SYNTHESIS SOME OF HETROCYCLIC ORGANIC MOLECULES AND THEIR BIOLOGICAL ACTIVITIES

A THESIS SUBMITTED TO

GALGOTIAS UNIVERSITY GREATER NOIDA

IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN CHEMISTRY

By

VADIVELAN R

ADMISSION NO- 15SBAS303001

DEPARTMENT OF CHEMISTRY SCHOOL OF BASIC AND APPLIED SCIENCES GALGOTIAS UNIVERSITY, GREATER NOIDA JULY-2018

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled **"Study and Synthesis of some class of Heterocyclic Organic Molecules and for its Biological Activity"** in fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Chemistry and submitted in School of Basic and Applied Sciences Galgotias University, Greater Noida is an authentic record of my own work carried out during a period from JULY, 2015 to JULY, 2018 under the supervision of Prof.(Dr.) ARVIND KUMAR JAIN and Prof.(Dr.) IMRAN ALI

The matter embodied in this thesis has not been submitted by me for the award of any other degree of this or any other University/Institute.

(VADIVELAN R)

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(Dr. IMRAN ALI)

Co-Supervisor Deptt.Of Chemistry Jamia Milla Islamia, New Delhi INDIA

(Dr. ARVIND KUMAR JAIN)

Supervisor Deptt. Of Chemistry School of Basic and Applied Sciences Galgotias University, Greater Noida, UP, INDIA

The Ph.D. Viva-Voice examination of Mr.VADIVELAN R Research Scholar has been held on _____.

Sign.Of Supervisor(s) Sign.Of Co-Supervisor(s) Sign. Of External Examiner

ABSTRACT

The first part of my thesis describes the preparation of Key Starting Materials (KSM) for the synthesis of biologically active heterocyclic molecules and exploration of its activity, Its includes the optimization of reaction conditions such as solvent selection, reagent selection, base selection molar equivalents selection, temperature conditions and purification method of products. Hence we have prepared the following key starting materials for the following compounds to explore to synthesis of our desire molecules and we have developed new, industrially viable, less hazardous, eco-friendly, lower cost one pot process for the preparation of targeted molecules. The entire compounds were characterized by 1H NMR, 13C NMR, Dept. and Mass Spectroscopy.

The Main Key Starting materials are given below.

- 1. 6-Chloro uracil
- 2. Moc-L-Valine
- 3. 6-Chloro-9H-Purine-2-amine

4. (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1Hbenzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate

Second part describes the preparation of Uracil based derivative and its biological application

1. Preparation of Uracil based Moc-L-Valine derivatives: We have developed new molecules and new process for the first time to preparation of targeted molecules in one pot synthesis, In general and available literature hazardous chemicals like sodium hydride and DMF has been used for the preparation of targeted molecules and its dangerous to safety, environment and infrastructure, so we have replaced by very cheap easily available and eco-friendly potassium carbonate and whole synthesis was carried out by one pot synthesis (without any isolation steps involved) This leads to single solvent and base has been used for several steps without any isolation of intermediates, without isolation single steps process are more convenient and reduce effluent generation, reduce cycle time and reduced infrastructure requirement, so this process became very much

industrially viable, los cost and eco-friendly and close to green approaches. We have filed Indian patent application for this process and product preparation.

2. Preparation of Uracil based chloroformate derivatives: Synthesis of targeted molecules involves four steps. Benzylation of 6-chlorouracil followed by alkylation, third step involve n-substitution followed by formylation the entire process was involved one pot synthesis, we have been used simple easily available inorganic base and single solvent have been used for the whole target molecule synthesis. We have filed Indian patent application for this process and product preparation.

3. Third Part descries the synthesis of 9H-purine substituted amino acids: Synthesis of 9 developed new protocol for the synthesis of new molecules and its process, in the protocol we have started synthesis from 6-chloro-9H-purine and different kind of amino acids by using water as a solvent and sodium carbonate as a base, this synthesis was very cheap, eco-friendly, industrial viable and green chemistry approach. We have been synthesized 11 molecules by this protocol and reported best synthetic process. Whole protocol not been used any hazardous reagents, solvents and reaction conditions. We have filed Indian patent application for this process and product preparation.

Fourth part describe the synthesis of methyl (S)-1-((1R,3S,4S)-3-(5-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptan-2-yl)-3-methyl-1-oxobutan-2-ylcarbamate:

4. synthesis of methyl (S)-1-((1R,3S,4S)-3-(5-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptan-2-yl)-3-methyl-1-oxobutan-2ylcarbamate are involve five steps, first step involve n-protection from 6-chloro-9Hpurine, second step involve the Suzuki coupling, third step involve boc de protection fourth step involve amino acid coupling and fifth step involve de protection to obtained title compounds. We have reported first time the novel molecules and process for their preparations. These molecules are highly complex and have four chiral centers, there are 16 isomers are possible and we have controlled all the isomers during synthesis. We have filled Indian patent application for the novel molecules and their synthesis.

ACKNOWLEDGEMENT

The Research work presented in this thesis would not been possible without my close association with many peoples. I would like to take this opportunity to extend my sincere thanks and appreciation to all those who made this PhD thesis possible.

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

Very special thanks to the *Shri Sunil Galgotia Chancellor and Mr. Dhruv CEO*, Galgotias University for giving me the opportunity to carry out my doctoral research and for their support.

My sincere gratitude is reserved for **ProfessorRenu Luthra**Vice Chancellor, Galgotias University for all required permission, support and for this thesis. I would say special thanks to **Professor (Dr.) Bimal Sarkar**, Dean School of Basic and Applied Sciences, Galgotias University for his tremendous support during my PhD and thesis work.

I would like to express special thanks to my supervisor **Prof.** (**Dr.**) **Arvind Kumar Jain** for his tremendous support and been tremendous mentor for me. I would like to thank you for introducing me to exciting field and always encouraging, motivating, enthusiasm and allowing me to do what I think and continuous support throughout my PhD, your advice and support have been invaluable. I have learned much knowledge from him and those helped me to including how to raise new possibilities, how to regard an old question from a new perspective, how to approach a problem by systematic thinking, data-driven decision making and exploiting serendipity. I owe him lot of gratitude shown me during the way of research. I am very glad to say that such a wonderful person associated with me.

My special thanks also my research co-guide *Prof. (Dr.) Imran Ali* for his continuous support, encouragement, cooperation and facilitating all the requirements always. His constant support, guidance, motivation always pushing me forward. I always feel privileged to be associated with a person like him during my life.

I would like to thanks to my friends Mr. Dnyaneshwar Nighot, Mr. Nadeem Lone, Mr. Suhail and Mr. Rupak Raja for sharing knowledge's, supporting me for the field of work and giving worderful analytical support during my course of PhD.

I feel my deep gratitude my parents who introduced me in the world and I owe my deepest gratitude towards my better half for her eternal support and understanding of my goals and aspirations. Her love and support has always been my strength. Her patience and sacrifice will remain my inspiration throughout my life. Without her help, I would not have been able to complete much of what I have done and become who I am. It would be ungrateful on my part if I thank Anjammal these few words. I am thankful to my son Tarun and Varun for giving me happiness during my studies.

My special thanks to my all teachers because of unexpected teaching at different stages of education has made it possible for me to see this day. Because of their kindness I feel, was able to reach a stage where I could write this thesis.

As impossible always to mention everybody who had an impact to this work even though there are some people those whose spiritual support is even more important.

Thanks God for being with me always and providing all the strength, happiness and good health to carry out this study.

Thank you so much.....

VADIVELAN R

LIST OF PUBLICATIONS

1. Complete **Indian patent**, Application No.201811020947 "NEW PROCESS FOR THE PREPARATION OF NOVEL URACIL ERIVATIVES AND ITS DOCKING STUDY".Date of filing application 05/06/2018, **publication date: 22/06/2018**.

2. Complete **Indian patent**, Application No.201811020953 "HIGHLY EFFICIENT SYNTHESIS FOR THE PREPARATION OF NOVEL 9H-PURIN-2-AMINE DERIVATIVES". Date of filing application 05/06/2018, **publication date: 06/07/2018**.

3. **R.Vadivelan**, Dnyaneshwar Nighot, Arvind Kumar Jain and Imran Ali, one pot synthesis for preparation of highly pure 1-(4-Bromobenzyl)-3-Methyl-6-(Piperidin-1-Y1) Pyrimidine-2,4(1H,3H)-Dione"**International Conference on Advancements in Science & Technology ICAST2017.**"

4. Arvind Kumar Jain, Dnyaneshwar Nighot, **R. Vadivelan**, Sunil Jadhav Imran Ali, Di-μ-iodidobis[2,2'-bis(diphenylphosphanyl)-1,1'-bina phthyl,]copper(I) catalyzed Sonoghashira reaction **INROADS** (International Conference **IAET-2016, 5, 1, 215-217**, DOI: 10.5958/2277-4912.2016.00041.2

5. Dnyaneshwar Nighot, Arvind Kumar Jain, **R. Vadivelan** and Imran Ali, Preparation of (Z)-5-((2-mercaptophenylimino)methyl)-2-methoxy phenol Copper complex and its use for Palladium free Coupling of Aryl Iodide and Alkynes "International Conference on Advancements in Science & Technology ICAST2017."

6. Arvind Kumar Jain, Dnyaneshwar Nighot, **R. Vadivelan**, Sunil Jadhav Imran Ali, Green protocol for sp-sp2 coupling of Aryl Iodide and alkynes using Copper Carbonate: Facile synthesis of Aryl alkynesINROADS (International Conference IAET-2018,.

7. **R.Vadivelan**, Nadeem Lone, Arvind Kumar Jain and Imran Ali, High Efficient Inexpensive Synthesis of Uracil Derivatives: Characterization, DNA Binding and Docking Studies **Communicated to Journal of Molecular Structure.**

vi

8. **R.Vadivelan**, Nadeem Lone, Arvind Kumar Jain and Imran Ali, Synthesis of New Uracil based chloroformate Derivatives and it's Characterization, DNA Binding and Docking Studies, to be **communicated**.

9. **R.Vadivelan**, Mohamed Suhail, Arvind Kumar Jain and Imran Ali, An Efficient synthesis for the preparation of novel 9H-purin-2-amine substituted amino acid derivatives, to be **communicated.**

ABBREVIATIONS

CDC13	Deuterated chloroform
d	Doublet
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
EtOAc	Ethyl acetate
CDI	N,N' carbonyldiimidazole
KOAc	Potassium acetate
hr.	Hour
m	Multiplet
М	Molar concentration
MeOH	Methanol
t-BuOH	Tertiary butanol
Min.	Minutes
NMR	Nuclear magnetic resonance
t	Triplet
Equi.	Equivalents
HATU	1-[Bis9dimethylamino)methylene]-1H-1,2,3-triazolo[4,5- blovridinium 3-oxide bexafluorophosphate
a	Ouartet
MDC	Methylene dichloride
Temp.	Ttemperature
HNMR	Proton Nuclear Magnetic Resonance
CNMR	Carbon Nuclear Magnetic Resonance

LIST OF CONTENTS

CAI	NDIDATE'SDECLARATION	i
ABS	TRACT	ii
ACK	NOWLEDGEMENT	iv
LIST	Γ OF PUBLICATIONS	vi
ABB	BREVIATIONS	vii
1.	INTRODUCTION	1
1.1	URACIL BASED DRUG MOLECULES AND ITS ACTIVITIES	1
1.2	PURINE BASED DRUG MOLECULES AND ITS DERIVATIVES	6
1.3	BACKROUND ABOUT THE FIELD OF INVENTION OF URACIL	
	MOIETY	12
1.4	BACKROUND ABOUT THE FIELD OF INVENTION OF PURINE	14
1.5	BACKROUND ABOUT THE FIELD OF INVENTION OF	
	7H-PYRROLO[2,3-D]PYRIMIDINE BASED DRUG INTERMEDIATE	2 20
1.6	PYRROLOPYRIMIDINE BASED DRUG MOLECULES	20
1.7	SCOPE OF STUDY	22
2.	EXPERIMENTAL	23
2.1	MATERIALS AND INSTRUMENTATION	23
2.2	THIN LAYER CHROMATOGRAPHY	23
2.3	NUCLEAR MAGNETIC RESONANCE (NMR)	24
2.4	MASS SPECTROSCOPY	25
2.5	BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS	
	PREDICTION:	26
2.6	PREPARATION OF KEY STARTING MATERIALS (KSM).	27
2.7	SYNTHESIS OF MOC-L-VALINE.	27

2.8	SYNTHESIS OF 6-CHLORO-9H-PURIN-2-AMINE	33
2.9	SYNTHESIS OF (1R,3S,4S)-TERT-BUTYL 3-(5-(4,4,5,5-TETRA	
	METHYL-1,3,2-DIOXABOROLAN-2YL)-1H-BENZO[D]IMIDAZOI	L
	-2-YL)-2-AZA-BICYCLO[2.2.1]HEPTANE-2-CARBOXYLATE:	
3.	PREPARATION OF URACIL BASED MOLECULES	56
3.1	PREPARATION OF URACIL BASED MOC-L-VALINE	
	DERIVATIVES	56
3.2	RESULTS AND DISCUSSION:	58
3.3	DNA BINDING	63
3.4	DOCKING STUDY	68
3.5	EXPERIMENTAL PROCEDURE:	73
3.6	GENERAL PROCEDURE:	74
3.7	SYNTHESIS OF TARGET COMPOUNDS (A-L):	75
3.8	CHARECTARISATION DETAILS OF COMPOUND (A-L):	75
3.9	DNA BINDING	
3.10	DOCKING STUDY	82
3.11	¹ HNMR, MASS SPECTROSCOPY DATA OF URACIL BASED	
	MOC-L- VALINE ERIVATIVES:	83
3.12	BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS	
	PREDICTION A-L:	119
4.	PREPARATION OF URACIL BASED CHLOROFORMATE	
	DERIVATIVES	133
4.1	EXPERIMENTAL PROCEDURE:	134
4.2	GENERAL PROCEDURE	135
4.3	SYNTHESIS PROCEDURE AND CHARECTERISATION OF	
	TARGET COMPOUNDS (4A-4Q):	136
4.4	NMR AND MASS SPECTROSCOPY DATA OF COMPOUNDS	

	(4A-4Q):
4.5	BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS
	PREDICTION:188
	5. AN EFFICIENT SYNTHESIS FOR THE PREPARATION OF
	NOVEL 9H-PURIN-2-AMINE SUBSTITUTED AMINO ACID
	DERIVATIVES 206
5.1	INTRODUCTION:
5.2	GENERAL PROCEDURE:
5.3	DNA BINDING UV ABSORPTION SPECTRUM OF THE ABOVE
	MOLECULES ARE LISTED BELOW 215
5.4	NMR, MASS AND IR SPECTRUM OF COMPOUNDS (5A-5K) 226
5.5	BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS
	PREDICTION:
6.	HIGH FACILE SYNTHESIS OF NOVEL 2,2-DIMETHYL PROPIONIC
	ACID 4-[2-(2-AZA-BICYCLO[2.2.1]HEPT-3-YL)-1H-BENZOIMIDA
	ZOL-5-YL]-PYRROLO[2,3-D]PYRIMIDIN-7-YLMETHYL ESTER
	ANDITS DERIVATIVES
6.1	INTRODUCTION:
6.2	REACTION SCHEME:
6.3	¹ HNMR, ¹³ C NMR, DEPT AND MASS SPECTROSCOPY OF
	TARGET COMPOUNDS
6.4	BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS
	PREDICTION
7.	CONCLUSION

REFERENCES	73	52	2
------------	----	----	---

1. INTRODUCTION

1.1 URACIL BASED DRUG MOLECULES AND ITS ACTIVITIES.

1.1.1 GENERAL INFORMATION

In four among the nucleobases uracil is one of the most important nucleobases in the RNA nucleic acid and that are noted by the letters A (adenine), G (guanine), C(cytosine) and U (Uracil). The new type synthesis of heterocyclic compounds has always been a subject of great interest due to their wide applicability. Heterocyclic compounds occur vary widely in nature and are essential to life. Amongst a large variety of heterocyclic compounds, heterocycles containing uracil moiety are interest because they show some pharmacological and biological activities. Uracil and its derivatives are the important key starting material for the preparation of many organic molecules, drug substances and drug intermediates.Uracil derivatives are an important and useful task in organic chemistry. Tegafur-uracil is a chemotherapy drug used in the treatment of cancer, primarily bowel cancer.

Uracil based derivatives were reported to possess anti-viral[1] [2] [3] [4], antidiabetics[5][6], anti-tumor [7][8], antibacterial[9], antifungal [10][9], antidepressant [11] and anti-retroviral[12][13][14] activities. Thus, the synthesis of uracil derivatives is an important and useful task in organic chemistry. In recent years, the synthesis of uracil derivatives has been reported. In continuation of our efforts to explore newer reactions for the synthesis of heterocyclic compounds, we wish to report here a facile and one pot synthesis for preparation (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate.

1.1.2 Antiviral

Virus is very small external organism that is replicate and living in other living organism is called virus, Virus can be divided in to two parts, 1.DNA Virus, 2. RNA=virus. There are several viral infections are happening everyday life. Some examples of viral infections are common cold, poxviruses, herpes, influenza, measles, mumps and etc.

Antiviral is a group of medication which is used for antiviral infection that will help to cure, control or destroy the growth of virual infection.

1.1.3 Anticancer

Cancer is nothing but normal cells and abnormal growth, group of disease that involve abnormal cell growth, and it has a potential to spread over the body, cancers are start with tumors and spread over the time period. The symptoms are associated with unexplained weight loss, abnormal bleeding, lumps and prolonged cough.

Anticancer is the medicine which is used to cure or control or destroy the cancer cells. There are several drugs which are in the market for the treatment of cancers.

Uracil is one of the most important moieties for drug synthesis because of its has wide range of therapeutic activity, some of them are listed below

1.1.4 Uracil based anticancer drugs

5-Fluorouracil[15] (5-FU; Fluoroplex, Adrucil, Efudex, Fluorouracil,) is one of the pyrimidine effective metabolite. It used for the treatment of many type of cancer such as colon cancer, breast cancer, stomach cancer, esophageal cancer, pancreatic cancer, and cervical cancer. Gemcitabine (Gemzar) and arabinosylcytosine are other two drugs like 5-Fluorouracil and all are work same mechanism.

Tegafur[16] is a prodrug of 5-fluorouraciland used for treatment of cancers. It is a component of the combination drug tegafur/uracil.

1.1.5 Uracil based Herpes simplex virus drugs

Herpes simplex virus is known as human herpes virus, there are two types of Herpesviras in his family namely HSV-1 and HSV-2. Infected person spread the HSV-1 and HSV-2 virus. The following Uracil based drug molecules are available for the treatment of HSV.

Idoxuridine[17]is an anti viral drug especially for anti-herpesvirus. It is became the first antiviral agent in 1962, it is a modified from deoxyuridine, similar enough to be incorporated in to viral DNA replication after adding iodine atom to the Uracil component blocks base pairing.Initially developed as an anticancer drug.

Idoxuridine, IDU, Herplex

Edoxudine[18] (or **edoxudin**) is an antiviral drug of thymidine analog, a nucleoside.It has shown effectiveness against herpes simplex virus.

Edoxudine, EDU, Aedurid

Trifluridine [19] (**trifluorothymidine** or **TFT**) is an antiviral (anti- herpesvirus) drug, used primarly on theeye. TFT was approved for medical use in 1980.It is also a component of the anti-cancer drug trifluridine/tipracil oral drug.

Trifluridine, TFT, Viroptic

1.1.6 Uracil based HIV drugs

The human immunodeficiency virus (HIV)[20] is causes HIV infection and it will develop AIDS (Acquired immunodeficiency syndrome) which progressive failure of the immune system allows life-threatening, the following Uracil based drugs are available for the treatment of HIV.

Zidovudine [20] also called as **azidothymidine**, is an antiretroviral agent and it can be used for the prevent and treat Human immunodeficiency virus (HIV)/ AIDS. It is used with combination of other antiviral agents. AIDS is prevented by Zidovudine from mother to child during birth or after needle stick injury. Zidovudine used as oral drug or injection with combination of other antiviral agents.

Zidovudine, AZT, Retrovir

Stavudine [21] (Zerit), is an antiviral drug. HIV/AIDS can be prevented by using of Stavudine. It cab be used along with other antiviral agents. It is also be used to

prevention needlestick or some other exposure, however, not a first line treatment. It is given by mouth. Stavudine was first described in 1966 and Stavudine is approved drug in USA for treatment of HIV/AIDS.

Stavudine, d4T, Zerit

1.1.7 Uracil based HCV drugs

Hepatitis C is affects the liver, HCV is caused by infectious diseaseHepatitis C Virus. The following drugs are available for the treatment of HCV infection.

Telbivudine[22] Hepatitis B virus can be treated by antiviral drug such as Telbivudine. It is more effective than lamivudine and adefovir. It is used by mouth in 600mg tablet.

Telbivudine, LdT, Tyzeka

1.1.8 Uracil based HBV drugs

Hepatitis B virus is called HBV and it is caused by infection of hepatitis B virus, the following Uralic based drugs are available for the treatment of HBV.

Sofosbuvir[23], is used for the treatment of HCV, sold under the brand name **Sovaldi.** It is one of the best selling drugs for HCV infection and the cure rate is 30 to 97% and the drug was discovered by Gilead Science.

Sofosbuvir, Sovaldi

Uracil has wide varieties of therapeutic activity, so Uralic has been chosen for the molecules development.

1.1.9 Uracil based antiviral drugs

Emivirine [24] (**MKC-442**) is an antiviral drug used for the treatment of Human immune deficiency virus. It is a non nucleoside reverse transcriptase inhibitor. Promising antiviral activity shown by emivirine in vitro study. In human trails it's failed because it is not show sufficient efficacy. However it is still notable because of more number of antiviral derivatives can be discovered by this concept.

Emivirine

1.2 PURINE BASED DRUG MOLECULES AND ITS DERIVATIVES

Purines and substituted purines is well known for its biological activity purines and substituted purines is the important intermediate for the synthesis of varieties of purine and purine nucleoside molecules, several antiviral drugs are available with purine derivatives such as valaciclovir, femciclovir, acyclovir, valganciclovir, ganciclovir etc.,

1.2.1 Purine based HSV drugs

Valaciclovir[25] is a prodrug and it will be converted in to acyclovir in vivo, Herpes simplex, herpes zoster (shingles), and herpes B viruses can be treated by antiviral drug Valaciclovir. It was approved by USFDA for medical use in 1995.

Valaciclovir

Famciclovir [26] is a prodrug of penciclovir. In invivo famciclovir converted in to penciclovir. Herpes virus infection, herpes zoster (shingles) are treated by anti viral drug famciclovir. Novartis was discovered famciclovir and it is marketed by the name of **Famvir**.

Famciclovir

Vidarabine[27] is an antiviral drug which is used for the treatment of herpes simplex and varicella zoster viruses.

Vidarabine, Ara-A, Vira-A

Ganciclovir [28][29] is a prodrug of valganciclovir with improved bioavailability, Ganiciclovir an antiviral drug which is used for the treatment of cytomegalovirus (CMV) infections. Ganciclovir was approved by USFDA for medical use in 1989.

Ganciclovir

1.2.2 Purine based HBV drugs

Adefovir [30] is a prodrug of adefovir and it is aanti viral drug which is used for the treatment of chronic infection of hepatitis B virus.

Adefovir

1.2.3 Purine based HIV drugs

Abacavir[31] is a viral drug and it can be used for the treatment of HIV/AIDS. Abacavir is not recommended alone and it can be used together with other HIV medication. It is oral drug and it is prescribed drug to treat the children over the age of three month. Abacavir was approved by USFDA in 1998 for human use.Other HIV medications, such as abacavir/lamivudine/zidovudine or abacavir/dolutegravir/lamivudine and abacavir/lamivudine are used along with Abacavir.

Abacavir

Tenofovir disoproxil[32]chronic hepatitis B was treated by tenofovir disoproxil and can be used to prevent and treatment of HIV/AIDS. Tenofovir disproxil is taken by oral along with other antiretrovirals dugs. It is a preventive drug of HIV/AIDS among those at high risk before exposure, and it can be used to prevent infection from mother to baby during birth after needlestick injury or other potential exposure. It is sold both by both single and along with other antiretroviral agents such as emtricitabine/tenofovir and efavirenz/emtricitabine/tenofovir. Tenofovir does not cure hepatitis B inefection of HIV/AIDS. It is available as a oral drus. Tenofovir was approved by USFDA in 2001 for human use.

