighter and more wettable with silicon carbide [210]. MMCs are a
form of DRA composite made out of high strength aluminium alloys including silicon carbide
particulate matter or whiskers. Aluminium metal matrix composites provide excellent targets
for several building elements requiring high stiffness, high strength, and low weight owing to
the combination of properties and fabricability. [211].SiC as a reinforcing in Aluminum
Composites is generally designed toward replace some beryllium components in missile
guidance systems since structural performance is high without any need for special fabrication
management necessitated by that of the latter's toxicity. Weight-saving applications commonly
use aluminum-based alloys [212]. Stir Casting [213] is a liquid state method of fabricating
composite materials in which a dispersed phase (ceramic particles, short fibres) is
mechanically mixed with a molten matrix metal. Traditional casting methods are used to cast
the liquid composite material, and it can also be processed using traditional metal forming
techniques. The primary aim of this paper is to use stir casting to prepare an Al-SiC
composite material for mechanical and metallurgical testing.

5.2 Materials and method:

5.2.1 Material Selection:

To make AlMMC, commercially pure Aluminum was used as the matrix and 5% Silicon
Carbide was used as reinforcement. Figure 10 displays a pure SiC powder with a scale of 50
microns.

Fig.10. Silicon Carbide powder

5.2.3 Experimental Method:

To extract moisture, the SiC elements were preheated at 200°C for 2 hours. By raising the
temperature of commercially pure Al to 770°C, it was melted. A mild steel stirrer was then
used to stir the melt. When a vortex formed in the melt as a result of stirring, SiC particles
were added to it. For the duration of the accumulation of the particles, the melting temperature
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was held at 700-720°C. The molten metal was then poured into a clay graphite crucible. The
schematic view of a stir casting setup with a stirrer is shown in Figure 11.

Fig.11. Stir Casting

5.3 RESULT AND DISCUSSION

5.3.1 BRINELL HARDNESS TEST:
The addition of silicon carbide particles to an aluminium matrix increases the stiffness of the
material. Dispersion strengthening and particle reinforcement may also contribute to the
composite's power. As a result, using Silicon carbide as a filler in Aluminum casting reduces
density while increasing hardness, which are both important in industries like automotive.
Table 4 and Figure 12 show the hardness value of pure Al and 5 wt% SiC with Al matrix.

Table.4.Hardness value of pure Al with 0wt% SiCand Al wit 5wt% SiC:

S.NO 0 wt% SiC 5 wt% SiC

1 26.5 38.9

2 27.0 39.2

3 26.8 39.6

Average 26.8 39.2
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Fig.12. Hardness value of Al with 0wt% and 5wt% SiC Composite

5.3.2 MICROSCOPIC ANALYSIS:

The properties of particulate composites are heavily influenced by the morphology, density,
form, and distribution of reinforcing particles. Solidification and particle distribution are the
variables that influence particle distribution.
The particle distribution was studied by looking at the microstructures of the samples cut from
the plate casting at various locations. Figures 13.a and 13.b display optical micrographs of
MMC’s. In the case of Aluminum /Aluminum, particles were found to be uniformly
distributed (5 percent SiC), The particles were isolated at specific positions on the plates. Few
particles were found on the casting's outer surface. This is due to particle segregation that is
governed by gravity. In the presence of SiC mixture at different concentrations, however,
micrographs of Al revealed uniform particle distributions.
a b

Fig.13. (a) Microstructures of Pure Al; (b) Microstructures of Al with 5wt% SiC.

5.3.3  SEM ANALYSIS

The casted Al with SiC was analysed by SEM with a moderate size of 10 microns, as shown
in fig. In the Al matrix, the SEM picture indicates a uniform distribution of reinforcement
particles. It also reveals that during the stirring process, grain boundaries and dendritic
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structures of Al were created. The SEM Micrograph of Al-5 percent wt SiC is shown in
Figure 14.

Fig. 14. SEM Image For 95:5 Al and SiC

5.4 Conclusion:

According to the findings of the analysis, Silicon carbide can be used to make composites. By
stir casting, silicon carbide up to 5% by weight can be successfully applied to Al to create
composites. With the addition of Silicon carbide, the stiffness and toughness of Al composites
have improved. The dispersion of particle reinforcement improves the composite. SEM test
revealed the uniform distribution of silicon carbide particles in Al matrix. Also found few
grain boundaries through SEM test.
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