Tenofovir disoproxil

Tenofovir alafenamide [33] is a prodrug of tenofovir and HIV infection and chronic hepatitis B infection are treated by tenofovir alafenamide, Tenofovir alafenamidehas greater antiviral activity and better distribution into lymphoid tissues than that agent.USFDA was approved this drug this drug for human use November 2016.

Tenofovir alafenamide

1.2.4 Purine based HBV drugs

Adefovirn [34] is a prodrug of adefovir and it is used to treat chronic hepatitis B infection, it is oral and prescribed drug. Pivoxil prodrug adefovir dipivoxil was prescribed drug and it was approved by USFDA for human use.

Adefovir

Entecavir[35] (**ETV**) is selling under brand name of Baraclude, it is anti-viral drug, it can be used for the treatment of hepatitis B virus (HBV) infection, and also used to treatment of both HIV/AIDS and HBV antiretroviral medication should also be used. Entecavir is oral tablet. Entecavir was approved by USFDA for medical use in 2005.

Entecavir, ETV, Baraclude

1.2.5 Purine based HBV drugs

Aristeromycin is a 5-membered ring carbocyclic nucleosides, the analog of other drugs are adenosine, and neplanocin A, Aristeromycin cyclopentene analog [36], have been isolated from naturally available sources. Both the molecules are exhibit significant activity towards antiviral and antitumor.

Neplanocin A

Oxetanocin[37] ia an angent and it was isolated from Bacillus megateriumviral agent.

Oxetanocin

1.3 BACKROUND ABOUT THE FIELD OF INVENTION OF URACIL MOIETY

Jun Feng, Zhiyuan Zhang etal [38]have been prepared the target compound by 6-chloro uracil reacted with 2-cyano benzyl bromide in the presence of NaH, DMF and DMSO followed by the methylation by using of methyl iodide in the presence of Sodium hydride in THF and DMF, then followed by the coupling of R-2-amino pipridine in the presence of sodium bicarbonate , TFA in Methanol, the over all yield reported by the process is 28.34%.

Reaction Scheme- 1.1: process for the preparation of alogliptin

In this total synthesis they have been used potentially hazardous chemicals like NaH and DMF mixture and it is well known for explosion and fire hazard, this can be damage the infrastructure and properties and over all yield has been reported very low.

In another embodiment the following synthesis scheme was reported

Substituted uracil was reacted with POCl₃ in dimethyl aniline at reflux temperature to produce chlorinated product then it was reacted with sodium hydroxide to produce mono chloro substituted product and it was further reacted with 2-CN benzyl bromide in

the presence of Sodium hydride and lithium bromide to produce benzylated product further reacted with R-amino piperidine and sodium bicarbonate to produce target compound.

Reaction Scheme- 1.2: process for the preparation of alogliptin derivatives

The potentially hazardous sodium hydride was used in this synthesis.

Zeng-WeiLai, Chunhong Li etal[39]have been prepared the compound by 6-chloro uracil reacted with 2-cyano benzyl bromide in the presence of Sodium hydride DMF and DIPEA, overnight followed by the methylation by using of methyl iodide in the presence of Sodium hydride in LiBr and DMF over night at 80°C, followed by the coupling of R-2-amino pipridine in the presence of sodium bicarbonate in IPA, followed by purification by column chromatography, the overall yield reported by the process is 32.48%.

Reaction Scheme- 1.3: process for the preparation of alogliptin

The overall yield was reported very low this leads to higher cost, potentially and environmentally dangerous sodium hydride was used for the preparation of target molecules.

Ajaya R.Shrestha, Takashi Shindo etal [40]have been prepared 6- chloro3-methyl uracil by reacting Methyl urea and the malonic acid in the presence of acetic anhydride and acetic acid followed by chlorination with phosphorous trichloride 6-chloro pyrimidine 2,6-dione was obtained by chlorination of barbituric acid followed by the amine derivatives have been prepared with reaction of amine with higher temperature($180-200^{\circ}C$).

Reaction Scheme- 1.4: process for the preparation of uracil derivatives

All the above literatures are having drawbacks that, they are using highly hazardous chemical (hazardous to facility, environment and health) such as sodium hydride and DMF mixture has the potential fire hazards and there were several accidents reported in this mixture, so we have proposed to eliminate such as hazardous materials from our synthesis and also planned to prepare our targeted molecules by one pot synthesis.

Organic reactions under one pot synthesis are attracted much interest of organic chemists because of particularly one solvent used many steps; it reduces lower cost, environment friendly and higher yield synthesis and view of green chemistry. Green chemistry approaches are much important in organic chemistry due to significant reduction in the industrial waste, byproducts, reduction in use of equipments, energy and cost. The one pot synthesis is nothing but the possibility of conducting multistep reactions under one pot synthesis could enhance their efficiency from an ecological and economic point of view.

1.4 BACKROUND ABOUT THE FIELD OF INVENTION OF PURINE

Lei Luo, Guorong and etal,[41] have been synthesized 2-amino-6-chloro purine, by the following process, Guanine reacted with POCl₃ in DMF Was stirred 100°C for 4 hrs followed by addition of water in to it, after stirring 24 hrs, at 25°C, the product was isolated by filtration, solid was Dissolved with 25% ammonia solution insoluble material

was isolated by filtration insoluble material was removed and MLR was concentrated out the precipitated material was isolated by the filtration with 55% yield.

Reaction Scheme- 1.5: process for the preparation of Purine derivatives

Noell and R.K.Robins [42] have been prepared , 2-amino-6-chloro -4- pyrimidinol monohydrate is suspended in methoxy ethanol and 4-chlorobenzene methanamine is added to the suspension, and the solution refluxed for 4-hrs, then poured in to ice water, it was diluted with acetic acid and treated with sodium nitrite in water, then the crude nitrosopyrimidine reduced with sodium dithionate in formamide and formic acid at 70°C then boiled for 15 min, then diluted with water again boiled for 30 min, allow to crystallize in refrigirator, crude n-formyl derivatives collected by filtration and cyclized with formic acid and formamide at 175-180°C for 3hrs, the crude product was poured in to ice water to provide guanine then it was purified with 1N HCl solution at boiling temperature.

Reaction Scheme- 1.6: process for the preparation of Purine derivatives

Ye, Lianbao; Huang, Pengna; Peng, Xuedong; Luo, Yan, has described to prepare 2amino-6-chloropurine by A one-step synthetic method[43]. 2-Amino-6-chloropurine was synthesized using guanine and phosphorus oxychloride as starting materials under the effect of tetraethylammonium chloride in acetonitrile. The chem. structure of the target compd. was confirmed by IR, MS and 13C NMR etc. The yield of title compd. was (72.1% and its HPLC purity was not less than 98%). This article can provide a more reasonable route for the production process of 2-amino-6-chloropurine.

Reaction Scheme- 1.7: process for the preparation of Purine derivatives

Yu Lin Hu, Qiang Ge.Ming Lu etal, [44] have been synthesized the above molecules, the mixture of quanine, acetic acid and acetic anhydride wasagitated at 135°C for 7.5 hrs, after the reaction reached end point the solvent and acetic anhydride was removed by distillation under vacuum and the crude product was recrystallized in water to give acylated quanine with 95% yield.

2,9-diacetyl quanine was reacted with phosphorous oxychloride in PEG-2000 and ethylene dichloride at 80°C for 6hrs then reaction completion was judged by TLC then reaction the reaction mass was cooled to 25°C, and the desire compound was isolated by filtration, it was recrystallized by DMSO to produce 2-amino-6-chlorofurine.

Reaction Scheme-1.8: process for the preparation of Purine derivatives

Ye, Lianbao; Huang, Pengna; Peng, Xuedong; Luo, Yan, A one-step synthetic method of 2-amino-6-chloropurine [44]. 2-Amino-6-chloropurine was synthesized using guanine and phosphorus oxychloride as starting materials under the effect of tetraethylammonium chloride in acetonitrile. The chem. structure of the target compd. was confirmed by IR, MS and 13C NMR etc. The yield of title compd. was (72.1% and its HPLC purity was

not less than 98%). This article can provide a more reasonable route for the prodn. process of 2-amino-6-chloropurine.

Reaction Scheme- 1.9: process for the preparation of Purine derivatives

Raghida Bou, Pamela Cohn, Egle, Matthew B. Baker, Maud Voisin, Sarun and Ronald [45] are synthesized 6-Chloro-9H-purine-2-amine was added the solution of K_2CO_3 and DMF then agitated 1 hr followed by addition of 2-ethyl hexyl bromide and then it was stirred 16.0 hrs, solvent was removed by distillation, then the crude was purified by column chromatography (56%).

2-Amino-8 bromo-9-(2-ethylhexyl)-1,9-dihydro-6H-purin-6-one , 2-(tributylstannyl)-thiophene, $Pd(PPh_3)_4$ and Ph_3Bi were dissolved in dry xylene 20 ml and heated to reflux and continued reflux for overnight, solvent was concentrated under reduced pressure, the crude was treated with MDC to produce compound with 66% yield.

Lei Luo, Guorong Chen and Yuan Chao Li [41] has been reported that a new and eficient method for the synthesis of 2-amino-9-[4-acetoxy-3(acetoxy methyl) butyl-1-yl) purinestarting from guanine, the first step involves chlorination of guanine followed by mitsunobu reaction then coupling with diacetyl malonate then hydrogenation followed by reduction and esterfication, This method does not required any chromatography purification to produce pure femciclovir, industrially viable manufacturing process.

Reaction Scheme- 1.10: process for the preparation of Purine derivatives

Borge Alhede, Finn Priess Clausen, Jorgen juhi-Christensen, Kalaus K. McCluskey and Herbert F. Preikschat [46] has been prepared by the following process, The precooled suspension of compound 1 and DMF was added with 86% KOH powder after stirred 4 hrs at ice bath, methyl bromide was bubbled after 2 hrs the precipitated solid product was isolated by filtration and washed with DMF and water(yield :55%), Compound 2 was treated with benzoyl isothiocyanate were refluxed in acetone, and drying afford compound as a white solid(yield :95%),Compound 3 in acetone-methanol was added potassium carbonate in water and reflux 6 hrs, cooled and acetic acid was added and the precipitated solid product was isolated by filtration with 96% yield. Compound 4 was treated with 1.0N aq.NaOH solution then Copper (II) acetate, water was added and refluxed for 1.0 hr then cooled to 50°C copper(II) sulfide was removed by filtration, filtrate was acetified with acetic acid to brough th pH 5.0, the precipitated product was filtered and washed with 96% yield.

Reaction Scheme- 1.11: process for the preparation of Purine derivatives

Alan D.Borthwick, Barrie E. Kirk, Keith Biggadike, Anne M.Exall, Suzanne Butt, Stanley M.Roberts, David J.Knight, and D.Michael Ryan[47] has been prepared the title compound by the following process.4-Chlorobenzenediazonium chloride is coupling with compound 1 in aq.acetic acid and with sodium acetate afforded the azo derivatives compound 2, reduction of azo derivative using Zinc, ammonium chloride in methanol compound 3, 2-amino-6-chloro purine were obtained by acid catalyzed reaction with triethylortho formate and then crude produc was treated with 0.6N HCl solution.

Reaction Scheme- 1.12: process for the preparation of Purine derivatives

Michael T.Crimmins, Bryan W.King, William J. Znercher and Allision L. Choy [48] have been prepared the title compound Halo compound reacted with cylopropyl amine in DMSO at 55°C for 16.0 hrs after reaction completion solvents was distilled off by rota evaporator and the desire product was purified by column chromatography by using MDC and methanol mobile phase.

Reaction Scheme- 1.13: process for the preparation of Purine derivatives

Michael T. Crimmins and Bryan W.King [49]have been synthesized the compound reacted with cyclopropyl amine reacted with halogenated compound to produce desire compound in dry denaturated ethanol at reflux temperature after completion of reaction the solvent was distilled by rotaevaporator and the desire product was purified by column chromatography.

Reaction Scheme- 1.14: process for the preparation of Purine derivatives

1.5 BACKROUND ABOUT THE FIELD OF INVENTION OF 7H-PYRROLO[2,3-d]PYRIMIDINE BASED DRUG INTERMEDIATE

N-heterocyclic compounds are very important in drug design [50][51][52] compare with various heterocyclic compounds, pyrrolopyrimidine functional group containing compounds are structurally deserve class of antibiotic analogs. Both organic and medicinal chemist are attracted by pyrrolo [2,3-d]pyrimidine derivatives because of the presence in naturally occurring products and biologically active compounds[53]. Pyrrolo[2,3-d] pyrimidine derivatives are well known for biologically active compounds like antiviral [54], antibacterial [55], Antimicrobial [56], rheumatoid arthritis [57], Anti microbial [58]. antiinflamatory [59], antihypertension[60], antitumor[61]. antiinflammatory[59], Anti-HCV [54][62], antiallergic [63], and antifuncal[58] activities. In organic synthesis pyrrolo[2,3-d]pyrimidines derivatives are interesting intermediate to provide higher access and highly desirable structure. Some of the drugs like Toyocamycin are pyrrolo pyrimidine based drugs which is isolated from Streptomyces species and also ability to inhibit with RNA cells.

1.6 PYRROLOPYRIMIDINE BASED DRUG MOLECULES

Baricitinib [57] is a pyrrolopyrimidine based drug molecules for the treatment of rheumatoid arthritis (RA). The drug is approved in European Medical Agency in February 2017 for human use. Baricitinib is a second line approved drug for the treatment of moderate to severe active rheumatoid arthritis in adults.

Baracitinib

Ruxolitinib[64] is another drug of pyrrolopyrimidine analog and it is used for the treatment of intermediate or high-risk myelofibrosis, when there is inadequate response to or intolerance of hydroxyurea ruxolitinib can be used and also used to treat a type of myeloproliferative disorder which is affects the bone marrow, and for polycythemia vera (PCV).

Ruxolitinib

Filgotinib[57](cilinical trial code name **GLPG0634**) is a another analog of pyrrolopyrimidine class, which is treatment of rheumatoid arthritis (RA) and Crohn's disease, it is under investigational drug for human use. It was developed by the Belgianbiotech company Galapagos NV.

Tofacitinib [65] is a medication used to treat rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis.

Tofacitinib

Pyrrolo[2,3-d] pyrimidine has very good activity, so it has been chosen for our synthesis.

1.7 SCOPE OF STUDY

Based on through literature survey, it stated that the molecules which are under clinical trial of already in the use of human have some limitation such less solubility, low bio availability and more side effects, Molecules or drugs which are currently using no longer valid because of it resistant of viruses or bacteria's so we urge to new discovery or novel molecules to overcome all these problems.

The current synthesis of drug molecules and drug intermediates has been employed using of hazardous chemicals, raw materials, reagents which will leads to generation of industrial waste, environmental threads, danger in infrastructure and non cost effective, to overcome all these issues need to develop new, eco-friendly, less hazardous, less effluent generated process to be developed moreover one pot synthesis process attract chemist because of one solvent have been used to many synthetic steps it will require less infrastructure and investment, less effluent generation and low cost.

Based on through literature survey we came to conclude that Uracil, Purine and pyrrolo pyrimidine has great interest due to their wide applicability of drug molecules and their activities. So we have been chosen Uracil, Purine and Pyrrolopyrimidine basic moieties has been chosen for the further development of target molecules.
2. EXPERIMENTAL

2.1 MATERIALS AND INSTRUMENTATION

Reagents and chemicals which was used obtained from highest grade available from Sigma Aldrich, Acros organics, Spectrochem, Loba Chem, Survival Technology and Rankem Laboratories, and were used without purification. TLC was performed on Merck TLC Silica gel 60 F254 plates eluting with specific solvents and samples were made visual with a UV lamp, Silica gel (60-120 mesh) was used for column chromatography. Electrothermal 9100 apparatus were used to measure melting points. High resolution mass spectra were measured were Bruker. The measurement was run in positive ion mode. NMR were obtained using Bruker (for ¹H NMR in 400 MHz and for ¹³C NMR in 100 MHz) spectrometer in DMSO and CDCl₃ with TMS (tetramethylsilane) as an internal standard and PPM (parts per million) is unit used to report chemical shift, tetramethylsilane used as a reference standard to report chemical shift (δ).Spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and Coupling constants (J values) are reported in hertz (Hz). All the Mass spectrums were recorded in HRMS: ABSCIEX (4600 Model), QTOF (Quadrupole time of Flight).

2.2 THIN LAYER CHROMATOGRAPHY (TLC)

TLC is the chromatography technique [66] can be used to separate mixtures of compounds and also used to monitor the reaction progress too; TLC plates are made in Aluminium foil is coated with thin layer of silica gel or neutral alumina coated and it was dried at higher temperature to remove moisture after plate was dried it is ready to use. All type of chromatography's working in the same principle, Solid phase working as a stationary phase and liquid phase working as a mobile phase.

In TLC Silica gel or Alumina plate is act as a stationary phase and solvents used as a mobile base, the compound to be identified was spotted on the bottom of TLC plate then

it was developed in solvents system and it will give the separation from one another, the picture of TLC are shown below.

Fig: 2.1

2.3 NUCLEAR MAGNETIC RESONANCE (NMR)

Nuclear Magnetic Resonance (NMR) is one of the analytical techniques which are used to identify compounds, it is a powerful technique which has application in many discipline.

NMR is the spectroscopic technique which gives the information about the number of protons and its chemical environment. There are two type of NMR can be used to identify the molecules namely ¹HNMR and ¹³CNMR.

Fig: 1.2

2.4 MASS SPECTROSCOPY

Mass Spectroscopy is another one type of powerful technology which can be used to identify the molecular weight of compounds. Mass spectroscopy playing important role in structural identification and it can be used many of the industries like Pharmaceutical, Polymer, agrochemical and etc. Mass spectrometer performs in 3ways.

1. Ion generation: high energy beam of electron when bombard to the target molecules it will generate molecular ions.

- 2. When they accelerated in electric field they separated based on their mass-tocharge ratio (m/z)
- 3. Detector will qualify and quantify the separated ions.

Fig: 1.3

2.5 BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS PREDICTION:

PASS (*Prediction of Activity Spectra for Substances*) prediction is software which gives Biological *Activity Spectrum* of a chemical compound. This can be used to find out different types of biological activity of the compounds that represented results of the compound's interaction with several biological entities. The "intrinsic" property of chemical compounds that's depending upon only on its chemical structure and physicalchemical properties and characteristics. This will give information and combining information's from various sourced in same training set.

PASS is a tool which is used for evaluating biological activity of organic drugs and drug like molecules; many type of organic compounds organic molecules simultaneously biological properties predicted by PASS. This software gives advance information of chemical compounds before synthesis of them. This will help us to save cost and time.

Pa (*probability ''to be active''*) this will give active estimation or chance of the organic molecules is belonging to the sub-class of active compounds (similarity to the structures of organic molecules that are the most typical in a sub-set of "actives" in PASS training set).

Pi (*probability ''to be inactive''*) this will give estimation of or chance of the organic compound is belonging to the sub-class of inactive compounds (similar to the structures of organic molecules that are the most typical in a sub-set of "inactives" in PASS training set).

2.6 PREPARATION OF KEY STARTING MATERIALS (KSM).

2.6.1 Synthesis of 6-chloro Uracil

Reaction Scheme-2.1: process for the preparation of 6-chlorouracil

2.6.2 Experimental procedure:

Sodiumhydroxide (27.3 g, 0.682 moles) was added 20 mL water and the solution was stirred for 30 min, 2,4,6 trichloropyrimidine (15.7 mL, 0.136 mol) was added to this solution the reaction mass mas heated to relux and the reaction mass was stirred for 2 hrs, the solution was cooled to 0-5°C and then the solution pH was adjusted to 1.90-2.20 by using 1:1 dilute HCl (100 mL), the precipitated product was isolated by filtration and

washed with hot water, and the product was dried under vacuum at 45-50°C, the title product was isolated as white colored solid 19.5 g. (98.0%, LC-MS m/z: 147.5 [M+H].

2.6.3 PROCESS OPTIMIZATION:

2.6.4 Solvent Screening

There are several solvents like DMSO, DMF, Toluene, 2-MeTHF, Water, methanol and ethanol have been tried to find the suitable solvents for the reaction, and we found that water giving good reaction conversion and low impurity formation, other solvents are giving less conversion and more impurity formation, so we have been chosen water as a solvent for the reaction.

Sr.No.	Base	Solvent	Remarks
1	NaOH	DMSO	Impurity formation
2	NaOH	DMF	Impurity formation
3	NaOH	Toluene	Impurity formation
4	NaOH	Water	Good conversion
5	NaOH	2 Me THF	No reaction
6	NaOH	Methanol	Impurity formation
7	NaOH	Ethanol	Impurity formation

Table: 2.1

2.6.5 Base Screening

There are several bases like NaOH, Na₂CO₃, K₂CO₃, KOH and TEA have been tried to find the suitable base for the reaction, and we found that NaOH and KOH giving good reaction conversion and low impurity formation, other bases are giving less conversion and more impurity formation, so we have been chosen NaOH as a base for the reaction.

Sr.No.	Base	Solvent	Remarks
1	NaOH	Water	Good Conversion
2	Na2CO3	Water	Less Conversion
3	K2CO3	Water	Less Conversion
4	КОН	Water	Good Conversion
5	TEA	Water	No Reaction

2.6.6 Mole equivalents screening

Mole equivalents of Base have been studied to find out optimum condition for the reaction conversion and it was observed that 3.0 mole equivalents of base give very good conversion and it was optimum condition for the reaction.

Sr.No.	Base	Solvent	Mole Equi.	Remarks
1	NaOH	Water	3.00	Good Conversion
2	NaOH	Water	4.00	Impurity formation
3	NaOH	Water	5.00	Impurty formation
4	NaOH	Water	2.00	Less Conversion
5	NaOH	Water	2.50	Less Reaction

Table:	2.3
--------	-----

2.6.7 Temperature Screening

The temperature range from 20°C to 100°C have been studied to find out suitable temperature for the reaction conversion, and it was found that reflux temperature gives

desirable conversion of reaction and yield so reflux temperature have been chosen for the reaction.

Sr.No.	Base	Solvent	Temp.	Remarks
1	NaOH	Water	100°C	Good reaction
2	NaOH	Water	90°C	Slow reaction
3	NaOH	Water	80°C	Slow reaction
4	NaOH	Water	70°	No Reaction
5	NaOH	Water	25°C	No Reaction

Table: 2.4

2.7 SYNTHESIS OF MOC-L-VALINE

Reaction Scheme-2.2: process for the preparation of Moc-L-Valine

2.7.1 EXPERIMENTAL PROCEDURE:

Took 645 mL of anhydrous tetrahydrofuran in 4 necked RBF and added L-Valine (0.213 mol) and stirred 20 min. to this obtained clear solution added NaHCO₃ (0.640 mol) in water (645 mL) and then added methylchloroformate (0.235 mol) and obtained reaction mass was stirred at room temperature 12 hrs. The reaction mixture was monitored by TLC, and solution pH was acidified to 3.0-3.50 by using with 1N HCl. Ethylacetate was added to the aqueous layer. The organic layers were dried over Na₂SO₄, filtered and removed sodium sulphate, solvent was distilled off under reduced pressure to give title compound as a white solid in 98% yield. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm) 8.50 (brs, 1H), 5.26 (brs, 1H), 4.33(m, 1H), 3.70 (s, 3H), 2.23 (m, 1H), 1.00 (d, J=7.00 Hz, 3H), 0.93 (d, J=7.00 Hz, 3H) and MS (ESI, EI+) m/z=176 (MH⁺).

2.7.2 Solvent Screening

There were several solvents have been studied for the suitable solvent for the reaction such as Water, DMF, Toluene, Me THF, Methanol and ethanol and we found that water gives good conversion for the reaction, so water have been chosed for the best solvent for the reaction and the results are listed below table.

Sr.No.	Base	Solvent	Remarks
1	NaHCO ₃	Water	Good conversion
2	NaHCO ₃	DMF	Impurity formation
3	NaHCO ₃	Toluene	Less Conversion
4	NaHCO ₃	2 Me THF	Less Conversion
5	NaHCO ₃	Methanol	Impurity formation
6	NaHCO ₃	Ethanol	Impurity formation

Table: 2.5

2.7.3 Base Screening

Bases like TEA, DIPEA, K2CO3, Na2CO3, NaOH, KOH, NaHCO3 has been studied for the reaction, when we are using strong bases like NaOH, KOH more impurity formation was observed, when using organic bases less conversion was observed, so we have been chosen weak and inorganic base sodiumbicarbonate have been chosen for the reaction.

Sr.No.	Base	Solvent	Remarks
1	TEA	Water	Less Conversion
2	DIPEA	Water	Less Conversion
3	K ₂ CO ₃	Water	Impurity formation
4	Na ₂ CO ₃	Water	Impurity formation
5	NaOH	Water	Impurity formation
6	КОН	Water	Impurity formation
7	NaHCO ₃	Water	Good conversion

Table: 2.6

2.7.4 Mole equivalents screening

Methylchloroformate mole equivalents have been studied to find out best mole equivalents for the best reaction condition, when less mole equivalent found that reaction did not complete and mole equivalents range from 1.10-1.25 gives good conversion, more than that not economical, so 1.10 mole equivalents of methylchloroformate was chose for the reaction.

Sr.No.	Base	Solvent	Mole Equi.	Remarks
1	NaHCO ₃	Water	1.10	Good conversion
2	NaHCO ₃	Water	1.15	Good conversion
3	NaHCO ₃	Water	1.25	Impurity formation
4	NaHCO ₃	Water	1.50	Impurity formation
5	NaHCO ₃	Water	1.00	Unreacted KSM
6	NaHCO ₃	Water	0.95	Unreacted KSM
7	NaHCO ₃	Water	0.90	Unreacted KSM

Table: 2.7

2.7.5 Temperature Screening

The temperature range from 0°C to 50°C have been studied and found that lower temperature reaction proceeded slow and higher temperature impurity formation was observed and the reaction proceeded well in room temperature (RT), so RT have been chosen for the reaction.

Sr.No.	Base	Solvent	Temp.	Remarks
1	NaHCO ₃	Water	20-25°C	Good reaction
2	NaHCO ₃	Water	0-5°C	Slow reaction
3	NaHCO ₃	Water	45-50°C	Impurity formation

Table: 2.8

32

2.8 SYNTHESIS OF 6-CHLORO-9H-PURIN-2-AMINE

Reaction Scheme-2.3: process for the preparation of 6-chloro-9H-purine-2-amine

2.8.1 EXPERIMENTAL PROCEDURE:

2.8.2 Preparation of 2,9-diacetylguanine (2b):

Took 1000 mL 4 necks RBF added 60 mL acetic acid followed guanine (2.5 g, 0.0165 moles) and added slowly acetic anhydride (30 mL) then the reaction mixture was stirred at 135° C for 7.5 hrs. The reaction progress was monitored by TLC, after completion of the reaction, distilled off the solvents under reduced pressure to obtained crude product, the obtained crude product was recrystallized from distilled water to give white powder (2-1, 3.7 g, yield 95%). m.p. $251 - 256^{\circ}$ C. H NMR (DMSO-d6) δ , 11.56 (s, 1H, OH), 8.15 (s, 1H, NH), 8.11 (s, 1H, CH), 2.16-2.50 (m, 6H, CH3). MS (70 eV) m/z 234.09 (M); MS m/z (%) 234.09 (M, 20), 192.12 (100), 150.08 (23). IR (KBr) 3200, 1680, 1530 cm-1. Analysis Calcd for C9H9N5O3: C, 45.93; H, 3.87; N, 29.76; O, 20.37. Found: C, 45.96; H, 3.86; N, 29.78; O, 20.41.

2.8.3 Preparation of 2-amino-6-chloropurine (2c):

Took 100 mL round bottom flask and added 10 mL dichlororethane followed by addition of 2,9-diacetylguanine (2.35 g, 0.010 moles) and PEG-2000 (4 g, 0.002 moles) then the reaction mixture was stirred 20-30 min. at 20-30°C followed by added slowly (dropwise) POCl₃ (5.4 g, 0.035 moles) then the reaction mass was stirred 30 min. at 20-30°C, the obtained reaction mixture was heated at 80°C and it was stirred 6hrs at 80°C then reaction progress was monitored by TLC after completion of reaction reaction mass was cooled to room temperature, the precipitated product was filtered off. The solvent was distilled off under redused pressure and the obtained residue was recrystallized from DMSO to give title compound a white powder (2, 1.42 g, yield 84%). m.p. 298-302°C. 1 H NMR (DMSO-d6), δ , 8.01 (m, 1H, CH), 6.75-6.79 (m, 3H, NH2 and NH). MS (70 eV) m/z 169.13 (M); Mass m/z (%) 169.13 (M), 151.20, 135.13, 116.84, IR Spectra (in KBr) 1636, 1292, 822, 630 cm⁻¹. Analysis Calcd for C5H4ClN5: C, 35.37; H, 2.34; Cl, 20.93; N, 41.29. Found: C, 35.41; H, 2.38; Cl, 20.91; N, 41.30.

2.8.4 OPTIMIZATION OF REACTION CONDITIONS:

2.8.5 Solvent Screening (compound 2c)

There were several solvents have been studied for the suitable solvent for the reaction such as MDC, EDC, Toluene, Me THF, THF, PEG-400, PEG-2000 and EDC: PEG-2000 mixture and we found that EDC: PEG-2000 mixture gives good conversion for the reaction, so mixture of EDC: PEG-2000 have been chosed for the best solvent for the reaction and the results are listed below table.

Sr.No.	Reagent	Solvent	Remarks
1	POCl ₃	MDC	Less conversion
2	POCl ₃	EDC	Good conversion
3	POCl ₃	Toluene	Less Conversion
4	POCl ₃	Me THF	Less Conversion
5	POCl ₃	THF	Impurity formation
6	POCl ₃	PEG 400	Impurity formation
7	POCl ₃	EDC: PEG 2000	Good conversion

Table: 2.9

2.8.6 Reagent Screening

The Chlorinating solvent POCl₃ and PCl₅ have been explored for the reaction and it was found that POCl3 gives good conversion and low impurity formation, so POCL3 chosed for the reaction.

Sr.No.	Reagent	Solvent	Remarks
1	POCl ₃	EDC: PEG 2000	Good conversion
2	PCl ₅	EDC: PEG 2000	Impurity formation

Table: 2.10

2.8.7 Mole equivalents screening

Mole equivalents of POCl3 range from 1.00 to 3.50 have been studied, Less mole equivalents shows less conversion while 3.00-3.50 mole equivalents gives good conversion and less impurities observed, so 3.00 mole equivalents chosen for the chlorination reaction.

Sr.No.	Reagent	Solvent	Mole Equi.	Remarks
1	POCl ₃	EDC: PEG 2000	3.00	Good conversion
2	POCl ₃	EDC: PEG 2000	3.50	Good conversion
3	POCl ₃	EDC: PEG 2000	4.50	Impurity formation
4	POCl ₃	EDC: PEG 2000	2.50	Impurity formation
5	POCl ₃	EDC: PEG 2000	1.00	Unreacted KSM

Table: 2.11

2.8.8 Temperature Screening

The temperature range from 60°C to 120°C have been studied and found that reaction proceeded well in the temperature range 80-90°C, higher temperature impurity formation was observed and low temperature reaction did not proceed or very slow so 80-90°C is the good temperature for the reaction.

Sr.No.	Reagent	Solvent	Mole Equi.	Temp.	Remarks
1	POCl ₃	EDC: PEG 2000	1.10	80-85°C	Good conversion
2	POCl ₃	EDC: PEG 2000	1.15	85-90°C	Good conversion
3	POCl ₃	EDC: PEG 2000	1.25	100°C	Impurity formation
4	POCl ₃	EDC: PEG 2000	1.50	120°C	Impurity formation
5	POCl ₃	EDC: PEG 2000	1.00	60-70°C	Unreacted KSM

Table: 2.12

2.9 SYNTHESIS OF (1R,3S,4S)-TERT-BUTYL 3-(5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2YL)-1H-BENZO[d]IMIDAZOL-2-YL)-2-AZA-BICYCLO[2.2.1]HEPTANE-2-CARBOXYLATE:

Reaction Scheme-2.4: process for the preparation of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate

2.9.1 EXPERIMENTAL PROCEDURE:

2.9.2 Preparation of (E)-ethyl 2-((R)-1-phenylethylimino) acetate (22):

Charged the 50% solution of ethylglyoxalate in toluene (50.00 gm, 0.4897 moles) in 400 mL MDC, the obtained solution was cooled to 0-5°C followed by added sodium sulphate and R-Phenyl ethyl amine (61.00 gm, 0.5033 moles) the obtained reaction mixture was agitated for 2 hrs at 0-5°C then filtered and removed sodium sulphate then the reaction mass was carry forwarded to next step without isolation.

2.9.3 Preparation of (1R, 3S, 4S)-ethyl 2-((R)-1-phenylethyl)-2-aza-bicyclo [2.2.1] hept-5-ene-3-carboxylate (23):

Charged 10.00 gm molecular 3°A sieves to the above reaction mass and cooled to -70 to -80°C and added trifluoroacetic acid (55.78 gm, 0.4892 moles) then the raction mass stirred 15 min at -80 to -70°C, added slowly BF3 etahrate (69.44 gm, 0.4892 moles)

followed by freshly cracked cyclopentadiene (33.30 gm, 0.5037 moles), then the reaction mass was stirred 1-2 hrs at -70 to -80°C, the reaction mass was monitored by TLC then raise reaction temperature to 20-30°C then added saturated sodium carbonate solution to brought pH 8.00-8.50 then the reaction mass was hold to separate layers and layer was separated out then the solvent was distilled off under reduced pressure to produce title compound.

2.9.4 Preparation of (1R,3S,4S)-ethyl 2-((R)-1-phenylethyl)-2-azabicyclo[2.2.1]heptane-3-carboxylate hydrochloride (24):

1000 mL methanol(10.0 volumes) was charged to the above residue followed by 10 ml (0.20 volumes) water was added followed by 10.00 gm of palladium hydroxide was added in to it (50% wet), the reactor was filled with 1.0 kg hydrogen pressure and reaction mass was stirred 1.0 hr at 25-35°C, after completion of reaction catalyst was separated by filtration, distilled out solvent completely under reduced pressure, then 200 mL acetone was added followed by addition of 35.% Con.HCl solution, the reaction mass was stirred to produce title compound.

2.9.5 Preparation of Ethyl (1R,3S,4S)-2-azabicyclo[2.2.1]heptane-3-carboxylate hydrochloride (26):

1000 mL methanol(10.0 volumes) was charged to the compound 3 followed by 10 ml (0.20 volumes) water was added followed by 10.00 gm of palladium hydroxide was added in to it (50% wet), the reactor was filled with 6-7kg hydrogen pressure and reaction mass was stirred 6 hrs at 25-35°C, after completion of reaction catalyst was separated by filtration, distilled out solvent completely under reduced pressure, then 200 mL acetone was added followed by 35.0% Con.HCl to the reaction mass and the reaction mass was stirred 3.0 hrs and filtered off to produce title compound.

2.9.6 Preparation of (1R,3S,4S)-tert-butyl ethyl 2-aza-bicyclo[2.2.1]heptane-2,3dicarboxylate (27):

Compound 6 was dissolved in 500 mL methanol and 100 mL water followed by addition of Sodium carbonate (62.00 gm, 0.5849 moles) and followed by addition of boc anhydride (36.50 gm, 0.1671 moles) at 10-20°C, the obtained reaction mixture was stirred 12.0 hrs at 20-30°C, reaction progress was monitored by TLC, after completion of reaction methanol was removed by distillation under reduced pressure, the product was partitioned with MDC and successively washed with water and distilled off solvent under reduced pressure to get title compound.

2.9.7 Preparation of (1R, 3S, 4S)-2-(tert-butoxycarbonyl)-2-azabicyclo[2.2.1]heptane-3-carboxylic acid (28):

Charged water 300 mL and sodium hydroxide (33.00 gm, 0.8250 moles) followed by addition of compound 7 and 300 mL THF, the reaction mixture heated to 50-60°C, the on mass was stirred 6 hrs at 50-60°C, then the THF was distilled off 300 mL MDC was added to the reaction mass followed by addition of dilute HCl solution to bring the pH: 3.50-4.00 then the reaction mass was stirred 40 min at room temperature, then reaction mixture was washed with water separated out organic layer then distilled off the solvent under reduced pressure and 150 mL cyclohexane was added in to it, the mixture was stirred 8 hrs at 20-30°C, the precipitated product was isolated by the filtration to produce title compound 30.0 gm.

2.9.8 Preparation of (1R,3S,4S)-tert-butyl 3-(2-amino-5-bromophenylcarbamoyl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate (9) and (1R,3S,4S)-tert-butyl 3-(2amino-4-bromophenylcarbamoyl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate (30):

50 gm of compound 8 dissolved in 500 mL of ethy acetate carbonyldiimidazole (CDI) (40.33 gm, 0.2486 moles) was added in to it, the reaction mass stirred 1 hrs at 20-30°C

under nitrogen atmosphere, then charged 4-bromobenzene-1,2-diamine (40.70 gm, 0.2176 moles) and the reaction mass was stirred 1 hrs at 25-35°C, the reaction progress was monitored by TLC, and water was added in to it, organic layer was separated out then organic layer was washed with water, solvent removed by distillation under reduced pressure to afford title compound 76.52 gm, (90.00% yield).

2.9.9 Preparation of (1R,3S,4S)-tert-butyl 3-(5-bromo-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate (31) :

Compound 9 and 10 mixture (70.00 gm, 0.1706 moles) was added in 490 mL ethylacetate followed by 105 mL acetic acid the reaction mixture heated in to reflux then continued refflux till reaction completion water added after reaction completed ethylacetate layer was distilled off and the precipitated product was isolated by filtration and affored a white solid (63.57 gm, 95.0%).

2.9.10 Preparation of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (32):

Palladium chloride (1.88 gm, 0.0160 moles) was suspended in 500 ml 2Me THF followed by triphenyl phosphine (6.31 gm, 0.0240 moles) then the reacton mass was stirred under nitrogen atmoshphereandCompound 11 (63 gm, 0.1605 moles) followed by potassium acetate (39.33 gm, 0.4008 moles) followed by addition of Bis(pinacolato)diboron (44.85 gm, 0.1766 moles), this reaction mass was heated into reflux and continued reflux till reaction completion, after reaction completion water was added in to it, organic layer was distilled off and acetonitrile 190 ml was added in to it, desire product was isolated by filtration as a white solid (62.80 gm, 89.5%).

2.9.11 OPTIMIZATION OF REACTION CONDITIONS:2.9.12 Solvent Screening for preparation of Compound-22:

There were several solvents have been studied for the suitable solvent for the reaction such as MDC, Ethylacetate, Toluene, Methanol and IPA and we found that MDC and Toluene gives good progress for the reaction, and MDC give little less impurity formation compare with toluene, so MDC have been chosed for the reaction solvent.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	Toulene	1.03	0-5°C	Good conversion
2	MDC	1.03	0-5°C	Good conversion
3	Ethylacetate	1.03	0-5°C	Impurity formation
4	Methanol	1.03	0-5°C	Impurity formation
5	Isopropyl alcohol	1.03	0-5°C	Impurity formation

Table: 2.13

2.9.13 Mole Equivalents Screening of R-Phenylethylamine for preparation of Compound-22:

Mole equivalents of R-phenylethylamine have been studied from range of 0.80 to 1.30 have been studied, Less mole equivalents shows less conversion while 1.03 mole equivalents gives good conversion and less impurities observed, so 1.03 mole equivalents chosen for the reaction.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	MDC	1.03	0-5°C	Good conversion
2	MDC	1.03	0-5°C	Reaction did not completed
3	MDC	1.03	0-5°C	Reaction did not completed
4	MDC	1.03	0-5°C	Impurity formation
5	MDC	1.03	0-5°C	Impurity formation

Table: 2.14

2.9.14 Temperature screening for preparation of Compound-22:

The temperature range from -10° C to 25° C have been studied and found that reaction proceeded well in the temperature range $0-10^{\circ}$ C, higher temperature impurity formation was observed and low temperature reaction very slow so $0-10^{\circ}$ C is the optimum temperature for the reaction.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	MDC	1.03	0-5°C	Good conversion
2	MDC	1.03	-5 to -10°C	Long time
3	MDC	1.03	5-10°C	Good conversion
4	MDC	1.03	10-15°C	Impurity formation
5	MDC	1.03	20-25°C	Impurity formation

Table: 2.1	15
------------	----

2.9.15 Solvent Screening for preparation of Compound-23:

There were several solvents have been studied for the suitable solvent for the reaction such as MDC, Ethylacetate and Toluene have been studied to find the good solvent for the reaction and it was found that MDC gives good conversion and less impurity formation, so MDC have been chosed for the reaction solvent.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	Toulene	1.03	0-5°C	Impurity formation
2	MDC	1.03	0-5°C	Reaction proceeded well
3	Ethylacetate	1.03	0-5°C	Impurity formation

Table: 2.16

2.9.16 Mole Equivalents Screening of BF₃ etharate for preparation of Compound-23:

Mole equivalents of cyclopentadiene have been studied from range of 0.90 to 1.20 have been studied, Less mole equivalents shows less conversion while 1.00 mole equivalents gives good conversion and less impurities observed, so 1.00 mole equivalents chosen for the diels-alder reaction.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	MDC	1.00	0-5°C	Good conversion observed
2	MDC	0.95	0-5°C	Reaction did not completed
3	MDC	0.90	0-5°C	Reaction did not completed
4	MDC	1.10	0-5°C	Impurity formation
5	MDC	1.20	0-5°C	Impurity formation

2.9.17 Mole Equivalents Screening of Cyclopentadiene for preparation of Compound-23:

Mole equivalents of BF_3 have been studied from range of 0.90 to 1.20 have been studied, Less mole equivalents shows less conversion while 1.03 mole equivalents gives good aconversion and less impurities observed, so 1.03 mole equivalents chosen for the reaction.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	MDC	1.03	-70 to -80°C	Good conversion observed
2	MDC	0.95	-70 to -80°C	Reaction did not completed
3	MDC	0.90	-70 to -80°C	Reaction did not completed
4	MDC	1.10	-70 to -80°C	Impurity formation
5	MDC	1.20	-70 to -80°C	Impurity formation

Table: 2.18

2.9.18 Temperature screening for preparation of Compound-23:

The temperature range from -80° C to 25° C have been studied and found that reaction proceeded well in the temperature range -70 to -80° C, higher temperature impurity formation was observed and low not studied so -70 to -80° C is the optimum temperature for the reaction.

Sr.No.	Solvent	Mole Equi.	Temp.	Remarks
1	MDC	1.00	-70 to -80°C	Good conversion
2	MDC	1.00	-50 to -40°C	Impurity formation
3	MDC	1.00	-5 to-10°C	Impurity formation
4	MDC	1.00	10-15°C	Impurity formation
5	MDC	1.00	20-25°C	Impurity formation

Table: 2.19

2.9.19 Solvent Screening for preparation of Compound-24:

There were several solvents have been studied for the suitable solvent for the reaction such as Methanol, Ethanol, Acetic acid, water, and Con.HCL have been studied to find the suitable solvent for the hydrogenation reaction and it was found that Methanol gives good conversion and less impurity formation , so Methanol have been chosen for the reaction solvent.

Sr.No.	Solvent	Cat. w/w	Temp.	Remarks
		Pd(OH) ₂		
1	Methanol	20%	25-35°C	Reaction proceeded well
2	Ethanol	20%	25-35°C	Less conversion than MeOH
3	Water	20%	25-35°C	Very few conversion
4	Acetic acid	20%	25-35°C	Impurity formation
5	Con.HCl	20%	25-35°C	Impurity formation

Table: 2.20

Table: 2.202.9.20 Catalyst screening for preparation of Compound-24:

Reduction catalyst such as palladium on carbon, palladium hydroxide and Raney nickel have been studied to find out suitable catalyst for the hydrogenation reaction, palladium hydroxide give very good conversion in readuction reaction followed by debenzylation reaction also, so palladium hydroxide have been chosen for the reaction.

Sr.No.	Solvent	Cat.	Temp.	Remarks
1	Methanol	Pd/C	25-35°C	Reaction proceeded well
2	Methanol	Pd(OH)2	25-35°C	Reaction proceeded well
3	Methanol	Raney Ni	25-35°C	No conversion

 Table: 2.21

 2.9.21 Temperature screening for preparation of Compound-24:

The temperature range from 10°C to 45°C have been studied and found that reaction proceeded well in the temperature range 30 to 45°C, higher temperature impurity formation was observed and low temperature reaction very very slow, so optimum temperature 25-35°C chosen for the reaction.

Sr.No.	Solvent	Cat. w/w	Temp.	Remarks
		Pd(OH) ₂		
1	Methanol	20%	25-35°C	Reaction proceeded well
2	Methanol	20%	35-45°C	Reaction proceeded
3	Methanol	20%	20-25°C	Reaction takes Long time
4	Methanol	20%	10-15°C	Reation very slow

Table: 2.22

2.9.22 Solvent Screening for preparation of Compound-27:

There were several solvents have been studied for the suitable solvent for the reaction such as Methanol, Ethanol, THF, water, and Toluene have been studied to find the suitable solvent for the reaction and it was found that Methanol gives good conversion and less impurity formation, so Methanol have been chosen for the reaction solvent.

Sr.No.	Solvent	Boc anhydride	Base	Temp.	Remarks
		Mole.equi.			
1	Methanol	2.0	Na ₂ CO ₃	20-30°C	Reaction proceeded well
2	Ethanol	2.0	Na ₂ CO ₃	20-30°C	Less conversion than MeOH
3	Water	2.0	Na ₂ CO ₃	20-30°C	Less conversion
4	THF	2.0	Na ₂ CO ₃	20-30°C	Reaction proceeded well
5	Toluene	2.0	Na ₂ CO ₃	20-30°C	Reaction not proceeded

2.9.23 Catalyst screening for preparation of Compound-25:

Reduction catalyst such as palladium on carbon, palladium hydroxide and Raney nickel have been studied to find out suitable catalyst for the hydrogenation reaction, palladium hydroxide give very good conversion in debenzylation reaction followed by debenzylation reaction also, so palladium hydroxide have been chosen for the reaction.

Sr.No.	Solvent	Cat.	Temp.	Remarks
1	Methanol	Pd/C	25-35°C	Reaction proceeded well
2	Methanol	Pd(OH)2	25-35°C	Reaction proceeded well
3	Methanol	Raney Ni	25-35°C	No conversion

Table: 2.24

2.9.24 Temperature screening for preparation of Compound-25:

The temperature range from 10°C to 45°C have been studied and found that reaction proceeded well in the temperature range 30 to 45°C, higher temperature impurity formation was observed and low temperature reaction very very slow, so optimum temperature 25-35°C chosen for the reaction.

Sr.No.	Solvent	Cat. w/wPd(OH) ₂	Temp.	Remarks
1	Methanol	20%	25-35°C	Reaction proceeded well
2	Methanol	20%	35-45°C	Reaction proceeded
3	Methanol	20%	20-25°C	Reaction takes Long time
4	Methanol	20%	10-15°C	Reation very slow

Tabl	e:	2.	25
1 ani	е.	4.	

2.9.25 Solvent Screening for preparation of Compound-27:

There were several solvents have been studied for the suitable solvent for the reaction such as Methanol, Ethanol, MDC, water, and Ethylacetate have been studied to find the suitable solvent for the reaction and it was found that Methanol gives good conversion and less impurity formation, so Methanol have been chosen for the reaction solvent.

Sr.No.	Solvent	Na ₂ CO ₃ Mol.equi.	Temp.	Remarks
1	Methanol	3.0	25-30°C	Reaction proceeded well
2	Ethanol	3.0	25-30°C	Less conversion than MeOH
3	Water	3.0	25-30°C	Less conversion
4	MDC	3.0	25-30°C	Less conversion
5	Ethylacetate	3.0	25-30°C	Less conversion

Table: 2.26

2.9.26 Base Screening for preparation of Compound-27:

Bases like Na2CO3, NaOH, KOH, NaHCO3 and TEA has been studied for the reaction, when we are using strong bases like NaOH, KOH more impurity formation was

observed, when using organic bases less conversion was observed, so we have been chosen sodium carbonat for the reaction.

Sr.No.	Solvent	Base	Temp.	Remarks
1	Methanol	Na ₂ CO ₃	25-35°C	Reaction proceeded well
2	Methanol	NaHCO ₃	25-35°C	Reaction proceeded well but less conversion than Na ₂ CO ₃
3	Methanol	NaOH	25-35°C	Impurity formation
4	Methanol	КОН	25-35°C	Impurity formation
5	Methanol	TEA	25-35°C	Less Conversion

Table: 2.27

2.9.27 Bc₂O mole equi. Screening for preparation of Compound-27:

Mole equivalents of cyclopentadiene have been studied from range of 2.50 to 3.50 have been studied, reaction proceeded very well in the range of 3.00 to 3.50 so 3.00 mole equivalents chosen for the diels-alder reaction.

Sr.No.	Solvent	Na ₂ CO ₃ Mol.equi.	Temp.	Remarks
1	Methanol	3.00	25-30°C	Reaction proceeded well
2	Methanol	2.75	25-30°C	Reaction not complted
3	Methanol	2.50	25-30°C	Reaction not complted
4	Methanol	3.25	25-30°C	Reaction proceeded well
5	Methanol	3.50	25-30°C	Reaction proceeded well

Table: 2.28

2.9.28 Temperature screening for preparation of Compound-27:

The temperature range from 10°C to 45°C have been studied and found that reaction proceeded well in the temperature range 30 to 45°C, higher temperature impurity formation was observed and low temperature reaction very slow, so optimum temperature 25-35°C chosen for the reaction.

Sr.No.	Solvent	Bc ₂ O	Temp.	Remarks
1	Methanol	3.00	25-35°C	Reaction proceeded well
2	Methanol	3.00	35-45°C	Reaction proceeded
3	Methanol	3.00	20-25°C	Reaction takes Long time
4	Methanol	3.00	10-15°C	Reation very slow

2.9.29 Solvent Screening for preparation of Compound-28:

There were several solvents have been studied for the suitable solvent for the reaction such as Methanol, Ethanol, IPA, water, and THF have been studied to find the suitable solvent for the reaction and it was found that Methanol gives good conversion and less impurity formation, so Methanol have been chosen for the reaction solvent.

Sr.No.	Solvent	NaOH Mol.equi.	Temp.	Remarks
1	Water	1.50	50-60°C	Reaction proceeded well
2	THF	1.50	50-60°C	Less conversion than MeOH
3	Isopropyl alcohol	1.50	50-60°C	Less conversion
4	Methanol	1.50	50-60°C	Less conversion
5	Ethanol	1.50	50-60°C	Less conversion

Table: 2.30

2.9.30 Base Screening for preparation of Compound-28:

Bases like NaOH, KOH and LiOH have been studied for the reaction, reaction proceeded well in NaOH, so we have been chosen sodium hydroxide for the reaction.

Sr.No.	Solvent	Base	Temp.	Remarks
1	Water: THF	NaOH	50-60°C	Reaction proceeded well
2	Water: THF	КОН	50-60°C	Less conversion than MeOH
3	Water: THF	LiOH	50-60°C	Less conversion

Table:	2.31
--------	------

Table: 2.31

2.9.31 NaOH mole equi. Screening for preparation of Compound-28:

The mole equivalents of NaOH have been studied from the range of 1.00 - 2.50 mole equivalents and the reaction proceeded well and less impurity formation was observed at 1.50-2.00 mole equivalents, so 1.50 equivalents have been chosen for the reaction.

Sr.No.	Solvent	Na2CO3Mol.equi.	Temp.	Remarks
1	Water: THF	1.50	25-30°C	Reaction proceeded well
2	Water: THF	2.00	25-30°C	Reaction proceeded well
3	Water: THF	2.50	25-30°C	Impurity formation observed
4	Water: THF	1.00	25-30°C	Reaction not complted

Table: 2.32

2.9.32 Temperature screening for preparation of Compound-28:

The temperature range from 20°C to 70°C have been studied and found that reaction proceeded well in the temperature range 50 to 60°C, higher temperature impurity formation was observed and low temperature reaction very slow, so optimum temperature 50-60°C chosen for the reaction.

Sr.No.	Solvent	NaOH mole.equi.	Temp.	Remarks
1	Water: THF	1.50	50-60°C	Reaction proceeded well
2	Water: THF	1.50	35-45°C	Reaction takes Long time
3	Water: THF	1.50	65-70°C	Impurity formation
4	Water: THF	1.50	20-30°C	No Reation

	Table: 2.33	
2.9.33	Solvent Screening for preparation of Compound-29 and 30:	

There were several solvents have been studied for the suitable solvent for the reaction such as Ethylacetate, Toluene, MDC, DMF and DMSO have been studied to find the suitable solvent for the reaction and it was found that ethylacetate gives good conversion and less impurity formation, so Ethylacetate have been chosen for the reaction solvent.

Sr.No.	Solvent	CDI	13	Temp.	Remarks
		Mol.equi.	Mol.equi.		
1	Ethylacetate	1.20	1.05	20-35°C	Reaction proceeded well
2	Toluene	1.20	1.05	20-35°C	Less conversion
3	MDC	1.20	1.05	20-35°C	Reaction proceeded well
4	DMF	1.20	1.05	20-35°C	Impurity formation observed
5	DMSO	1.20	1.05	20-35°C	Impurity formation observed

Table: 2.33

2.9.34 Coupling reagent screening for preparation of Compound-29 and 30:

Amino acid coupling reagents like CDI, EDC,HOBt and DCC have been studied to find out suitable reagent for the aminoacid coupling reaction and it was found that reaction proceeded well in CDI(carbonyl diimidazole), so CDI have been chosen for the reaction.

Sr.No.	Solvent	Reagent	CDI	Temp.	Remarks
			Mol.equi.		
1	Ethylacetate	CDI	1.05	20-35°C	Reaction proceeded well
2	Ethylacetate	EDC, HOBt	1.05	20-35°C	Less conversion
3	Ethylacetate	DCC	1.05	20-35°C	Reaction proceeded

Table: 2.34

2.9.35 CDI mole equi. Screening for preparation of Compound-29 and 30:

The mole equivalents of CDI have been studied from the range of 0.90-1.50 mole equivalents and the reaction proceeded well and less impurity formation was observed at 1.20 mole equivalents, so 1.20 equivalents have been chosen for the reaction.

Sr.No.	Solvent	CDI	13	Temp.	Remarks
		Mol.equi.	Mol.equi.		
1	Ethylacetate	1.20	1.05	25-30°C	Reaction proceeded well
2	Ethylacetate	1.10	1.05	25-30°C	Reaction proceeded well

3	Ethylacetate	0.90	1.05	25-30°C	Reaction not complted
4	Ethylacetate	1.50	1.05	25-30°C	Impurity formation observed

2.9.36 13 mole equivalents screening for preparation of Compound-29 and 30:

The mole equivalents of CDI have been studied from the range of 0.95-1.50 mole equivalents and the reaction proceeded well and less impurity formation was observed at 1.05-1.50 mole equivalents, so 1.05 equivalents have been chosen for the reaction.

Sr.No.	Solvent	13	Temp.	Remarks
		mole.equi.		
1	Ethylacetate	1.05	20-35°C	Reaction proceeded well
2	Ethylacetate	1.15	20-35°C	Reaction proceeded well
3	Ethylacetate	1.50	20-35°C	Impurity formation
4	Ethylacetate	0.95	20-35°C	Reaction not completed

2.9.37 Temperature screening for preparation of Compound-29 and 30:

The temperature range from 20°C to 70°C have been studied and found that reaction proceeded well in the temperature range 50 to 60°C, higher temperature impurity formation was observed and low temperature reaction very very slow, so optimum temperature 50-60°C chosen for the reaction.

Sr.No.	Solvent	CDI mole.equi.	13mole.equi.	Temp.	Remarks
1	Ethylacetate	1.20	1.05	20-35°C	Reaction proceeded well
2	Ethylacetate	1.20	1.15	20-35°C	Reaction proceeded well
3	Ethylacetate	1.20	1.50	20-35°C	Impurity formation
4	Ethylacetate	1.20	0.95	20-35°C	Reaction not completed

Table: 2.38

2.9.38 Solvent Screening for preparation of Compound 31:

There were several solvents have been studied for the suitable solvent for the reaction such as Ethylacetate, Toluene, MDC and Acetic acid have been studied to find the suitable solvent for the reaction and it was found that ethylacetate gives good conversion and less impurity formation, so Ethylacetate have been chosen for the reaction solvent.

Sr.No.	Solvent	Acetic acid vol.	Temp.	Remarks
1	Ethylacetate	1.00	65-75°C	Reaction proceeded well
2	Toluene	1.00	65-75°C	Impurity formation
3	MDC	1.00	30-40°C	Reaction takes long timel
4	Acetic acid	1.00	65-75°C	Rection proceeded well

Table: 2.39

2.9.39 Cyclization reagent screening for preparation of Compound 31:

For the cyclization reaction, reagents like Acetic acid, PTSA and POCl₃ have been studied and found that acetic acid is the good solvent for cyclization reaction due to good conversion and easy handling and low cost.

Sr.No.	Solvent	Reagent	Volumes	Temp.	Remarks
1	Ethylacetate	Acetic acid	1.00	65-75°C	Reaction proceeded well
2	Ethylacetate	PTSA	1.50 equi.	65-75°C	Less conversion
3	Ethylacetate	POCl ₃	1.50 equi.	65-75°C	Reaction proceeded

Table: 2.40

2.9.40 Acetic acid voume screeningfr preparation of Compound 31:

Volumes of acetic acid have been studied for cyclization reaction and reaction proceeded well from 1.0 volume to 2.0 volumes, so 1.0 volume of acetic acid chosen for the cyclization reaction.

Sr.No.	Solvent	Acetic acid vol.	Temp.	Remarks
1	Ethylacetate	1.00	65-75°C	Reaction proceeded well
2	Ethylacetate	1.50	65-75°C	Reaction proceeded well

3	Ethylacetate	2.00	65-75°C	Reaction proceeded well
4	Ethylacetate	0.50	65-75°C	Reaction not completed

Table: 2.41

2.9.41 Temperature screening for preparation of Compound 31:

The temperature range from 45°C to reflux have been studied and found that reaction proceeded well in the reflux temperature so reflux temperature chosen for the reaction.

Sr.No.	Solvent	Acetic acid vol.	Temp.	Remarks
1	Ethylacetate	1.00	65-75°C	Reaction proceeded well
2	Ethylacetate	1.00	Reflux	Reaction proceeded well
3	Ethylacetate	1.00	60-70°C	Little slow reation
4	Ethylacetate	1.00	45-55°C	Very slow reaction

Table: 2.42

2.9.42 Solvent Screening for preparation of Compound 32:

There were several solvents have been studied for the suitable solvent for the reaction such as ME THF, THF, Toluene, 1.4 dioxan and 2 methoxy ethane have been studied to find the suitable solvent for the reaction and it was found that Me THF gives good conversion and less impurity formation, so Me THF have been chosen for the reaction solvent.

Sr.	Solvent	(pinB) ₂	PdCl ₂	PPh ₃	Temp.	Remarks
No.		Mole.	Mole.	Mole.		
		Equi.	Equi.	Equi.		
1	2Me THF	1.20	0.03	0.06	Reflux	Reaction proceeded well
2	THF	1.20	0.03	0.06	Reflux	Reaction proceeded well
3	Toluene	1.20	0.03	0.06	Reflux	Impurity formation observed
4	1,4 Dioxane	1.20	0.03	0.06	Reflux	Impurity formation observed
5	2-Methoxyethane	1.20	0.03	0.06	Reflux	Impurity formation observed

Table: 2.43

2.9.43 (pin B)₂ mole.equivqlents screening for preparation of Compound 32:

The mole equivalents of $(pinB)_2$ have been studied from the range of 0.90-1.30 mole equivalents and the reaction proceeded well and less impurity formation was observed at 1.20-1.30 mole equivalents, so 1.20 equivalents have been chosen for the reaction.

Sr.	Solvent	(pinB) ₂	PdCl ₂	PPh ₃	Temp.	Remarks
No.		Mole.	Mole.	Mole.		
		Equi.	Equi.	Equi.		
1	2Me THF	1.20	0.03	0.06	Reflux	Reaction proceeded well
2	2Me THF	1.30	0.03	0.06	Reflux	Reaction proceeded well
3	2Me THF	1.10	0.03	0.06	Reflux	Reaction not cmpleted
4	2Me THF	0.95	0.03	0.06	Reflux	More unreacted starting material observed
5	2Me THF	0.90	0.03	0.06	Reflux	More unreacted starting material observed

Table: 2.44

2.9.44 PdCl₂ and PPh₃ mole equi. Screening for preparation of Compound 32:

The mole equivalents of $PdCl_2$ and PPh_3 have been studied from the range of 0.01, 0.02-0.075, 0.15 mole equivalents and the reaction proceeded well and less impurity formation was observed at 0.03, 0.06-0.075, 0.15 mole equivalents, so 0.06 mole equivalents of $PdCl_2$ and 0.06 mole equivalents of PPh_3 have been chosen for the reaction.

Sr.	Solvent	(pinB)2Mole.	PdCl ₂ Mole.	PPh ₃ Mole.	Temp.	Remarks
No.		Equi.	Equi.	Equi.		
1	2Me THF	1.20	0.03	0.06	Reflux	Reaction proceeded well
2	2Me THF	1.30	0.05	0.10	Reflux	Reaction proceeded well
3	2Me THF	1.10	0.075	0.15	Reflux	Reaction proceeded well
4	2Me THF	0.95	0.015	0.03	Reflux	More SM observed
5	2Me THF	0.90	0.01	0.02	Reflux	More SM observed

Table: 2.45

2.9.45 Base screening for preparation of Compound 32:

The bases like KOAc, NaOH, Na₂CO₃, TEA and NaHCO₃ have been studied for the reaction and it was found that in KOAc reaction proceeded well, so KOAc have been chosen for the reaction.

Sr.	Solvent	(pinB)2Mole	PdCl ₂ Mole	PPh ₃ Mole	Base	Temp.	Remarks
No.		Equi.	Equi.	Equi.			
1	2Me THF	1.20	0.03	0.06	KOAc	Reflux	Proceeded well
2	2Me THF	1.20	0.03	0.06	NaOH	Reflux	Impurity formation
3	2Me THF	1.20	0.03	0.06	Na ₂ CO ₃	Reflux	Not completed
4	2Me THF	1.20	0.03	0.06	TEA	Reflux	Impurity formation
5	2Me THF	1.20	0.03	0.06	NaHCO ₃	Reflux	Less Conversion

Table: 2.46

2.9.46 Temperature screening for preparation of Compound 32:

The temperature range from 35°C to reflux have been studied and found that reaction proceeded well in the reflux, so reflux temperature chosen for the reaction.

Sr.	Solvent	(pinB) ₂	PdCl ₂ Mole	PPh ₃ Mole	Base	Temp.	Remarks
No.		Mole.Equi.	Equi.	Equi.			
1	2Me THF	1.20	0.03	0.06	KOAc	Reflux	Reaction proceeded well
2	2Me THF	1.20	0.03	0.06	KOAc	65-70°C	Very less conversion
3	2Me THF	1.20	0.03	0.06	KOAc	50-60°C	No reaction
4	2Me THF	1.20	0.03	0.06	KOAc	35-45°	No reaction

Table: 2.47

3. PREPARATION OF URACIL BASED MOLECULES

Cancer is abnormal growth of normal cells and it has a potential to spread all over the body, Developed and under developed countries are affected by cancer and it has more leading disease causes of death. Although, there are several anticancer drugs (anti-neoplastic agents or chemotherapeutic agents) are available in the market such as cisplatin, 5-fluorouracil, taxol, procarbazine, carmustine etc, for the treatment of cancer and till we do not have any drugs that can treat cancer effectively at late stages and most of the drugs are having many side effects [67-71]. The presently available anticancer agents in the markets are having serious side effects, low bioavailability and also having poor solubility, narrow therapeutic windows and intensive cytotoxicities to normal tissues [72-76]. Some anticancer drugs are less effective [77-80] due to poor solubility.

Uracil and its derivatives are considered as a one the most important and privileged structures in drug discovery with broad topics of biological activities and synthetic accessibility. Antitumor and Anitiviral are most widely reported activities of uracil derivatives. Even though some other activities were reported such as bactericidal, herbicidal and insecticidal. Their antiviral potential is based on the inhibition of a key step in viral replication pathway resulting in potent activities against HIV, hepatitis B and C, the herpes viruses and so forth. 5-Fluorouracil or 5-chlorouracil was the first pharmacological active uracil derivatives [81-90]. Recently, chemists paid more attention towards uracil analogues, some pharmacologically important analogues are shown in Fig 3.1. In the development of derivatives possessing better pharmacological and pharmacokinetic properties (increased bioactivity, selectivity, metabolic stability, absorption, and lower toxicity) many modifications of uracil have been performed so for to tackle toxicity problems. Researches of new uracil derivatives and fused uracil derivatives as bioactive agents relate to modifications of substituents at different positions of the pyrimidine ring [91]. Besides, some anticancer drugs which are available in the market are having some issues such as higher cost [92] low solubility and low bioavailability these issues are making them less effective [93-95]. Therefore, today we

need new anticancer agents [96] to treat different type of cancers with high solubility and high bioavailability.

Such an important drug molecules are not available affordable cost to the patient and all available literature shows that hazardous chemicals have been used for the preparation of target molecules and it was reported lower yield these drawbacks leads to higher cost and danger to environment and infrastructure.

3.1 PREPARATION OF URACIL BASED MOC-L-VALINE DERIVATIVES

To overcome all those drawbacks the effort were made to carry out the reactions with simple and cheaply available raw materials, reagents and less usage of solvents to avoid isolation steps to produced targeted molecules.

To prepare target molecules we have been developed an efficient and simple protocol has been developed in this protocol.

In one pot synthesis organic reactions one solvent have been used in many steps [97], so chemist are attracted by one pot synthesis. Because these reactions are of low cost, environment friendly and produces maximum yield of products and are gives insights into green chemistry .The reduction of by products, waste, energy and cost green chemistry approaches are significant. Due to enhance their efficiency, from an economical and from an ecological consideration, performing multistep reaction under one pot are much important. New heterocyclic compounds synthesis has always been a subject of great interest due to their wide applications in synthetic chemistry as well as in biological world. Because, heterocyclic compounds occur vary widely in nature and are essential to life. Amongst, heterocyclic compounds containing uracil moiety are interesting due to some pharmacological and biological activities. Uracil and its derivatives are the important key starting material for the preparation of many organic molecules, drug substances and drug intermediates [92-94]. Primary bowel cancer [95]and cancers are treated by chemotherapy drug Tegafur-uracil. Thus, the important and useful task in organic chemistry is to preparation new uracil derivatives. In recent

years, the synthesis of uracil derivatives has been reported. In continuation of all the aspects available in literature, the efforts were made to explore new protocol for the development of low cost and one pot synthesis of uracil derivatives. Besides, the experimental and theoretical DNA binding studies were also carried out to find out the binding affinity and modes of various compounds with calf thymus-DNA. The results are given herein.

3.1 **RESULTS AND DISCUSSION:**

3.1.1 Chemistry

The synthesis of the target uracil derivatives was performed according to Scheme 3.1. A simple and successful protocol has been developed for synthesis of uracil derivatives. It should be noted that in the available literature, generally sodium hydride in dimethyl formamide have been used during the alkylation (methylation) reactions which is highly dangerous in the context of safety, environment pollutant and it also results poor yield, impure compounds. In our simple protocol, we used low cost, eco-friendly and safe, inorganic base potassium carbonate in dimethyl formamide solvent in one pot during four steps which is one of the major advantages of our protocol. In addition, we got higher percentage yields of products. Initially, we have synthesized N-substituted uracil analogues in high yields by simple N-alkylation reactions of 4-chlorouracil with different halogenated benzyl halides and methyl iodide respectively, under catalyst free conditions in DMF solvent. Then the chlorine atoms of N-substituted uracil derivatives were substituted with piperazine and 4-aminopiperidine, respectively. In the last step, under similar conditions in same solvent amino acid coupling reactions were done in presence of coupling reagent HATU (1-bis(dimethylamino)methylene-1H-1,2,3-triazolo[4,5b]pyridinium-3-oxid hexafluorophosphate) for the formation of target compounds A-L.The whole synthesis has been done in one solvent in one pot that results the reduction of industrial waste, effluent generation and good yields of final products(49-60%). A reasonable reaction mechanism for the formation of uracil derivatives is shown in Scheme 3.1.
The reaction conditions were optimized using various solvents, bases. The yields ranged from 49 to 60%. A perusal of these indicates that the DMF and inorganic base was the best one; resulting in higher yield and best conversion. During the optimization of organic and inorganic bases were used. It was observed that during organic bases, the reaction was completed at faster rate, but less conversion was observed. The percentage of yield was increased while using inorganic bases under DMF solvent. Hence, throughout the reactions potassium carbonate as base and DMF as solvent were used.

The analytical and spectroscopic data's were well supported for the proposed structures of **A-L**. The compounds **A-L** were found as solids, stable to air, good yields and quite soluble in ethylacetate, methanol, ethanol, chloroform, DMSO, DMF. The characteristic signal from the CH₃N- group in the ¹H NMR spectrum was observed as singlet at ~ 2.90-3.10 ppm, alkenic proton of uracil ring CH- was observed at 5.00-5.35 ppm, benzylic proton -CH at 4.86-5.37 ppm, aromatic protons Ar-H appeared in the range of 7.00-8.10 ppm, piperazine protons resonates at 1.50-3.80 ppm, methyl protons appeared in the range of 2.90-3.40 ppm, and methoxy protons -OCH₃ appeared in the range of 3.40-3.75 ppm. The ¹H NMR and Mass spectra of target compounds (A-L) are shown in Fig. 3.1. Elemental analysis data's and ESI-Mass spectroscopic data are well supported for the compositions of the synthesized compounds. The mass spectra of A-L showed the peaks at m/z values of 490.24, 490.24, 490.24, 517.23, 472.24, 552.16, 476.23, 476.23, 538.15, 458.23, 503.22 and 476.23 corresponding toA, B, C, D, E, F, G, H, I, J, K and L. The HR-mass spectra of target compounds **A-L** are given in Fig. 3.1.

Scheme 3.1.A novel synthesis of uracil derivatives. Reagents and conditions: (a) K_2CO_3/DMF , Stirring, R.T, 8 hrs(b) K_2CO_3/DMF , CH_3I , R.T,24 hrs (c) $K_2CO_3/DMF/3$ -aminopiperidine,heat, 80 °C, 8 hrs (d) $K_2CO_3/DMF/Piperazine$, heat, 80 °C, 8 hrs (e) HATU, TEA, Moc-L-Valine/DMF, R.T, 20 min.

Scheme 3.2. Proposed mechanism for the synthesis of uracil derivatives.

Halogenated benzyl halides	Product	Yield (%)	Halogenated benzyl halides	Product	Yield (%)
F		57	F		52
F Br		51	O ₂ N Br	D	59
Br		49	Br	Br HN O F	56

Table-3.1: The chemical structures of initial and final coupled products.

3.2 DNA BINDING

Exposure to radiations, chemicals, endogenous free radicals etc. leads to DNA damage which is ultimately a common cause of premature aging, cancer [97, 98] diabetes mellitus nd other diseases [99,100] and neuropathies [101]. Therefore, the treatment strategies of

these diseases can be aimed at DNA damage prevention and DNA repair enhancement[102,103]. The anticancer drugs which are currently in advance clinical trials or in clinical use are main pharmacological target of many drugs are DNA. This because of interfere the replication or moderating transcription is an important step in the cell growth and division and it is regulate the cell function by DNA. It all seems logical, intuitively appealing, and conceptually straightforward. When inhibition or alteration of DNA the small ligand molecules act as drug and is required to control or cure a disease [104]. Therefore, the study of interaction of the new compounds with DNA is very exciting and significant not only to access their biological potential but also in understanding the mechanism of interaction and for the design of new anticancer and other anti-disease drugs.

The small ligand molecules with DNA and their interactions stability were investigated by simplest and most common method is Ultraviolet and Visible spectroscopy. The changes of absorption properties of DNA and drug molecules [105] are monitored and notified by the uv-vis. spectroscopy study. Besides, the shifting of the position of absorption bands from when the ligand was free in solution to when the ligand was bound with the DNA also indicates interaction between the DNA and the ligand molecules [106-111]. Moreover, the observation of isosbestic points in mixed solutions also indicates the interaction of ligand with DNA molecules. Covalent (i.e. N7 of guanine replaced by the nitrogen atom of DNA base) and non-covalent (i.e. intercalation, electrostatic interaction, and groove binding) interactions are the two possible ways through which a compound can bind with DNA. Normally, in absorption spectra the changes like hypochromism and bathochromism resulted when compound bound to DNA via intercalation and the strength of interaction [112-118] depends upon the extent of hypochromism. Basically, between base pair of DNA [119, 120] and aromatic chromophores stocking interaction involved. While, in electrostatic interaction when compound interacted with DNA, no bathochromic [121] shift or hyperchromic shift is observed [122] while lower hypochromicity observed. Upon denaturation in absence of DNA outstanding hyperchromic effect observed. Sometimes, covalent adducts are formed between ligands

and DNA in which generally the result is hyperchromism when compound bound to DNA and when the result is bathochromism when the secondary structure breakage of DNA [123]. On the other hand, the binding of outside groove is normally characterized by minor change or no change in UV-Vis. spectra and sometimes with little hyperchromism. The compounds (A–N) absorption spectra in the presence and absence of CT-DNA are shown in Fig. (3.2-3.4) .The compounds absorption spectra signals observed in the range of 200-300 nm. The compounds A-N showed two absorption bands, first band appeared at 235-260 nm and second band appeared at 269 -296 nm, respectively. When DNA addition the band shifting was observed around 200-300 nm. Due to intra ligand $\pi \to \pi^*$ transition, small shifting of first band was observed in all the cases, and large shifting of second band was observed because of the $n \rightarrow \pi^*$ transitions of intra ligand of the compounds A-L [124]. The bathochromism and hypo-chromicities Fig. (3.2-3.4) absorption peaks was observed when different concentration of DNA [0.2 - 1.2×10^{-3} M] addition, thus, indicating the formation of DNA-compound adducts via intercalative mode (non-covalent) [125]. Moreover, the appearances of isosbestic points in titration experiments also showed that The CT-DNA and the compounds interactions were happened. UV-vis spectra data of compounds A-L are listed in Table 3.2. For a ready reference, in Fig. (3.2-3.4) in the both presence($0.2 - 1.4 \times 10^{-3}$ M) and absence of calf-thymus DNA absorption spectra of compounds (F, G, and H; 2.0×10^{-3} M) were given. The compounds DNA binding constants values are varied from 6.0×10^5 to 9.0 $\times 10^7$ M⁻¹ is representing of very good interaction of these these compounds with DNA. The compounds increasing order of DNA binding constants A-L was G>H>F>B>C>A>L>I>D > J> E. It can be concluded from these results that the compounds A-L intercalated through minor groove with Ct-DNA [126]. Based on literature data it's clearly shows that the stabilized mainly by hydrogen bonds and hydrophobic interaction [127] of the compound form a complex with DNA minor groove. In Fig. (3.2-3.4) is shows that the well established fact of DNA titration experiments and docking studies of the compounds were listed. Halogenated compound (containing of fluoro, bromo compounds such as A, B, C, F, G, H, I and L) are interestingly had high

affinity for DNA (higher K_b values). On the other hand, DNA had better affinity with compounds containing nitro group. The earlier reported work was agreed with these results [128].

Table 3.2. UV absorption, wavelength shifts, % hypochromism and binding constants ofA-L.

Compounds	λ _{max} free	λ_{max} bound	$\Delta \lambda_{max}$	% Hypochromism ^a	$\mathbf{K}_{\mathbf{b}}^{\mathbf{b}}$ (M ⁻¹)
	(nm)	(nm)	(nm)		
Α	260, 290	262,292	2	1.0	6.1×10^7
В	236, 267	238,269	2	2.3	7.1×10^7
С	235, 294	236, 295	1	5.2	6.7×10^7
D	245, 295	246, 296	1	1.0	4.60×10^{6}
Е	236, 272	238, 274	2	2.3	6.0×10^5
F	235, 267	235, 282	20	6.8	7.8×10^{7}
G	236, 269	236, 279	10	7.1	9.0×10^{7}
Н	234, 259	234, 279	20	48	8.0×10^{7}
Ι	242, 296	244, 298	2	3.1	4.9×10^{7}
J	257, 291	259, 293	2	2.9	8.8×10^{5}
L	245, 296	246, 297	0	0.5	5.8×10^{7}

^a % Hypochromicity (H%) = $[A_f - A_b)/A_f] \times 100$, where A_f and A_b represent the absorbance of free and bound compounds. ^b Binding constants.

Fig. 3.1.Absorption spectra of compound $\mathbf{F}[2.0 \times 10^{-3} \text{M}]$, in the absence and presence of DNA. The concentration of DNA(a-f)were 0, 0.2, 0.4, 0.6, 0.8, 1.2 and $1.4 \times 10^{-3} \text{ M}$.

Fig 3.2: Absorption spectra of compound **G** $[2.0 \times 10^{-3}$ M], in the presence and absence of DNA. The concentration of DNA(a-f)were 0, 0.2, 0.4, 0.6, 0.8, 1.2 and 1.4×10^{-3} M.

Fig.3.3: Absorption spectra of compound **H** $[2.0 \times 10^{-3}$ M], in the absence and presence of DNA. The concentration of DNA (a-f)were 0, 0.2, 0.4, 0.6, 0.8, 1.2 and 1.4×10^{-3} M.

3.3 DOCKING STUDY

At supramolecular level, molecular docking is a useful tool for predicting the interactions of drugs with various macromolecules and this section describes interactions of the developed molecules with DNA. To predict the mode of binding with DNA, three target molecules (**F**, **G** and **H**) were selected for carrying out docking studies due to their high experimental binding affinity with DNA. The long and thin DNA (B-DNA) is the most common form of DNA which has characteristic wide;major deep grooves and narrow; deep minor grooves. The specificity of base pairing between two DNA strands gives distinct hydrogen bond acceptor/donor patterns in major and minor grooves. To find out the possible sites of DNA interactions with the selected compounds reported compounds, Auto Dock (4.2) Vina tool has been used to carry out molecular DNA docking study of the compounds. DNA dodecamers d(CGCGAATTCGCG)2 (PDB ID: 1BNA) were used to study the docking studies of the compounds. The order of binding energies of the selected compounds was **G**> **H** >**F**. The 2D and 3D-docked models of **F**, **G** and **H** are shown in **Fig. (3.5-3.9).** It is clear from the docked models that all the compounds preferred DNA minor grooves. The residue involved hydrophobic interaction, residue

involved hydrogen bonding, binding affinity and number of hydrogen bonding formed by compounds **F**, **G** and **H** is given in **Table 3.3**. During docking studies, it was observed that the hydrogen bonding between carbonyl oxygen of amide group and ethoxy oxygen group of DNA were the common moieties involved. There are 3 to 4 numbers of hydrogen bonds formation was formed. The common residue of guanine and cytosine of DNA involved in hydrogen bonding. Further more, the hydrophic interactions involved common residues of DNA were dt8, dc9, dg10, dc13, dg14, dc15 and dg16. The various docking of selected compounds are given in **Table 3.3**. During the process of DNA interactions, it had been observed that all the target compounds containing benzene ring are oriented themselves in such a manner that inside minor grooves. Overall, the experimental results of DNA binding were in excellent agreement with those of docking studies.

Fig. 3.4: 3D-Docking images of compound **F** with CT-DNA. (**a**) shows the interaction via minor groove, (**b**) Closest view within groove and (**c**) indicate polar interactions.

Fig. 3.5: 2D-Docking images of compound**F** with CT-DNA. (**a** and **b**) shows the moieties of DNA involved in hydrophobic interactions.

Fig. 3.6: 3D-Docking images of compound **G** with CT-DNA. (**a**) shows the interaction via minor groove, (**b**) Closest view within groove and (**c**) indicate polar interactions.

Fig. 3.7: 2D-Docking images of compound **G** with CT-DNA. (**a** and **b**) shows the moieties of DNA involved in hydrophobic interactions.

Fig. 3.8: 3D-Docking images of compound**H** with CT-DNA. (**a**) shows the interaction via minor groove, (**b**) Closest view within groove and (**c**) indicate polar interactions.

Fig. 3.9: 2D-Docking images of compound**H** with CT-DNA. (**a** and **b**) shows the moieties of DNA involved in hydrophobic interactions.

Table 3.3. The different docking parameters of selected compounds F, G and Hwith DNA.

Compounds No.	Binding affinity (kJ/mol)	Number of hydrogen bonds	H-bonding involved residues (Bond length)	Hydrophobic attraction involved in residues
F	-18.8	4	A: A/DG:10/H01::O of	dt8, dc9, dg10, dc13,
			carbonyl of uracil ring (3.30).	dg14, dc15 and dg16.
			B: A/DG:14/H06::O Of	
			carbonyl of uracil ring (3.32).	
			C:B/DG:14/OP2::NH of	
			3-aminopiperidine moiety (3.25).	

				ſ
			D : B/DG:14/PO2::NH of	
			otheramine group (3.39).	
G	-20.23	3	A: B/DG:14/HO2::O of	dt8, dc9, dg10, dc13,
			carbonyl of ester group (3.46).	dg14 and dc15.
			B: B/DC:15/H01::O of carbonyl	
			linked to piperazine ring (3.38).	
			C:B/DG:14/H02::O of carbonyl	
			linked to piperazine ring (3.39).	
Н	-20.95	4	A: B/DG:14/H01::O of carbonyl	dt8, dc9, dg10, dc13,
			linked to piperazine ring ((3.48).	dg14, dc15 and dg16.
			B: B/DG:14/H01:: O of carbonyl	
			linked to piperazine ring(3.52).	
			C:B/DG:14/H02::O ofcarbonyl	
			of ester group (3.30).	
			D : B/DG:16/HO1::O ofcarbonyl	
			of ester group (3.31).	

3.4 EXPERIMENTAL PROCEDURE:

3.4.1 One pot synthesis of target compounds (A-L)

Initially, charged 6-chloro uracil (7.75 g, 0.0528M) and potassium carbonate (9.14 g, 0.0661 M) were mixed in 50 mL DMF in 250 mL RBF, followed by halogenated derivatives of 1-(bromomethyl) benzene (10.00 g, 0.0584 moles), the obtained reaction mixture were agitated at least 8 hrs at 20-30°C. Then, with further addition of potassium carbonate (7.31 g, 0.0529 moles) and methyl iodide (15.02 g, 0.10 moles) the reaction

mass were stirred 12-16 hrs at 20-30°C. After that, the charged piperazine (4.52 g, 0.0524 moles) or piperidin-3-amine (9.10 g, 0.0524 moles) was added in to it and mixture of reaction was heated at 80 °C for 8hrs. Finally, the Moc-L-Valine (9.22 g, 0.0526 moles) were added to the reaction mass in presence of coupling reagent HATU (40.23 g, 0.1058 moles) and base, triethyl amine (10.71 g, 0.1058 moles) then reaction mixture were stirred for 20 min at 20-30°C. The reaction completion was monitored by TLC, once the reaction was completed water was added and the product was partitioned with organic layer and moisture was removed by treating with sulphate and solvent was removed under vacuum at 40-50°C. The desired products (**A-L**) were purified by column chromatography to get title compounds.

3.5 GENERAL PROCEDURE:

3.5.1 Synthesis of N-alkylated compounds of 6-chlorouracil (1):

6-chlorouracil (10 g, 0.0682 moles) were dissolved in 50 mL DMF and disopropylethylamine (18.52 gm, 0.1432 moles) then obtained reaction mixture were stirred for 10 min at 23 to 33°C after that added halogenated 1-(bromomethyl)benzene (12.90 g, 0.0754 moles) then reaction mass stirring was continued for 8 to 10 hrs at 23-33°C. If the reaction were completed add 150 mL water it and the precipitated product (1) was isolated by filtration, dried to obtained 14.37 gm (89.0%)

3.5.2 Synthesis of compounds 2:

Compound **1** (10.00 g, 0.0422 moles) were dissolved in 100 mL acetone followed by potassium carbonate (12.84 g, 0.0929 moles) and the reaction mass were stirred for 15 min at 25-37°C followed by methyl iodide (11.99 g, 0.0844 moles) added in to it and the reaction mass were agitated overnight at 20-30°C reaction progress were monitored by TLC, water added in to it after reaction were judged to complete and the precipitated product (**2**) was isolated by filtration then dried to get 9.74 g (92.0 %).

3.5.3 Synthesis of Compounds 3 or 4:

Compound 2 (9.00 g, 0.0359 moles) were dissolved in 45 mL DMF followed by addition of potassium carbonate (9.92 g, 0.0717 moles). Then (3.40 g, 0.0394 moles) of piperazine or piperidin-3-amine (6.83 g, 0.0394 moles) was added, and reaction temperature maintained at 80°C, until reaction completion, the reaction temperature were cooled down after reaction completion water was added in to it and extracted with dichloromethane. The organic layer was separated out and moisture present in organic layer was removed by treating with sodium sulphate. Finally, the dichloromethane distilled off under vacuum at 35-45°C for the formation of compounds **3** (9.16 g, 85.0%) or **4** (9.81 g, 87.0%).

3.6 SYNTHESIS OF TARGET COMPOUNDS (A-L):

Compound **3** (9.00 g, 0.0299 moles) or **4** (9.00 g, 0.0286 moles) were initially dissolved in 90 mL dichloromethane added HATU (16.12 gm, 0.0423 moles) followed by Moc-L-Valine (5.20 gm, 0.0296 moles) then TEA (5.72 gm, 0.0565 moles) until reaction completion the mixture was agitated at ambient temperature then added water in to it , the desire product was partitioned with organic layer then moisture in organic layer removed by treating with anhydrous sodium sulphate, dichloromethane was removed under vacumm at 35-40°C to give title compound 12.1 gm (90%).

3.7 CHARECTARISATION DETAILS OF COMPOUND (A-L):

3.7.1 Methyl (S)-1-((R)-1-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (A):

Yield: 57%, mp; 194-195°C; White solid powder; Anal. Calcd: C (58.89), H (6.55), N (14.32%), Found: C (58.88),H (6.59), N (14.31%); ¹H-NMR:(DMSO-d₆, Bruker 400 MHz), $\delta = 0.71-0.75$ (dd, 6 H,-CH₃), 1.3-1.5 (m; 2 H, -CH₂), 1.72-1.77 (m, 3 H, -CH₂),

2.3-2.4 (t, 1 H, -CH₂), 2.6-2.7 (t, 1 H, -CH₂), 2.85-2.95 (d, 1H), 3.05 (s, 3 H, -N-CH₃), 3.1-3.2 (d, 1 H, -CH₂), 3.47 (s, 3 H, -O-CH₃), 3.70-3.74 (t, 2 H, -CH₂), 4.99-5.01 (q, 2 H, -CH₂), 5.26 (s, 1 H, -CH), 7.04-7.16 (M, 4 H, Ar-H, -NH), 7.25 (q, 1 H, Ar-H), 7.94-7.96 (d, 1 H, -NH); ES-MS (m/z) Calc. for C₂₄H₃₂FN₅O₅: 489.54, found [M+H]⁺: 490.24.

3.7.2 Methyl(S)-1-((R)tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (B):

Yield: 52%, mp; 230-231°C; White solid powder; Anal. Calcd: C (58.87), H (6.57), N (14.29%), Found: C (58.88), H (6.59), N (14.31%); ¹H-NMR: (DMSO-d₆, Bruker 400 MHz), $\delta = 0.72$ -0.76 (dd, 6 H,-CH₃), 1.29-1.50 (m; 2 H, -CH₂), 1.74-1.78 (m, 3 H, -CH₂), 2.3-2.4 (m, 1 H, -CH₂), 2.46-2.468 (s, 3 H, CH₂), 2.59-2.69 (m, 1 H, -CH₂), 2.8-2.9 (d, 1 H, -CH₂), 3.07-3.15 (s & broad, 4 H, -N-CH₃ & -CH), 3.48 (s, 3 H, -O-CH₃), 3.71-3.75 (t, 2 H, -CH₂), 4.93-4.97 (q, 2 H, -CH₂), 5.24 (s, 1 H, -CH), 7.07-7.11 (m, 3 H, Ar-H & -NH), 7.19-7.22 (m, 2 H, Ar-H), 7.97 (d, 1 H, -NH); ES-MS (m/z) Calc. for C₂₄H₃₂FN₅O₅: 489.54, found [M+H]⁺: 490.24.

3.7.3 Methyl (S)-1-((R)-1-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (C):

Yield: 51%, mp; 203-204 °C;White solid powder; Anal. Calcd: C (58.89), H (6.58), N (14.33%), Found: C (58.88),H (6.59), N (14.31%); ¹H-NMR: (CDCl₃, Bruker 400 MHz), $\delta = 0.89$ - 0.90 (d, 6 H,-CH₃), 1.48-2.02 (m; 4 H, -CH₂), 2.47-2.86 (m, 3 H, -CH₂), 3.13-3.49 (m, 4 H, -N-CH₃ & -CH), 3.48 (s, 4 H, -O-CH₃ &-CH)), 4.04 (broad, 1 H, -CH), 4.99-5.03 (d, 1 H, -CH), 5.11 (broad, 1 H, -CH), 5.23-5.33 (d, 2H, -Ar-CH₂), 5.84 (s, 1H, -CH-), 6.90-7.003 (m, 3 H, Ar-H), 7.26-7.33 (m, 1 H, Ar-H). ES-MS (m/z) Calc. for C₂₄H₃₂FN₅O₅: 489.54, found [M+H]⁺: 490.24.

3.7.4 Methyl (S)-1-((R)-1-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (D):

Yield: 59%, mp; 216-217 °C;White solid powder; Anal. Calcd: C (55.81), H (6.22), N (16.25%), Found: C (55.80), H (6.24), N (16.27%); ¹H-NMR: (DMSO-d₆, Bruker 400 MHz), $\delta = 0.65-0.72$ (dd, 6 H,-CH₃), 1.19-1.15 (t; 1 H, -CH₂), 1.29-1.42 (m, 2 H, -CH₂), 1.64-1.73 (m, 3 H, -CH), 2.464-2.468 (m, 1 H, -CH₂), 2.60-2.65(m, 1 H, -CH₂), 2.83-2.86 (m, 1 H, -CH₂), 3.02-3.08 (m, 1 H, -CH₂), 3.30 (s, 3H, -CH₃), 3.47 (s, 3 H, -CH₃), 3.66-3.70(t, 2 H, -CH₂), 5.03-5.16(q, 2 H, -Ar-CH₂), 5.29 (s, 1 H, -CH), 7.06-7.09 (d, 1 H, -NH), 7.42-7.45 (d, 2H, Ar-H), 7.19-7.93 (d, 1 H, -NH), 8.12-8.15 (d, 2H, Ar-H) ppm; ES-MS (m/z) Calc. for C₂₄H₃₂N₆O₇: 516.55, found [M+H]⁺: 517.23.

3.7.5 Methyl (S)-1-((R)-1-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (E):

Yield: 49%, mp; 219-220 °C; White solid powder; Anal. Calcd: C (61.15), H (7.01), N (14.84%), Found: C, (61.13), H (7.05), N (14.85); ¹H-NMR: (CDCl₃-d, Bruker 400 MHz), $\delta = 0.89-0.92$ (t, 6 H,-CH₃), 1.50-1.64 (m; 2 H, -CH₂), 1.77-2.07 (m, 4 H, -CH₂), 2.5 (broad, 1 H, -CH), 2.76-2.88 (broad, 2 H, -CH), 3.30-3.34 (s, 4 H, -N-CH₃&-CH), 3.69-3.76 (m, 4H, -OCH₃& -CH), 4.06-4.08 (m, 1H, -CH-NH), 5.0-5.04 (ss, 1H, -CO-CH-NH), 5.28-5.34 (m, 3H, -Ph-CH2 & =CH-), 7.20-7.22 (d, 2H, Ar-H), 7.27-7.30 (t,1H, Ar-H), 7.34-7.38 (t, 2H, -Ar-H) ppm; ES-MS (m/z) Calc. for C₂₄H₃₃N₅O₅: 471.55, found [M+H]⁺: 472.24.

3.7.6 Methyl (S)-1-((R)-1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (F):

Yield: 56%, mp; 210-212 °C; White solid powder; Anal. Calcd: C (52.34), H (5.84), N (12.71%), Found: C (52.37), H (5.86), N (12.72%); ¹H-NMR: (DMSO-d₆, Bruker 400 MHz), $\delta = 0.70-0.76$ (dd, 6 H,-CH₃), 1.31-1.44 (m; 2 H, -CH₂), 1.75-1.80 (m, 3H, -

CH₂), 2.65 (m, 2H, -CH₂), 2.83 (t, 1 H, -CH₂), 3.30(s, 3 H, -CH₃), 3.47 (s, 3H, -CH₃), 3.70-3.73 (t, 2H, -CH₂), 4.86-5.001(q, 1H, -Ar-CH₂), 5.24(s, 1H, -CH), 7.11-7.12 (d, 2H, Ar-H), 7.45-7.47 (d,2H, A-H), 7.95-7.96 (d, 1H,-NH) ppm; ES-MS (m/z) Calc. for C₂₄H₃₂BrN₅O₅: 550. 45, found [M+H]⁺: 552.16.

3.7.7 (S)-methyl1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahyd

dropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (G): Yield: 56%, mp; 161-164 °C; White solid powder; Anal. Calcd: C (58.07), H (6.33), N (14.71%), Found: C, (58.09), H (6.36), N (14.73%); ¹H-NMR:(DMSO-d₆, Bruker 400 MHz), $\delta = 0.80-0.95$ (d, 3 H, -CH₃), 1.12-1.34 (m, 2 H, -CH₂), 1.92-1.94 (m, 1 H, -CH₂), 2.81-2.88 (m, 4 H, -CH₂), 3.12 (s, 3 H, -CH₃), 3.36 (m, 4 H, -CH₂), 3.53-3.64 (m, 4H & 2H, -OCH₃, -CH₂ & -CH), 4.22-4.26 (m, 1H, -CH), 5.10 (s, 2 H, -CH₂), 5.39 (s, 1 H, -CH), 7.17-7.22 (m, 3 H, Ar-H), 7.31-7.33 (m, 2H, Ar-H); ES-MS (m/z) Calc. for C₂₃H₃₀FN₅O₅: 475.22, found [M+H]⁺: 476.23.

3.7.8 (S)-methyl1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahy dropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (H):

Yield: 57%, mp; 217-219 °C;White solid powder; Anal. Calcd: C (58.09), H (6.32), N (14.72%), Found: C, (58.09), H (6.36), N (14.73%); ¹H-NMR: (DMSO-d₆, Bruker 400 MHz), $\delta = 0.85$ (d, 6 H,-CH₃), 1.92 (m, 1 H, -CH₂), 2.65-2.69 (m, 4 H, -CH₂), 2.84 (broad, 4 H, CH₂), 3.13 (s, 3 H, -N-CH₃), 3.35 (broad, 6H, -O-CH₃& -CH₂), 3.53 (broad, 4 H, -CH₂), 3.66 (broad, 2 H, -CH₂), 4.22-4.26 (t, 1 H, -CH), 5.04 (s, 2 H, Ar-CH2), 5.37 (s, 1 H, -CH), 7.14-7.18 (t, 2 H, Ar-H), 7.30-7.34 (m, 3 H, Ar-H, &-NH); ES-MS (m/z) Calc. for C₂₃H₃₀FN₅O₅: 475.51, found [M+H]⁺: 476.23.

3.7.9 (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I):

Yield: 58%, mp; 234-233 °C; White solid powder; Anal. Calcd: C (51.51), H (5.62), N (13.04%), Found: C (51.50), H (5.64), N (13.06%); ¹H-NMR:(DMSO-d₆, Bruker 400

MHz), $\delta = 0.83-0.86$ (t, 6 H,-CH₃), 1.91-1.96 (m; 1 H, -CH₂), 2.69 (s, 3H, -CH₃), 2.85-2.90 (broad, 4H, -CH), 3.13 (s, 3 H, -CH₃), 3.35(s, 4 H), 3.53 (s, 3H), 3.66 (broad, 2H), 4.23-4.27(t, 1H), 5.03 (s, 2H, -Ar-CH2), 5.37(s, 1H, -CH), 7.20-7.22 (d, 2H, Ar-H), 7.28-7.30 (d, 1H, -NH) 7.51-7.53 (d,2H, Ar-H) ppm; ES-MS (m/z) Calc. for C₂₃H₃₀BrN₅O₅: 536.42, found [M+H]⁺: 538.15.

3.7.10 (S)-methyl 1-(4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazin-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (J):

Yield: 51%, mp; 173-174 °C; White solid powder; Elementary Analysis Calculated: C (60.39), H (6.82), N (15.32%), Found: C (60.38), H (6.83), N (15.31%); ¹H-NMR:(DMSO-d₆, Bruker 400 MHz), $\delta = 0.78-0.81$ (t, 6 H,-CH₃), 1.84-1.92 (m; 1 H, - CH₂), 2.65 (s, 2H,), 2.79-2.82 (broad, 4 H, -CH), 3.10 (s, 3 H, -CH₃), 3.31 (s, 3H, -OCH₃), 3.60-3.66 (broad, 2H,) 4.17-4.21(t, 1H), 5.02 (s, 2H, -Ar-CH2), 5.33 (s, 1H, -CH) 7.18-7.23 (m, 3H, Ph), 7.27-7.31 (t,2H, Ph)ppm; ES-MS (m/z) Calc. for C₂₃H₃₁N₅O₅: 457.52, found [M+H]⁺: 458.23.

3.7.11 (S)-methyl 1-(4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (K):

Yield: 60%, mp; 205-206 °C; White solid powder; Elementary Analysis Calculated: C (54.95), H (6.00), N (16.70%), Found: C (54.97), H (6.02), N (16.72%); ¹H-NMR:(CDCl₃, Bruker 400 MHz), $\delta = 0.93-0.97$ (dd, 6 H,-CH₃), 1.27-1.30 (d, 1H, -CH), 1.91-1.96 (q, 1 H, -CH), 2.81 (s, 5 H, -N-CH₃, CH₂), 2.90 (broad, 3H,) 3.33(s, 3 H, -O-CH₃), 4.41-4.45 (q, 1H, -CH), 5.21 (s, 2H, Ar-CH₂), 5.42-5.47 (t, 2 H,), 7.38-7.40 (d, 2 H, -Ar H), (d, 2 H, -Ar-H), ppm; ES-MS (m/z) Calc. for C₂₃H₃₀N₆O₇: 502.52, found [M+H]⁺: 503.22.

3.7.12 (S)-methyl1-(4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahy dropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2-ylcarbamate (L)

Yield: 60%, mp; 220-222 °C; White solid powder; Elementary Analysis Calculated: C (58.09), H (6.34), N (14.73%), Found: C (58.09), H (6.36), N (14.73%); ¹H-NMR:(DMSO-d₆, Bruker 400 MHz), $\delta = 0.71$ -0.76 (dd, 6 H,-CH₃), 1.3-1.5 (m; 2 H, -CH₂), 1.74-1.79 (m, 3 H, -CH₂), 2.30-2.46 (m, 4 H, -CH), 2.59 (m, 1 H, -CH₂), 2.80-2.9(m, 1 H, -CH₂), 3.08 (s, 3 H, -N-CH₃), 3.48 (s, 3 H, -CH₃), 3.74-3.75 (t, 2 H, -CH₂), 4.92-5.04 (d, 2 H, -Ar-CH₂), 5.25 (s, 1 H, -CH), 6.99-7.05 (m, 3 H, -Ar-H), 7.09-7.11 (d, 1 H, -NH), 7.29-7.34 (q, 1 H, -Ar-H), 7.95-7.96 (d, 1 H, -NH) ppm. ES-MS (m/z) Calc. for C₂₃H₃₀FN₅O₅: 475.521, found [M+H]⁺: 476.23.

3.7.13 Methyl(S)-1-((R)-1-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (M):

Yield: 60%, ¹H-NMR:(DMSO-d₆, Bruker 400 MHz) $\delta = 0.74-0.77$ (dd, 6 H,-CH₃), 1.29-1.32 (m; 1 H, -CH₂), 1.46-1.48 (m; 1 H, -CH₂), 1.63-1.83 (m, 3 H, -CH₂), 2.61-2.65 (m, 1 H, -CH₂), 2.93-2.96 (m, 1H, -CH₂)3.05 (s, 3 H, -N-CH₃), 3.08 (broad, 1H, -CH), 3.48 (s, 3 H, -O-CH₃), 3.68-3.72 (t, 2 H, -CH₂), 5.11 (q, 2 H, -Ar-CH₂), 5.32 (s, 1 H, -CH), 7.02-7.04 (d, 1 H, Ar-H), 7.21-7.23 (d, 1 H, Ar-H), 7.38-7.42 (t, 1H, ar-H), 7.58-7.62 (t, 1H, Ar-H), 7.77-7.79 (d, 1H, -NH), 7.88-7.90 (d, 1 H, -NH). Mass (C₂₅H₃₂N₆O₅) m/z= 496.56, M+H= 497.2481.

3.7.14 1-(4-fluorobenzyl)-3-methyl-6-(piperidin-1-yl)pyrimidine-2,4(1H,3H)-dione (N):

Charged 1-(4-fluorobenzyl)-6-chloro-3-methylpyrimidine-2,4(1H,3H)-dione (10.00 g, 0.0372 moles) were dissolved in 45 mL DMF followed by addition of potassium carbonate (10.28 g, 0.0743 moles). Then (3.32 g, 0.0390 moles) of piperidine was added, and reaction mixture temperature maintained at 80°C, until reaction completion. Then the reaction mixture temperature was cooled down to 23-33°C and added water in to it and extracted with dichloromethane. The separated organic layer was removed water by

treating with sodium sulphate. Finally, the solvent was removed under reduced pressure for the formation of compounds N(10.75 g, 91.0%).

Yield: 76.0%, ¹H-NMR:(CDCl₃, Bruker 400 MHz) $\delta = 1.63-1.67$ (m, 6 H,-CH₂), 2.86 (broad; 4 H, -CH₂), 3.29 (s, 3 H, -N-CH₃), 3.08 (broad, 1H, -CH), 5.02 (s, 2 H, -Ar-CH₂), 5.32 (s, 1 H, -CH), 6.98-7.02 (t, 2 H, Ar-H), 7.22-7.28 (qui., 2 H, Ar-H). Mass (C₁₇H₂₀FN₃O₂) m/z= 317.15, M+H= 318.08.

3.8 DNA BINDING

Absorption titration experiments were performed with fixed concentrations of the compounds. The prepared compounds were made solution with the mixture of 1% DMSO and 99% Tris–HCl buffer (10^{-2} M, pH 7.4). Stock solutions of different compounds and CT-DNA were stored at 4 °C and used after no more than one week Initially, a UV absorption spectrum of CT-DNA in buffer solution was recorded that showing two absorption bands at 230 nm and 260 nm with absorbance ratio = 1.8, which indicated free nature of DNA [129]. UV absorbance at 260 nm after 1: 40 dilutions with known molar absorption coefficient value of 6600 M⁻¹ cm⁻¹ determined the concentration of DNA. Absorption titration experiments were performed in the absence and presence of different concentrations ($0.2 - 1.4 \times 10^{-3}$) of CT-DNA. The intrinsic binding constant (K_b) values were determined with help of Equation 1, which is initially derived by Benessi–Hilderbrand equation and later modified by Wolfe et al [130].

Where, absorption coefficients, $\mathcal{E}_a, \mathcal{E}_f$, and \mathcal{E}_b correspond to A_{obs}/[compound], extinction coefficient for the compound and the extinction coefficient for the compound in the fully bound form, respectively. The binding constants for the different compounds (K_b) were

determined by the slopes and the intercepts of the plots of $\int (\varepsilon_a - \varepsilon_f)^{vs[DNA]}$.

3.9 DOCKING STUDY

The docking studies of the different compounds (as ligands) were performed by Intel® dual CPU (1.86 GHz) with Windows XP operating system. Marwin sketch software was used to form 3-D structures of the compounds and pdp file format converted from soobtained 3-D structures. Initially, by assigning Gastegier charges, merging non-polar hydrogens, the ligand was prepared and AutoDock Tools (ADT) 4.2 [131] used to save PDBQT file format of DNA. The DNA X-ray crystal structure were obtained from the Protein Data Bank [132] (PDB ID: 1BNA). By assigning Gastegier charges and removing water molecules of DNA, ADT 4.2 was used to save PDBQT file format of DNA. ADT was used to file grid and docking preparation of parameters. AutoDock 4.2 (Scripps Research Institute, USA) were used to perform docking study. Considered all the receptor as grid and all the rotatable ligand bonds as rotatable. The whole DNA spacing was used 0.372° A and grid box size was $60 \times 80 \times 110$ Å. with 0.375 Å spacing was used that included the whole DNA. PyMOL was used to illustrate virtual screening, and binding site analysis of compounds. AutoDock (4.2) and AutoDock Vina [133] are two popular docking program, the interface between two docking program and PyMOL are represented by plugin. For the docking setup runs [131] and extensive use of a Python script collection (AutoDock Tools), the combined effect of these two software's were used. Moreover, the possibility of hydrophobic interactions of DNA [134] with compounds, Ligplot software was used.

3.10 ¹HNMR, MASS SPECTROSCOPY DATA OF URACIL BASED MOC-L-VALINE ERIVATIVES:

3.10.1 ¹HNMR of Methyl (S)-1-((R)-1-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (A)

3.10.2 HRMS of Methyl (S)-1-((R)-1-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (A)

3.10.3 ¹H NMR of Methyl (S)-1-((R)-1-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (B)

3.10.4 HRMS Of Methyl (S)-1-((R)-1-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (B)

3.10.5 ¹H NMR of Methyl (S)-1-((R)-1-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (C)

3.10.6 ¹³C NMR of Methyl (S)-1-((R)-1-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (C)

3.10.7 HRMS of Methyl (S)-1-((R)-1-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (C)

3.10.8 ¹H NMR of Methyl (S)-1-((R)-1-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (D)

3.10.9 HRMS of Methyl (S)-1-((R)-1-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (D)

3.10.10¹H NMR of Methyl (S)-1-((R)-1-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (E)

3.10.11HRMS of Methyl (S)-1-((R)-1-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (E)

3.10.12¹H NMR of Methyl (S)-1-((R)-1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (F)

3.10.13HRMS of Methyl (S)-1-((R)-1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (F)

3.10.14¹H NMR of (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (G)

3.10.15Dept of (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (G)

3.10.16HRMS of (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (G)

3.10.17¹H NMR of (S)-methyl 1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (H)

3.10.18¹³C NMR of (S)-methyl 1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (H)

3.10.19Dept NMR of (S)-methyl 1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (H)

3.10.20HRMS of (S)-methyl 1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (H)

3.10.21¹H NMR of (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I)

3.10.22¹³C NMR of (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I)

3.10.23Dept NMR of (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I)

3.10.24HRMS of (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I)

3.10.25¹H NMR of (S)-methyl 1-(4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (J)

3.10.26HRMS of (S)-methyl 1-(4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (J)

3.10.27¹H NMR of (S)-methyl 1-(4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (K)

3.10.28HRMS of (S)-methyl 1-(4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (K)

1/30/2018 2:55:07 PM

3.10.29¹H NMR of (S)-methyl 1-(4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (L)

3.10.30HRMS of (S)-methyl 1-(4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (L)

3.10.31¹H NMR of Methyl(S)-1-((R)-1-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (M)

3.10.32HRMS of Methyl(S)-1-((R)-1-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (M)

3.10.35Dept NMR of (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate

3.10.36HRMS of 1-(4-fluorobenzyl)-3-methyl-6-(piperidin-1-yl)pyrimidine-2,4(1H,3H)-dione

3.11 BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS PREDICTION A-L:

Compounds A-L showing tremendous activity in inPASS prediction in various diseases, some of the important activities are listed below tables

3.11.1 Methyl (S)-1-((R)-1-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (A)

Compound-A shows some of the important activities like Antiviral, Antifungal, and Antineoplastic and Anti HIV

Sr.No	Pa	Pi	Activity
1	0,458	0,020	CYP2C19 inducer
2	0,487	0,076	Proteasome ATPase inhibitor
3	0,376	0,084	Muramoyltetrapeptide carboxypeptidase inhibitor
4	0,443	0,170	CYP2H substrate inhibitor
5	0,293	0,046	Inhibitor Calpain
6	0,281	0,044	Antiviral
7	0,257	0,058	Antieczematic atopic
8	0,229	0,062	Cyclic GMP phosphodiesterase inhibitor
9	0,208	0,049	Aldose reductase substrate
10	0,335	0,176	Antineoplastic (non-Hodgkin's lymphoma)
11	0,160	0,004	Dipeptidyl peptidase inhibitor
12	0,264	0,113	H+-transporting two-sector ATPase inhibitor
13	0,182	0,039	Antiviral (HIV)
14	0,127	0,016	Antifungal enhancer

Table: 3.4 PASS Pridiction data

3.11.2 PASS Prediction of Methyl(S)-1-((R)- 1-(3-(4-fluorobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1oxobutan-2-ylcarbamate (B):

Table: 3.5: Pass prediction details of compound B:

Compound-B shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal** and **Antineoplastic.**

Sr.No	Pa	Pi	Activity
1	0,538	0,054	Proteasome ATPase inhibitor
2	0,473	0,017	CYP2C19 inducer
3	0,312	0,033	Antiviral
4	0,436	0,176	CYP2H substrate
5	0,243	0,004	Leukocyte elastase inhibitor
6	0,283	0,051	Calpain inhibitor
7	0,254	0,035	Cyclic GMP phosphodiesterase inhibitor
8	0,292	0,087	H+-transporting two-sector ATPase inhibitor
9	0,233	0,034	Aldose reductase substrate
10	0,237	0,063	Respiratory distress syndrome treatment
11	0,257	0,086	Antiviral (Influenza A)
12	0,183	0,018	Antiviral (Hepatitis)
13	0,154	0,005	Antifungal enhancer
14	0,159	0,014	Antiviral (Hepatitis C)
15	0,172	0,052	Antihistaminic
16	0,234	0,114	HIV attachment inhibitor
17	0,162	0,053	Antiviral (HIV)
18	0,304	0,218	Non-Hodgkin's lymphoma (Antineoplastic)
19	0,216	0,136	Antihypertensive
20	0,207	0,132	Antineoplastic (bone cancer)

Table: 3.5 PASS Pridiction data

3.11.3 PASS Prediction of Methyl (S)-1-((R)-1-(3-(3-fluorobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1oxobutan-2-ylcarbamate (C):

Table: 3.6: Pass prediction details of compound C:

Compound-C shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal** and **Antineoplastic.**

Sr.No	Pa	Pi	Activity
1	0,452	0,022	CYP2C19 inducer
2	0,476	0,081	Proteasome ATPase inhibitor
3	0,266	0,051	Antiviral
4	0,328	0,185	Non-Hodgkin's lymphoma (Antineoplastic)
5	0,258	0,120	H+-transporting two-sector ATPase inhibitor
6	0,173	0,045	Antiviral (HIV)
7	0,129	0,015	Antifungal enhancer
8	0,126	0,024	Leukocyte elastase inhibitor
9	0,189	0,088	Falcipain 3 inhibitor
10	0,225	0,129	Immunomodulator
11	0,145	0,050	Narcolepsy treatment
12	0,222	0,159	Antiviral (Influenza A)
13	0,124	0,065	Protease inhibitor
14	0,123	0,065	Antiviral (Hepatitis)
15	0,106	0,052	Antiviral (Hepatitis C)
16	0,176	0,124	Respiratory distress syndrome treatment
17	0,032	0,005	HCV NS5A inhibitor
18	0,040	0,025	HIV-1 protease inhibitor

Table: 3.6 PASS Pridiction data

3.11.4 PASS Prediction of Methyl (S)-1-((R)-1-(3-(4-nitrobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1oxobutan-2-ylcarbamate (D):

Table: 3.7: Pass prediction details of compound D:

Compound-D shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, Anti hypertension** and **Antineoplastic.**

Sr.No	Pa	Pi	Activity
1	0,458	0,020	CYP2C19 inducer
2	0,487	0,076	Proteasome ATPase inhibitor
3	0,377	0,048	Muscular dystrophy treatment
4	0,376	0,084	Muramoyltetrapeptide carboxypeptidase inhibitor
5	0,359	0,149	Non-Hodgkin's lymphoma (Antineoplastic)
6	0,257	0,056	Antiviral
7	0,255	0,060	Antieczematic atopic
8	0,264	0,113	H+-transporting two-sector ATPase inhibitor
9	0,245	0,108	Antiviral (Influenza A)
10	0,148	0,014	Leukocyte elastase inhibitor
11	0,156	0,058	Antiviral (HIV)
12	0,191	0,103	Respiratory distress syndrome treatment
13	0,115	0,030	Antifungal enhancer
14	0,211	0,141	Antihypertensive
15	0,136	0,069	Antiemphysemic
16	0,106	0,052	Antiviral (Hepatitis C)
17	0,121	0,068	Antiviral (Hepatitis)
18	0,039	0,029	HIV-1 protease inhibitor
19	0,161	0,154	Antiviral (Hepatitis B)
20	0,230	0,224	Fibroblast growth factor agonist

 Table: 3.7 PASS Pridiction data

3.11.5 PASS Prediction of Methyl (S)-1-((R)-1-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1-oxobutan-2ylcarbamate (E):

Table: 3.8: Pass prediction details of compound E:

Compound-E shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Nootropic, Antifungal** and **Antineoplastic.**

Sr.No	Pa	Pi	Activity	
1	0,454	0,021	CYP2C19 inducer	
2	0,496	0,071	Proteasome ATPase inhibitor	
3	0,379	0,082	Muramoyltetrapeptide carboxypeptidase inhibitor	
4	0,287	0,049	Inhibitor Calpain	
5	0,274	0,047	Antiviral	
6	0,409	0,206	Nootropic	
7	0,257	0,058	Antieczematic atopic	
8	0,348	0,162	Non-Hodgkin's lymphoma (Antineoplastic)	
9	0,160	0,004	Dipeptidyl peptidase inhibitor	
10	0,262	0,114	H+-transporting two-sector ATPase inhibitor	
11	0,176	0,043	Antiviral (HIV)	
12	0,131	0,013	Antifungal enhancer	
13	0,151	0,034	Gastrointestinal disorders treatment	
14	0,130	0,021	Leukocyte elastase inhibitor	
15	0,227	0,145	Antiviral (Influenza A)	
16	0,138	0,063	Narcolepsy treatment	
17	0,183	0,114	Respiratory distress syndrome treatment	
18	0,125	0,062	Antiviral (Hepatitis)	
19	0,108	0,049	Antiviral (Hepatitis C)	
20	0,128	0,095	Antihistaminic	
21	0,034	0,004	HCV NS5A inhibitor	
22	0,041	0,024	HIV-1 protease inhibitor	
23	0,133	0,117	Angiotensin II receptor agonist	

Table: 3.8 PASS Pridiction data

3.11.6 PASS Prediction of Methyl (S)-1-((R)-1-(3-(4-bromobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1oxobutan-2-ylcarbamate (F):

Table: 3.9: Pass prediction details of compound F:

Compound-F shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, Antihistaminic** and **Antineoplastic** (Bone Cancer). **Table: 3.9 PASS Pridiction data**

Sr.No	Pa	Pi	Activity	
1	0,547	0,050	Proteasome ATPase inhibitor	
2	0,304	0,035	Antiviral	
3	0,217	0,005	Leukocyte elastase inhibitor	
4	0,292	0,088	H+-transporting two-sector ATPase inhibitor	
5	0,259	0,084	Antiviral (Influenza A)	
6	0,251	0,089	HIV attachment inhibitor	
7	0,158	0,004	Antifungal enhancer	
8	0,194	0,041	Antihistaminic	
9	0,174	0,021	Antiviral (Hepatitis)	
10	0,225	0,072	Respiratory distress syndrome treatment	
11	0,167	0,022	Histamine H1 receptor antagonist	
12	0,174	0,035	Histamine antagonist	
13	0,151	0,017	Antiviral (Hepatitis C)	
14	0,154	0,033	Gastrointestinal disorders treatment	
15	0,318	0,198	Non-Hodgkin's lymphoma (Antineoplastic)	
16	0,215	0,105	Antieczematic atopic	
17	0,215	0,107	Antineoplastic (bone cancer)	
18	0,150	0,051	Antiemphysemic	
19	0,155	0,059	Antiviral (HIV)	
20	0,118	0,025	Gastroesophageal reflux disease treatment	
21	0,064	0,003	HCV NS5A inhibitor	
22	0,175	0,123	Antiviral (Hepatitis B)	
23	0,199	0,153	Antihypertensive	
24	0,037	0,033	HIV-1 protease inhibitor	

3.11.7 PASS Prediction of (S)-methyl 1-(4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (G):

Compound-G shows some of the important activities like Antiviral (influenza A, Hepatitis-C, HIV), Antifungal, Antineoplastic and Gastrointestinal disorders treatment.

Sr.No	Pa	Pi	Activity
1	0,536	0,054	Proteasome ATPase inhibitor
2	0,490	0,014	CYP2C19 inducer
3	0,448	0,055	Muramoyltetrapeptide carboxypeptidase inhibitor
4	0,381	0,126	Non-Hodgkin's lymphoma (Antineoplastic)
5	0,291	0,040	Antiviral
6	0,293	0,086	H+-transporting two-sector ATPase inhibitor
7	0,236	0,080	Antieczematic atopic
8	0,248	0,101	Antiviral (Influenza A)
9	0,184	0,038	Antiviral (HIV)
10	0,156	0,012	Leukocyte elastase inhibitor
11	0,148	0,036	Gastrointestinal disorders treatment
12	0,125	0,018	Antifungal enhancer
13	0,130	0,055	Antiviral (Hepatitis)
14	0,113	0,043	Antiviral (Hepatitis C)
15	0,141	0,077	Antihistaminic
16	0,205	0,147	Antihypertensive
17	0,034	0,004	HCV NS5A inhibitor
18	0,072	0,044	Caspase 9 inhibitor
19	0,044	0,018	HIV-1 protease inhibitor
20	0,161	0,156	Antiviral (Hepatitis B)

Table: 3.10 PASS Pridiction data

3.11.8 PASS Prediction of (S)-methyl 1-(4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (H):

Compound-H shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, Antihypertensive, Antineoplastic,** Gastrointestinal disorders treatment.

Sr.No	Pa	Pi	Activity	
1	0,591	0,037	Proteasome ATPase inhibitor	
2	0,508	0,011	CYP2C19 inducer	
3	0,524	0,039	Vasodilator, peripheral	
4	0,502	0,122	CYP2H substrate	
5	0,324	0,029	Antiviral	
6	0,264	0,004	Leukocyte elastase inhibitor	
7	0,283	0,055	Antiviral (Influenza A)	
8	0,357	0,151	Antineoplastic (non-Hodgkin's lymphoma)	
9	0,217	0,032	Antihistaminic	
10	0,184	0,017	Antiviral (Hepatitis)	
11	0,231	0,068	Respiratory distress syndrome treatment	
12	0,154	0,005	Antifungal enhancer	
13	0,161	0,014	Antiviral (Hepatitis C)	
14	0,164	0,039	Antiemphysemic	
15	0,217	0,101	Antineoplastic (bone cancer)	
16	0,234	0,120	Antihypertensive	
17	0,230	0,120	HIV attachment inhibitor	
18	0,162	0,053	Antiviral (HIV)	
19	0,119	0,024	Gastroesophageal reflux disease treatment	
20	0,242	0,176	HCV IRES inhibitor	
21	0,068	0,003	HCV NS5A inhibitor	
22	0,179	0,117	Antiviral (Hepatitis B)	
23	0,184	0,155	Antieczematic atopic	
24	0,041	0,024	HIV-1 protease inhibitor	

Table: 3.11 PASS Pridiction data

3.11.9 PASS Prediction of (S)-methyl 1-(4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (I):

Compound-I shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, Antihypertensive, Antineoplastic, Gastroesophageal** reflux disease treatment.

Sr.No	Pa	Pi	Activity	
1	0,547	0,050	Proteasome ATPase inhibitor	
2	0,470	0,017	CYP2C19 inducer	
3	0,308	0,034	Antiviral	
4	0,223	0,005	Leukocyte elastase inhibitor	
5	0,292	0,088	H+-transporting two-sector ATPase inhibitor	
6	0,239	0,049	Antineoplastic (bone cancer)	
7	0,263	0,075	HIV attachment inhibitor	
8	0,259	0,084	Antiviral (Influenza A)	
9	0,181	0,018	Antiviral (Hepatitis)	
10	0,200	0,038	Antihistaminic	
11	0,159	0,014	Antiviral (Hepatitis C)	
12	0,145	0,007	Antifungal enhancer	
13	0,148	0,053	Antiemphysemic	
14	0,152	0,062	Antiviral (HIV)	
15	0,114	0,026	Gastroesophageal reflux disease treatment	
16	0,133	0,048	Bacterial efflux pump inhibitor	
17	0,202	0,147	Viral entry inhibitor	
18	0,056	0,003	HCV NS5A inhibitor	
19	0,184	0,153	Antidiabetic symptomatic	
20	0,034	0,032	Luteinizing hormone-releasing hormone antagonist	
21	0,037	0,035	HIV-1 protease inhibitor	
22	0,026	0,026	Protease 3C (Human rhinovirus) inhibitor	

Table: 3.12 PASS Pridiction data

3.11.10PASS Prediction of (S)-methyl 1-(4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (J):

Compound-J shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, and Antihypertensive, Antineoplastic, Fibroblast** growth factor agonist and Gastroesophageal reflux disease treatment.

Pi Sr.No Pa Activity 1 0.454 0.021 CYP2C19 inducer 2 0,496 0,071 Proteasome ATPase inhibitor 0,278 0,045 Antiviral 3 0,234 0,082 Antieczematic atopic 4 5 0,262 0,114 H+-transporting two-sector ATPase inhibitor 6 0,173 0,045 Antiviral (HIV) 7 0,133 0,019 Leukocyte elastase inhibitor 8 0,214 0,109 Anti-neoplastic (bone cancer) 9 0,116 0,029 Antifungal enhancer 0,227 0,145 Antiviral (Influenza A) 10 11 0,303 0,220 Non-Hodgkin's lymphoma (Antineoplastic) 0,131 0,054 Antiviral (Hepatitis) 12 0.114 0,041 Antiviral (Hepatitis C) 13 0,104 0,033 Gastroesophageal reflux disease treatment 14 15 0,052 0,009 Dipeptidyl peptidase IV inhibitor 0,198 0,156 Angiogenesis stimulant 16 17 0,131 0,090 Antihistaminic 18 0,029 0,005 HCV NS5A inhibitor 19 0,040 0,026 HIV-1 protease inhibitor

Table: 3.13 PASS Pridiction data

20

0,231 0,222 Fibroblast growth factor agonist

3.11.11PASS Prediction of (S)-methyl 1-(4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (K):

Compound-K shows some of the important activities like Antiviral (influenza A, Hepatitis-C, HIV), Antifungal, and Antihypertensive, Antineoplastic, Fibroblast growth factor agonist and Gastroesophageal reflux disease treatment.

Sr.No	Pa	Pi	Activity	
1	0,447	0,023	CYP2C19 inducer	
2	0,459	0,047	Polarisation stimulant	
3	0,476	0,081	Proteasome ATPase inhibitor	
4	0,333	0,074	Muscular dystrophy treatment	
5	0,254	0,058	Antiviral	
6	0,335	0,143	Antianginal	
7	0,266	0,096	Antihypertensive	
8	0,256	0,088	Antiviral (Influenza A)	
9	0,257	0,121	H+-transporting two-sector ATPase inhibitor	
10	0,324	0,190	Non-Hodgkin's lymphoma (Antineoplastic)	
11	0,221	0,097	Antieczematic atopic	
12	0,160	0,054	Antiviral (HIV)	
13	0,116	0,029	Antifungal enhancer	
14	0,174	0,128	Respiratory distress syndrome treatment	
15	0,091	0,046	Gastroesophageal reflux disease treatment	
16	0,051	0,010	Dipeptidyl peptidase IV inhibitor	
17	0,098	0,066	Antiviral (Hepatitis C)	
18	0,111	0,083	Antiviral (Hepatitis)	
19	0,028	0,005	HCV NS5A inhibitor	
20	0,039	0,029	HIV-1 protease inhibitor	
21	0,116	0,112	Antiemphysemic	
22	0,178	0,175	Fibroblast growth factor 1 agonist	
23	0,090	0,087	_eukocyte elastase inhibitor	

Table: 3.14 PASS Pridiction data

3.11.12PASS Prediction of (S)-methyl 1-(4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazin-1-yl)-3-methyl-1-oxobutan-2ylcarbamate (L):

Compound-L shows some of the important activities like **Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, and Antihypertensive, Antineoplastic, Fibroblast** growth factor agonist and Respiratory distress syndrome treatment.

Sr.No	Pa	Pi	Activity
1	0,547	0,050	Proteasome ATPase inhibitor
2	0,470	0,017	CYP2C19 inducer
3	0,336	0,061	Cell adhesion molecule inhibitor
4	0,308	0,034	Antiviral
5	0,223	0,005	Leukocyte elastase inhibitor
6	0,239	0,049	Antineoplastic (bone cancer)
7	0,263	0,075	HIV attachment inhibitor
8	0,259	0,084	Antiviral (Influenza A)
9	0,181	0,018	Antiviral (Hepatitis)
10	0,200	0,038	Antihistaminic
11	0,187	0,031	Histamine antagonist
12	0,159	0,014	Antiviral (Hepatitis C)
13	0,145	0,007	Antifungal enhancer
14	0,204	0,089	Respiratory distress syndrome treatment
15	0,148	0,053	Antiemphysemic
16	0,152	0,062	Antiviral (HIV)
17	0,222	0,157	Cystic fibrosis treatment
18	0,202	0,147	Viral entry inhibitor
19	0,056	0,003	HCV NS5A inhibitor
20	0,057	0,008	Dipeptidyl peptidase IV inhibitor
21	0,185	0,153	Antieczematic atopic
22	0,184	0,153	Antidiabetic symptomatic
23	0,037	0,035	HIV-1 protease inhibitor
3.11.13PASS Prediction of Methyl(S)-1-((R)-1-(3-(2-cyanobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylamino)-3-methyl-1oxobutan-2-ylcarbamate (M):

Compound-M shows some of the important activities like Antiviral (influenza A, Hepatitis-C, HIV), Antifungal, and Antihypertensive, Antineoplastic (bone cancer), Fibroblast growth factor agonist and Respiratory distress syndrome treatment.

Sr.No	Pa	Pi	Activity	
1	0,526	0,058	Proteasome ATPase inhibitor	
2	0,467	0,018	CYP2C19 inducer	
3	0,295	0,038	Antiviral	
4	0,207	0,006	Leukocyte elastase inhibitor	
5	0,263	0,075	HIV attachment inhibitor	
6	0,169	0,005	Bacterial efflux pump inhibitor	
7	0,252	0,094	Antiviral (Influenza A)	
8	0,155	0,005	Antifungal enhancer	
9	0,169	0,023	Antiviral (Hepatitis)	
10	0,214	0,081	Respiratory distress syndrome treatment	
11	0,147	0,018	Antiviral (Hepatitis C)	
12	0,173	0,051	Antihistaminic	
13	0,216	0,104	Antineoplastic (bone cancer)	
14	0,152	0,062	Antiviral (HIV)	
15	0,146	0,056	Antiemphysemic	
16	0,346	0,276	Nootropic	
17	0,296	0,230	Antineoplastic (non-Hodgkin's lymphoma)	
18	0,060	0,003	HCV NS5A inhibitor	
19	0,196	0,157	Antihypertensive	
20	0,168	0,137	Antiviral (Hepatitis B)	
21	0,091	0,069	Female sexual dysfunction treatment	
22	0,037	0,035	HIV-1 protease inhibitor	

3.11.14PASS Prediction of 1-(4-fluorobenzyl)-3-methyl-6-(piperidin-1yl)pyrimidine-2,4(1H,3H)-dione (N):

Compound-M shows some of the important activities like**Muscle relaxant, Dementia treatment, Antiallergic, Antiviral** (influenza A, Hepatitis-C, HIV), **Antifungal, and Antihypertensive,Obsessive-compulsive disorder treatment, Antineoplastic** (bone cancer),**Cystic fibrosis treatment** and **Antipsychotic.**

Sr.No	Pa	Pi	Activity
1	0,580	0,040	Proteasome ATPase inhibitor
2	0,557	0,019	Polarisation stimulant
3	0,583	0,048	Kidney function stimulant
4	0,400	0,006	Histamine antagonist
5	0,354	0,041	Muscle relaxant
6	0,375	0,075	Anticonvulsant
7	0,369	0,079	Diabetic neuropathy treatment
8	0,457	0,167	Nootropic
9	0,308	0,079	Antiamyloidogenic
10	0,395	0,169	Platelet adhesion inhibitor
11	0,235	0,010	Gastrointestinal disorders treatment
12	0,328	0,109	Dementia treatment
13	0,281	0,063	Antiischemic
14	0,169	0,020	Obsessive-compulsive disorder treatment
15	0,239	0,109	Antiparkinsonian
16	0,222	0,152	Analgesic stimulant
17	0,180	0,115	Antiviral (Hepatitis B)
18	0,178	0,134	Antidiarrheal
19	0,214	0,171	Antiallergic
20	0,214	0,179	Cystic fibrosis treatment
21	0,150	0,122	Antinaupathic
22	0,148	0,123	Antipsychotic

Table: 3.17 PASS Pridiction data

4. PREPARATION OF URACIL BASED CHLOROFORMATE DERIVATIVES

There are another set of seventeen compound synthesized by the Uracil [136][137] and chloroformate series, very simple, high efficient and facile synthesis have been reported. All the synthesized compounds were characterized by proton Nuclear Magnetic resonance and High resonance Mass Spectroscopy.

The synthesis of the target uracil derivatives was performed according to Scheme 4.1. A simple and successful protocol has been developed for synthesis of uracil derivatives. It should be noted that in the available literature, generally sodium hydride in dimethyl formamide have been used during the alkylation (methylation) reactions which is highly dangerous in the context of safety, environment pollutant and it also results poor yield, impure compounds. In our simple protocol, we used low cost, eco-friendly and safe, inorganic base potassium carbonate in dimethyl formamide solvent in one pot during four steps which is one of the major advantages of our protocol. In addition, we got higher percentage yields of products. Initially, we have synthesized N-substituted uracil analogues in high yields by simple N-alkylation reactions of 4-chlorouracil with different halogenated benzyl halides and methyl iodide respectively, under catalyst free conditions in DMF solvent. Then the chlorine atoms of N-substituted uracil derivatives were substituted with piperazine and 4-aminopiperidine, respectively. In the last step, Mixture of water and acetone has been used as a solvent, and potassium carbonate used as a base, substituted chloroformates were added in to it after reaction completion judged by TLC water added in to it, product partitioned with ethylacetate and it was purified by coloumn chromatography, to produce title compounds 4a-4q, with good yield of (40-60%). A reasonable mechanism for the formation of uracil derivatives is shown in Scheme 3.2.

The reaction conditions were optimized using various solvents, bases. The yields ranged from 40 to 60%. A perusal of these indicates that the DMF and inorganic base was the best one; resulting in higher yield and best conversion. During the optimization of organic and inorganic bases were used. It was observed that during organic bases, the

reaction was completed at faster rate, but less conversion was observed. The percentage of yield was increased while using inorganic bases under DMF solvent. Hence, throughout the reactions potassium carbonate as base and DMF as solvent were used.

Scheme- 4.1: Preparation of Uralic based chloroformate derivatives

4.1 EXPERIMENTAL PROCEDURE:

4.1.1 One pot synthesis of target compounds (4a-4q):

A suspension of 6-chloro uracil (7.75 g, 0.0528 moles) and potassium carbonate (9.14 g, 0.0661 moles M) were mixed in 50 mL DMF in 250 mL RBF, followed addition of by halogenated benzyl derivatives of 1-(bromomethyl) benzene (10.00 g, 0.0584 moles), the reaction mass 8.0 hrs stirred at 20-30°C, then potassium carbonate (7.31 g, 0.0529 moles) was charged to the reaction mass followed by methyl iodide (15.02 g, 0.10 moles) the reaction mixture was stirred at 20-30°C till reaction completion (16-24 hrs). After that, charged piperazine (4.52 g, 0.0524 moles) or piperidin-3-amine (9.10 g, 0.0524 moles) added during agitation then obtained mass brought temperature to 80 °C for 8hrs then the reaction progress monitored by TLC, Ethylacetate and water was used to partition of product, moisture presence in organic layer were removed by sodium sulphate then distilled off solvent completely then 160 mL acetone and 70 mL water was added, followed by potassium carbonate (0.1056 moles) and chloroformates (0.0633 moles)

added to the above obtained mixture and it was agitated for 2-4 hrs at 23-33°C. Water was added in to it after the completion of reaction and the product was extracted in ethylacetate, organic layer dried over sodium sulphate and solvent was removed by vacuum distillation at elevated temperature. The desired products (4a-4q) were purified by column chromatography to get title compounds.

4.2 GENERAL PROCEDURE

4.2.1 Synthesis of N-alkylated compounds of 6-chlorouracil (41):

6-chlorouracil (10 g, 0.0682 moles) and diisopropylethylamine (18.52 gm, 0.1432 moles) were soluble in 50 mL DMF and then agitated for 10-20 min at 20-30°C, followed by addition of halogenated 1-(bromomethyl)benzene (12.90 g, 0.0754 moles) then obtained reaction mass were agitated for 8 hrs at 20-30°C, the reaction completion judged using TLC, 150 mL water was added in to it then the precipitated product (**41**) was isolated by filtration, dried to obtained 14.37 gm (89.0 %)

4.2.2 Synthesis of compounds (42):

In 100 mL acetone compound **41** (10.00 g, 0.0422 moles) was dissolved then potassium carbonate (12.84 g, 0.0929 moles) and the reaction agitated for 15-25 min. at 20-30°C, followed by methyl iodide (11.99 g, 0.0844 M) added in to it the obtained reaction mass were agitated overnight at 23-33°C, the reaction completion was judged by TLC, during addition of water product were precipitated out and precipitated product were removed by filtration to gives product (**42**) was then dried to get 9.74 g (92.0 %).

4.2.3 Synthesis of Compounds 43 or 44:

Compound **2** (9.00 g, 0.0359 moles) were dissolved in 45 mL DMF followed by addition of potassium carbonate (9.92 g, 0.0717 moles) and (3.40 g, 0.0394 moles) of piperazine or piperidin-3-amine (6.83 g, 0.0394 moles), and reaction temperature was maintained at 80°C, until the starting material disappear by TLC, after reaction completion product was extracted by solvent ethyl acetate by addition of water in to it, organic layer was subsequently washed with H₂O, distilled out solvent under vacuum at 39-49°C to afford compounds **43** (9.16 g, 85.0%) or **44** (9.81 g, 87.0%) .

4.3 SYNTHESIS PROCEDURE AND CHARECTERISATION OF TARGET COMPOUNDS (4a-4q):

Compound **43** (9.00 g, 0.0299 moles) or **44** (9.00 g, 0.0286 moles) was suspended in the mixture of acetone and water mixture (90 mL: 40 mL) followed by addition of potassium carbonate (0.0598 moles) after stirred 10 min. added slowly chloroformates (0.0299 moles) at 20-30°C, the reaction mass agitated at 23-33°C, till starting material disappear and added water added in to it, product was partitioned with water and ethylacetate organic layer successively treated with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compounds (4a-4q).

4.3.1 heptyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4a):

Compound **43** (9.00 g, 0.0285 moles) was suspended in the mixture of acetone 90 mL and H_2O 40 mL followed by addition of potassium carbonate (7.88 g, 0.0570 moles) after stirred 10 min. added slowly chloroformates (4.70 gm, 0.0285 moles) at at 20-30°C, the reaction mass agitated at 23-33°C, till starting disappear from the reaction mass then added water and ethyl acetate to partitioned formed product , successively organic layer treated with H_2O , followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compounds 1. Yield: 12.37 gm, (94.17%).

¹H-NMR: δ = 0.87-0.90 (m, 4 H,-CH₃), 1.26-1.32 (m, 12 H, -CH₂), 1.55-1.65 (3, 3 H, -CH₂), 2.85 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.55 (broad, 2 H, -CH₂), 3.61-3.65 (t, 1H,) 4.05-4.11 (t, 2 H, -O-CH2), 5.07 (s, 2 H, Ar-CH₂-), 5.35 (s, 1 H, -CH), 6.99-7.04 (t, 2 H, ArH) 7.20-7.23 (m, 2 H, ArH) ppm. Mass: (C₂₄H₃₃FN4O4) *m*/*z*= 460.25, *M*+*H*=461.2840.

4.3.2 octyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4b):

Compound **43** (9.00 g, 0.0285 moles) or **44** (9.00 g, 0.0286 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.88 gm,

0.0570 moles) after stirred 10 min. added slowly chloroformates (5.49 gm, 0.0285 moles) at room temperature, at 20-30°C, the reaction mass agitated at 23-33°C till starting materials disappear from reaction mass, added water in to it, ethyl acetate were used to extract the product, organic layer successively treated with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title 2. Yield: 12.39 gm, (91.80%).

¹H-NMR: δ = 0.88-0.91 (t, 4 H, -CH₃), 1.29-1.32 (m, 14 H, -CH₂), 1.56-1.64 (m, 2 H, -CH₂), 2.84 (broad, 4H, -CH₂), 3.30 (s, 3 H, -N-CH₃), 3.57-3.66 (broad, 3 H, -CH₂), 4.05-4.12 (t, 2 H, -O-CH₂), 5.08 (s, 2 H, Ar-CH₂-), 5.36 (s, 1 H, -CH), 7.01-7.05 (t, 2 H, ArH) 7.21-7.24 (t, 2 H, ArH) ppm. Mass: (C₂₅H₃₅FN₅O₄) *m*/*z*= 473.23, *M*+*H*=474.2.

4.3.3 hexyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4c):

Compound **43** (9.00 g, 0.0260 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.20 gm, 0.0520 moles) after stirred 10 min. added slowly chloroformates (4.29 gm, 0.0260 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it, ethyl acetate were used to extract product, treated ethylacetate layer with water H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compounds 3. Yield: 11.59 gm, (94.0%).

¹H-NMR: δ = 0.80-0.88 (t, 3 H, -CH₃), 1.29 (m, 6 H, -CH₂), 1.60-1.61 (d, 3 H, -CH₂), 2.84 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.43-3.52(broad, 4 H, -CH₂), 4.06-4.10 (t, 2 H, -O-CH₂), 5.18 (s, 2 H, Ar-CH₂-), 5.39 (s, 1 H, -CH), 7.36-7.38 (d, 2 H, ArH) 8.19-8.21 (d, 2 H, ArH) ppm. Mass: (C₂₃H₃₁N₅O₆) *m*/*z*= 473.23, *M*+*H*=474.2.

4.3.4 Octyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4d):

Compound **43** (9.00 g, 0.0260 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.20 gm, 0.0520 moles) after stirred 10

min. added slowly chloroformates (5.02 gm, 0.0260 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compounds **4d**. Yield: 12.00 gm, (92.0 %).

¹H-NMR: δ = 0.85-0.86 (t, 3 H, -CH₃), 1.26-1.29 (m, 10 H, -CH₂), 1.59-1.61 (d, 2 H, -CH₂), 2.84 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.43-3.52(broad, 4 H, -CH₂), 4.06-4.09 (t, 2 H, -O-CH2), 5.17 (s, 2 H, Ar-CH₂-), 5.39 (s, 1 H, -CH), 7.35-7.38 (d, 2 H, ArH) 8.19-8.21 (d, 2 H, ArH) ppm. Mass: (C₂₅H₃₅N₅O₆) *m*/*z*= 501.26, *M*+H=502.1.

4.3.5 Octyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4e):

Compound **43** (9.00 g, 0.0237 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (6.56 gm, 0.0474 moles) after stirred 10 min. added slowly chloroformates (4.57 gm, 0.0237 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4e**. Yield: 11.31gm, (89.18%).

¹H-NMR: δ = 0.86-0.87 (t, 3 H, -CH₃), 1.13-1.41 (m, 12 H, -CH₂), 1.62 (t, 3 H, -CH₂), 2.83 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.41-3.53(broad, 4 H, -CH₂), 4.06-4.10 (t, 2 H, -O-CH₂), 5.04 (s, 2 H, Ar-CH₂-), 5.34 (s, 1 H, -CH), 7.08-7.10 (d, 2 H, ArH) 7.44-7.46 (d, 2 H, ArH) ppm. Mass: (C₂₅H₃₅BrN₄O₄) *m*/*z*= 535.47, *M*+H=537.

4.3.6 Heptyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4f):

Compound **43** (9.00 g, 0.0237 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (6.56 gm, 0.0474 moles) after stirred 10 min. added slowly chloroformates (4.24 gm, 0.0237 moles) at 20-30°C, the reaction mass

agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H_2O , followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4f**. Yield: 11.26 gm, (90.27 %).

¹H-NMR: δ = 0.86-0.87 (t, 3 H, -CH₃), 1.27-1.31 (m, 9 H, -CH₂), 1.62-1.72 (t, 2 H, -CH₂), 2.50-2.85 (broad, 4H, -CH₂), 3.27-3.28 (s, 4 H, -N-CH₃&-CH-), 3.79(broad, 1 H, -CH), 4.01-4.04 (t, 2 H, -O-CH2), 4.62-4.64 (d, 1 H, -CH₂-), 4.92-5.18 (m, 2 H, Ph-CH₂), 5.31(s, 1 H, -CH-) 7.05-7.07 (d, 2 H, ArH) 7.42-7.44 (d, 2 H, ArH) ppm. Mass: (C₂₄H₃₃BrN₄O₄) *m*/*z*= 520.17, *M*+*H*=521.

4.3.7 Octyl 1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylcarbamate (4g):

Compound **44** (9.00 g, 0.0228 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (6.33gm, 0.0456 moles) after stirred 10 min. added slowly chloroformates (4.40 gm, 0.0228 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4g**. Yield: 11.78 gm, (93.70%).

¹H-NMR: δ = 0.85-0.88 (t, 3 H, -CH₃), 1.26-1.40 (m, 12 H, -CH₂), 1.45-1.90 (broad, 6 H, -CH₂), 2.68-2.89 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.39-3.53(broad, 4 H, -CH₂), 4.06-4.10 (t, 2 H, -O-CH₂), 5.04 (s, 2 H, Ar-CH₂-), 5.34 (s, 1 H, -CH), 7.08-7.10 (d, 2 H, ArH) 7.43-7.46 (d, 2 H, ArH) ppm. Mass: (C₂₆H₃₇BrN₄O₄) *m*/*z*= 548.2, *M*+*H*=550.9.

4.3.8 Octyl 4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4h):

Compound **3** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (5.45 gm, 0.0282 moles) at 20-30°C, the reaction mass

agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H_2O , followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4h**. Yield: 11.83 gm, (88.25%).

¹H-NMR: δ = 0.85-0.88 (t, 3 H, -CH₃), 1.02-1.40 (m, 12 H, -CH₂), 1.59-1.80 (t, 3 H, -CH₂), 2.82 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.42-3.52(broad, 4 H, -CH₂), 4.05-4.09 (t, 2 H, -O-CH₂), 5.08 (s, 2 H, Ar-CH₂-), 5.34 (s, 1 H, -CH), 6.89-6.94 (q, 1 H, ArH) 6.96-6.98 (d, 2 H, ArH), 7.26-7.31(q, 1 H, ArH) ppm. Mass: (C₂₅H₃₅FN₄O₄) *m*/*z*= 474.26, *M*+*H*=475.1.

4.3.9 Octyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4i):

Compound **43** (9.00 g, 0.0299 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (8.28 gm, 0.0598 moles) after stirred 10 min. added slowly chloroformates (5.77 gm, 0.0299 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4i**. Yield: 11.63 gm, (85.0 %).

¹H-NMR: δ = 0.85-0.88 (t, 3 H, -CH₃), 1.27-1.29 (broad, 12 H, -CH₂), 1.53-1.64 (m, 4 H, -CH₂), 2.82 (broad, 4H, -CH₂), 3.31 (s, 3 H, -N-CH₃), 3.51(broad, 4 H, -CH₂), 3.60-3.63 (t, 2 H, -CH₂), 4.05-4.08 (t, 2 H, -O-CH₂), 5.10 (s, 2 H, Ar-CH₂-), 5.33 (s, 1 H, -CH), 7.09-7.27 (m, 2 H, ArH) 7.31- 7.33(t, 2 H, ArH) ppm. Mass: (C₂₅H₃₆N₄O) *m*/*z*= 456.27, *M*+*H*=457.10

4.3.10 Heptyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4j):

Compound **43** (9.00 g, 0.0299 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (8.28 gm, 0.0598 moles) after stirred 10 min. added slowly chloroformates (5.35 gm, 0.0299 moles) at at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4j**. Yield: 11.49 gm, (86.95%).

¹H-NMR: δ = 0.86-0.88 (t, 3 H, -CH₃), 1.28-1.30 (broad, 12 H, -CH₂), 1.55-1.72 (m, 3 H, -CH₂), 2.83 (broad, 4H, -CH₂), 3.32 (s, 3 H, -N-CH₃), 3.32-3.51(broad, 4 H, -CH₂), 3.62-3.65 (t, 2 H, -CH₂), 4.06-4.09 (t, 2 H, -O-CH₂), 5.10 (s, 2 H, Ar-CH₂-), 5.34 (s, 1 H, -CH₂), 7.18-7.20 (d, 2 H, ArH) 7.26-7.34(m, 3 H, ArH) ppm. Mass: (C₂₄H₃₄N₄O₄) *m*/*z*= 442.29, *M*+*H*=443.1.

4.3.11 Heptyl 4-(3-(4-nitrobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6-dioxopyrimidin-4-yl)piperazine-1-carboxylateyl)piperazine-1-carboxylate (4k):

Compound **43** (9.00 g, 0.0260 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.20 gm, 0.0520 moles) after stirred 10 min. added slowly chloroformates (4.66 gm, 0.0260 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4k**. Yield: 11.23 gm, (88.50%).

¹H-NMR: δ = 0.86-0.88 (t, 3 H, -CH₃), 1.21-1.24 (broad, 10 H, -CH₂), 1.45-1.57 (m, 3 H, -CH₂), 2.80 (broad, 4H, -CH₂), 3.23 (s, 3 H, -N-CH₃), 3.47-3.56 (broad, 4 H, -CH₂), 3.99-4.03 (t, 2 H, -O-CH₂), 5.13 (s, 2 H, Ar-CH₂-), 5.33 (s, 1 H, -CH), 7.25-7.34 (d, 2 H, ArH) 8.11-8.13(d, 2 H, ArH) ppm. Mass: (C₂₄H₃₃N₅O₆) *m*/*z*= 487.24, *M*+*H*=488.

4.3.12 Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l):

Compound **43** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (5.05 gm, 0.0282 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **41**. Yield: 11.88 gm, (91.70%).

¹H-NMR: δ = 0.85-0.88 (t, 3 H, -CH₃), 1.27-1.31 (broad, 8 H, -CH₂), 1.55-1.63 (m, 2 H, -CH₂), 2.80 (broad, 4H, -CH₂), 3.32 (s, 3 H, -N-CH₃), 3.49-3.63 (broad, 3 H, -CH₂), 4.05-4.08 (t, 2 H, -O-CH₂), 5.16 (s, 2 H, Ar-CH₂-), 5.33 (s, 1 H, -CH), 7.02-7.07 (t, 1 H, ArH) 7.09-7.13(m, 2 H, ArH), 7.23-7.28 (m, 1 H, ArH) ppm. Mass: (C₂₄H₃₃FN₄O₄) *m*/*z*= 460.25, *M*+*H*=461.1.

4.3.13 2-ethylbutyl 4-(3-(2-fluorobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6dioxopyrimidin-4-yl)piperazine-1-carboxylate (4m):

Compound **43** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (4.65 gm, 0.0282 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4m**. Yield: 11.49 gm, (91.20%).

¹H-NMR: δ = 0.87-0.91 (t, 3 H, -CH₃), 1.25-1.38 (m, 4 H, -CH₂), 1.48-1.56 (m, 1H, -CH₂), 2.81-2.90 (broad, 5H, -CH₂), 3.33-3.43 (broad, 5 H, -N-CH₃, CH₂), 3.51 (broad, 4 H, -CH₂), 4.01-4.02 (t, 2 H, -O-CH₂), 5.16 (s, 2 H, Ar-CH₂-), 5.34 (s, 1 H, -CH), 7.03-7.11 (m, 4 H, ArH) ppm. Mass: (C₂₃H₃₁FN₄O₄) *m*/*z*= 446.23, *M*+*H*=461.1

4.3.14 Octyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4n):

Compound **43** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (4.65 gm, 0.0282 moles) at at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4n**. Yield: 12.00 gm (89.50%).

¹H-NMR: δ = 0.86- 0.89 (t, 3 H, -CH₃), 1.27-1.30 (broad, 10 H, -CH₂), 1.57-1.63 (m, 2 H, -CH₂), 2.80 (broad, 4H, -CH₂), 3.30 (s, 3 H, -N-CH₃), 3.50-3.65 (broad, 4 H, -CH₂), 4.06-4.09 (t, 2 H, -O-CH₂), 5.16 (s, 2 H, Ar-CH₂-), 5.33 (s, 1 H, -CH), 7.03-7.11 (m, 3 H, Ar H), 7.23-7.26 (broad, 1 H, ArH) ppm. Mass: (C₂₄H₃₃FN₄O₄) *m*/*z*= 460.25, *M*+*H*=461.1

4.3.15 Hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40):

Compound **43** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (4.65 gm, 0.0282 moles) at at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **40**. Yield: 11.21 gm, (89.0%).

¹H-NMR: δ = 0.86-0.90 (t, 3 H, -CH₃), 1.30 (broad, 6 H, -CH₂), 1.57-1.63 (m, 2 H, -CH₂), 2.80 (broad, 4H, -CH₂), 3.33 (s, 3 H, -N-CH₃), 3.40-3.51 (broad, 4 H, -CH₂), 4.06-4.09 (t, 2 H, -O-CH₂), 5.16 (s, 2 H, Ar-CH₂-), 5.33 (s, 1 H, -CH), 7.02-7.11 (m, 3 H, ArH) 7.25 (broad, 1 H, ArH) ppm. Mass: (C₂₃H₃₁FN₄O₄) *m*/*z*= 460.25, *M*+*H*=461.1

4.3.16 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p):

Compound **43** (9.00 g, 0.0276 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.64 gm, 0.0552 moles) after stirred 10 min. added slowly chloroformates (4.55 gm, 0.0276 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4p**. Yield: 11.25 gm (90.0%).

¹H-NMR: δ = 0.80-0.88 (m, 6 H, -CH₃), 1.22-1.29 (m, 7 H, -CH₂), 1.29-1.31 (m, 1 H, -CH₂), 2.80 (broad, 4H, -CH₂), 3.10 (s, 3 H, -N-CH₃), 3.27-3.30 (t, 2 H, -CH₂), 3.51-3.62 (broad, 4 H), 3.92-3.93 (t, 2 H, -O-CH₂), 5.07 (s, 2 H, Ar-CH₂-), 5.38 (s, 1 H, -CH), 7.14 (m, 3 H, ArH) 7.15 (m, 1 H, ArH) ppm. Mass: (C₂₄H₃₁N₅O₄) *m*/*z*= 453.24, *M*+*H*=454.

4.3.17 Hexyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4q):

Compound **43** (9.00 g, 0.0282 moles) was suspended in acetone 90 mL and water 40 mL followed by addition of potassium carbonate (7.81 gm, 0.0564 moles) after stirred 10 min. added slowly chloroformates (4.65 gm, 0.0282 moles) at 20-30°C, the reaction mass agitated at 23-33°C till starting material disappear from the mass added water in to it ethyl acetate were used to extract product, treated organic layer successively with H₂O, followed by dried with sodium sulphate, distilled out ethyl acetate under vacuum at 40-50°C to give title compound **4q**. Yield: 11.59 gm, (92.0%).

¹H-NMR: δ = 0.89-0.91 (t, 3 H, -CH₃), 1.27-1.31 (m, 6 H, -CH₂), 1.61-1.70 (m, 3 H, -CH₂), 2.86 (broad, 4H, -CH₂), 3.33 (s, 3 H, -N-CH₃), 3.57 (broad, 3 H, -CH₂), 4.09-4.12 (t, 2 H, -O-CH₂), 5.08 (s, 2 H, Ar-CH₂-), 5.36 (s, 1 H, -CH), 7.01-7.06 (t, 2 H, ArH) 7.21-7.24(m, 2 H, ArH) ppm. Mass: (C₂₃H₃₁FN₄O₄) *m*/*z*= 446.23, *M*+*H*=447.2472.

4.4 NMR AND MASS SPECTROSCOPY DATA OF COMPOUNDS (4a-4q):

4.4.1 H¹ NMR Spectra of heptyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4a)

4.4.2 HRMS of heptyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4a)

4.4.3 H¹ NMR Spectra of Octyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4b)

4.4.4 HRMS of octyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4b)

4.4.5 H¹ NMR Spectra of hexyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4c)

4.4.6 HRMS of hexyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4c)

4.4.7 H¹ NMR Spectra of octyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4d)

4.4.8 HRMS of octyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4d)

5 CDC13 NAME EXPNC PROCE Date_ Time INSTR PROBH PULPR TD 7.4625 -7.2598 ~7.1020 -3.4280 -3.4103 -2.8358 100608390673 1362 8779 8607 5379 239 023 194 NS DS SWH FID AQ RG DW DE TE D1 TD0 NUC1 P1 PL1 PL1W SF01 SI SF WDW SSB LB GB GB PC 7.0 ppm 7.6 7.4 7.2 2 3 5 4 1 ppm 0.95 11 2.09 3.09 3.86 94 3.13 11.79 76.. N 83 362 2779 167 083 01 N R C₂₅H₃₅BrN₄O₄ Exact Mass: 534.18 Mol. Wt.: 535.47 COMPOUND 5 7 14 9 13 12 11 10 8 6 2 0 ppm 5 3 1.97 0.95 2.09 3.13 3.86 60 .08

4.4.9 H¹ NMR Spectra of Octyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4e)

4.4.10 HRMS of Octyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4e)

4.4.11 H¹ NMR Spectra of Heptyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4f)

4.4.12 HRMS of Heptyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4f)

4.4.13 H¹ NMR Spectra of octyl 1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylcarbamate (4g)

4.4.14 HRMS of octyl 1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperidin-3-ylcarbamate (4g)

4.4.15 H1 NMR Spectra of octyl 4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4h)

4.4.16 HRMS of octyl 4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4h)

4.4.17 H¹ NMR Spectra of Octyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4i)

4.4.18 HRMS of Octyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4i)

4.4.19 H¹ NMR Spectra of Heptyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4j)

4.4.20 HRMS of Heptyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-

tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4j)

4.4.21 H¹ NMR Spectra of Heptyl 4-(3-(4-nitrobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6-dioxopyrimidin-4-yl)piperazine-1-carboxylateyl)piperazine-1-carboxylate (4k)

4.4.22 HRMS of Heptyl 4-(3-(4-nitrobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6dioxopyrimidin-4-yl)piperazine-1-carboxylateyl)piperazine-1-carboxylate (4k)

4.4.23 ¹HNMR Spectra of Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l)

Current Data Parameters NAME EXPNO 2 PROCNO 1 163.09 161.30 155.32 155.32 155.32 155.32 155.32 155.32 155.32 155.32 155.32 155.32 155.32 152.83 155.32 152.83 155.32 F2 - Acquisition Parameters Date_____20170908 = CHANNEL f1 ==== 100.6245897 MHz 13C 8.50 usec SFO1 NUC1 P1 PLW1 63.65000153 W CHANNEL f2 === 400.1386005 MHz IH [2 waltz16 90.00 usec 16.18000031 W 0.27814001 W 0.22529000 W SFO2 40 NUC2 CPDPRG[2 PCPD2 PLW2 10 PLW12 0 PLW13 0
 F2 - Processing parameters

 SI
 32768

 SF
 100.6145287 MHz

 WDW
 EM

 SSB
 0

 LB
 1.00 Hz

 GB
 0

 PC
 1.40
 200 180 160 140 120 100 80 60 40 20 0 ppm

4.4.24 ¹³CNMR Spectra of Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l)

4.4.25 Dept NMR Spectra of Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l)

4.4.26 HRMS of Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l)

4.4.27 H¹ NMR Spectra of 2-ethylbutyl 4-(3-(2-fluorobenzyl)-1,2,3,6-tetrahydro-1methyl-2,6-dioxopyrimidin-4-yl)piperazine-1-carboxylate (4m)

4.4.28 HRMS of 2-ethylbutyl 4-(3-(2-fluorobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6dioxopyrimidin-4-yl)piperazine-1-carboxylate (4m)

4.4.29 H¹ NMR Spectra of octyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4n)

4.4.30 ¹³CNMR Spectra of octyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4n)

4.4.31 DeptNMR Spectra of octyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4n)

4.4.32 HRMS of octyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4n)

4.4.33 H¹ NMR Spectra of hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40)

4.4.34 13C NMR Spectra of hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40)

4.4.35 DeptNMR Spectra of hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40)

4.4.36 HRMS of hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40)

4.4.37 H¹NMR Spectra of 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p)

4.4.38 ¹³CNMR Spectra of 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p)

4.4.39 DeptNMR Spectra of 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p)

4.4.40 HRMS of 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p)

4.4.42 ¹³C NMR Spectra of hexyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4q)

4.4.43 HRMS of hexyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4q)

4.5 BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS PREDICTION:

Compounds 4a-4q shows tremendous activity in PASS prediction in various diseases, some of the important activities are listed below tables

4.5.1 heptyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4a):

Compound-4a shows some of the important activities like Anti-infertility (female), Ophthalmic drug, Atherosclerosis treatment, Antidiabeticsymptomatic and Gastrointestinal disorders treatment.

Sr.No	Pa	Pi	Activity
1	0,779	0,003	Histamine H1 receptor antagonist
2	0,719	0,004	Antihistaminic
3	0,701	0,004	Histamine antagonist
4	0,442	0,012	Antiinfertility, female
5	0,501	0,130	Nootropic
6	0,418	0,057	Anticonvulsant
7	0,338	0,037	Ophthalmic drug
8	0,346	0,048	Immunomodulator
9	0,291	0,016	Cyclic GMP phosphodiesterase inhibitor
10	0,300	0,029	Anti-Helicobacter pylori
11	0,297	0,028	Antieczematic atopic
12	0,323	0,067	H+-transporting two-sector ATPase inhibitor
13	0,318	0,099	Antipruritic
14	0,236	0,028	Antiglaucomic
15	0,292	0,084	Atherosclerosis treatment
16	0,266	0,074	Antiischemic
17	0,255	0,071	Antidiabetic symptomatic
18	0,197	0,018	Gastrointestinal disorders treatment

Table:	4.1	PASS	Pridiction	date
Table:	4.1	PASS	Pridiction	date

19	0,380	0,202	Antiischemic, cerebral
20	0,264	0,085	Antiparkinsonian
21	0,298	0,129	Analgesic
22	0,246	0,111	Antihypertensive
23	0,286	0,193	Antianginal
24	0,206	0,142	Alzheimer's disease treatment
25	0,140	0,116	Antiparkinsonian, tremor relieving
26	0,118	0,108	CNS active muscle relaxant

4.5.2 Octyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4b):

Compound-4b shows some of the important activities like Antihistaminic, Antiinfertility (female), Ophthalmic drug, Antiparkinsonian, Gastrointestinal disorders treatment, Antihypertensive and Alzheimer's disease treatment.

Sr.No	Pa	Pi	Activity
1	0,779	0,003	Histamine H1 receptor antagonist
2	0,719	0,004	Antihistaminic
3	0,701	0,004	Histamine antagonist
4	0,442	0,012	Antiinfertility, female
5	0,338	0,037	Ophthalmic drug
6	0,228	0,040	Diabetic nephropathy treatment
7	0,255	0,071	Antidiabetic symptomatic
8	0,197	0,018	Gastrointestinal disorders treatment
9	0,264	0,085	Antiparkinsonian
10	0,298	0,129	Analgesic
11	0,246	0,111	Antihypertensive
12	0,170	0,076	Alkylglycerone-phosphate synthase inhibitor
13	0,286	0,193	Antianginal

Table: 4.2 PASS Pridict	tion date
-------------------------	-----------

14	0,277	0,209	Leukopoiesis stimulant
15	0,206	0,142	Alzheimer's disease treatment
16	0,227	0,164	Analgesic, non-opioid
17	0,200	0,149	Angiogenesis stimulant
18	0,179	0,134	Muscle relaxant
19	0,129	0,084	Narcolepsy treatment
20	0,140	0,116	Antiparkinsonian, tremor relieving
21	0,019	0,009	Phosphodiesterase 6A inhibitor

4.5.3 hexyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4c):

Compound-4c shows some of the important activities like Antihistaminic, Antiinfertility (female), Anticonvulsant, Antiparkinsonian, Antineoplastic (pancreatic cancer) and Antihypertensive.

Table: 4.3 PASS	Pridiction date
-----------------	-----------------

Sr.No	Pa	Pi	Activity
1	0,653	0,004	Antihistaminic
2	0,639	0,004	Histamine antagonist
3	0,424	0,014	Antiinfertility, female
4	0,394	0,066	Anticonvulsant
5	0,405	0,082	Antianginal
6	0,354	0,055	Antihypertensive
7	0,307	0,048	Antiischemic
8	0,233	0,058	Antiparkinsonian, tremor relieving
9	0,234	0,088	Angiogenesis stimulant
10	0,222	0,078	Ceramide glucosyltransferase inhibitor
11	0,192	0,049	GST M1-1 substrate
12	0,230	0,094	Antidiabetic symptomatic
13	0,224	0,110	Antiparkinsonian, rigidity relieving

14	0,204	0,155	Antiparkinsonian
15	0,230	0,204	DNA polymerase I inhibitor
16	0,073	0,048	Phosphodiesterase II inhibitor
17	0,123	0,098	Phenylacetate-CoA ligase inhibitor
18	0,259	0,236	Leukopoiesis stimulant
19	0,198	0,175	D-lactaldehyde dehydrogenase inhibitor
20	0,030	0,007	Toll-Like receptor 7 agonist
21	0,180	0,161	Skeletal muscle relaxant
22	0,023	0,005	DNA polymerase III inhibitor
23	0,180	0,163	Macrophage stimulant
24	0,053	0,038	Angiotensin antagonist
25	0,039	0,024	Dipeptidyl peptidase IV inhibitor
26	0,198	0,193	Antineoplastic (pancreatic cancer)

4.5.4 Octyl 4-(3-(4-nitrobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4d):

Compound-4d shows some of the important activities like Antihistaminic, Antiinfertility (female), Antiviral (Picornavirus), Analeptic, Antineoplastic (pancreatic cancer) and Antidiabetic symptomatic.

Sr.No	Pa	Pi	Activity
1	0,653	0,004	Antihistaminic
2	0,639	0,004	Histamine antagonist
3	0,424	0,014	Antiinfertility, female
4	0,394	0,066	Anticonvulsant
5	0,405	0,082	Antianginal
6	0,354	0,055	Antihypertensive
7	0,389	0,119	Antiviral (Picornavirus)
8	0,307	0,048	Antiischemic

 Table: 4.4 PASS Pridiction date

9	0,233	0,058	Antiparkinsonian, tremor relieving
10	0,230	0,094	Antidiabetic symptomatic
11	0,224	0,110	Antiparkinsonian, rigidity relieving
12	0,204	0,155	Antiparkinsonian
13	0,202	0,171	Analeptic
14	0,052	0,038	Angiotensin II receptor antagonist
15	0,198	0,193	Antineoplastic (pancreatic cancer)

4.5.5 Octyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4e):

Compound-4e shows some of the important activities like Antihistaminic, Anticonvulsant, Anti-infertility (female), Ophthalmic drug, Antineoplastic (bone cancer), Atherosclerosis treatment, Antineoplastic (bone cancer) and Antiparkinsonian.

Sr.No	Pa	Pi	Activity
1	0,734	0,004	Antihistaminic
2	0,727	0,003	Histamine antagonist
3	0,641	0,003	Histamine H1 receptor antagonist
4	0,462	0,044	Anticonvulsant
5	0,414	0,016	Antiinfertility, female
6	0,314	0,032	Antidiabetic symptomatic
7	0,323	0,042	Ophthalmic drug
8	0,244	0,025	Diabetic nephropathy treatment
9	0,221	0,099	HERG 1 channel blocker
10	0,221	0,117	Antiischemic
11	0,213	0,114	Antineoplastic (bone cancer)
12	0,217	0,135	Antihypertensive
13	0,215	0,139	Antiparkinsonian

 Table: 4.5 PASS Pridiction date

14	0,215	0,151	Atherosclerosis treatment
15	0,226	0,186	Antihelmintic (Nematodes)
16	0,203	0,166	Cardiotonic
17	0,204	0,171	Antiviral (CMV)
18	0,053	0,031	Kinesin-like protein 1 inhibitor
19	0,232	0,211	Neurodegenerative diseases treatment
20	0,025	0,004	DNA polymerase III inhibitor
21	0,040	0,022	Dipeptidyl peptidase IV inhibitor

4.5.6 Heptyl-4-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4f):

Compound-4f shows some of the important activities like Antihistaminic, Anticonvulsant, Anti-infertility (female), Ophthalmic drug, Kidney function stimulant, Antiviral (CMV), Cardiotonic, Gastroesophageal reflux disease treatment and Antiparkinsonian.

Sr.No	Pa	Pi	Activity
1	0,734	0,004	Antihistaminic
2	0,727	0,003	Histamine antagonist
3	0,641	0,003	Histamine H1 receptor antagonist
4	0,462	0,044	Anticonvulsant
5	0,414	0,016	Antiinfertility, female
6	0,314	0,032	Antidiabetic symptomatic
7	0,323	0,042	Ophthalmic drug
8	0,380	0,184	Kidney function stimulant
9	0,221	0,117	Antiischemic
10	0,125	0,022	Gastroesophageal reflux disease treatment
11	0,121	0,028	Leukocyte elastase inhibitor
12	0,217	0,135	Antihypertensive

Table:	4.6 PASS	Pridiction	date

13	0,215	0,139	Antiparkinsonian
14	0,203	0,166	Cardiotonic
15	0,204	0,171	Antiviral (CMV)
16	0,232	0,211	Neurodegenerative diseases treatment
17	0,165	0,151	Muscle relaxant

4.5.7 Octyl 1-(3-(4-bromobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-ylcarbamate (4g):

Compound-4g shows some of the important activities like Antihistaminic, Cardiotonic, Antineoplastic enhancer, Cardiotonic, Antineoplastic (bone cancer), Antiviral, Gastrointestinal disorders treatment and Antihypertensive.

Sr.No	Pa	Pi	Activity
1	0,756	0,003	Histamine antagonist
2	0,752	0,004	Antihistaminic
3	0,465	0,019	Muscle relaxant
4	0,413	0,027	Skeletal muscle relaxant
5	0,395	0,066	Anticonvulsant
6	0,305	0,024	Antieczematic atopic
7	0,216	0,014	Gastrointestinal disorders treatment
8	0,159	0,034	Dihydropyrimidine dehydrogenase inhibitor
9	0,244	0,121	Cardiotonic
10	0,219	0,104	Antidiabetic symptomatic
11	0,241	0,171	Antihelmintic (Nematodes)
12	0,053	0,009	Dipeptidyl peptidase IV inhibitor
13	0,173	0,135	Antineoplastic enhancer
14	0,166	0,139	Antiviral
15	0,194	0,174	Antineoplastic (bone cancer)
16	0,091	0,081	Antiviral (Hepatitis C)

Table:	4.7	PASS	Pridiction	date

17	0,105	0,096	Antiviral (Hepatitis)
18	0,179	0,177	Antihypertensive

4.5.8 Octyl 4-(3-(3-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4h):

Compound-4h shows some of the important activities like Antiinfertility, female, Atherosclerosis treatment, Analgesic, Antiparkinsonian, Antihypertensive , Alzheimer's disease treatment, Muscle relaxant and Female sexual dysfunction treatment.

Table: 4.8 PASS Pridiction date

Sr.No	Pa	Pi	Activity
1	0,765	0,003	Histamine H1 receptor antagonist
2	0,665	0,004	Antihistaminic
3	0,547	0,103	Nootropic
4	0,426	0,014	Antiinfertility, female
5	0,444	0,049	Anticonvulsant
6	0,329	0,040	Ophthalmic drug
7	0,421	0,168	Antiischemic, cerebral
8	0,298	0,081	Atherosclerosis treatment
9	0,321	0,114	Analgesic
10	0,269	0,072	Antiischemic
11	0,226	0,043	Diabetic nephropathy treatment
12	0,251	0,075	Antidiabetic symptomatic
13	0,259	0,090	Antiparkinsonian
14	0,186	0,020	Gastrointestinal disorders treatment
15	0,240	0,115	Antihypertensive
16	0,247	0,142	Analgesic, non-opioid
17	0,218	0,128	Alzheimer's disease treatment
18	0,115	0,035	Leukocyte elastase inhibitor

19	0 101	0.027	Neuropentide S antagonist
	0,101	0,027	
20	0,136	0,069	Narcolepsy treatment
21	0,184	0,128	Muscle relaxant
22	0,131	0,097	CNS active muscle relaxant
23	0,046	0,013	Dipeptidyl peptidase IV inhibitor
24	0,195	0,170	Antidiabetic
25	0,085	0,080	Female sexual dysfunction treatment

4.5.9 Octyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4i):

Compound-4i shows some of the important activities like Antiinfertility, female, Antiviral (Picornavirus), Kidney function stimulant, Antiparkinsonian, Antihypertensive, Alzheimer's disease treatment, Muscle relaxant and Antiviral (Rhinovirus).

Sr.No	Pa	Pi	Activity
1	0,767	0,003	Antihistaminic
2	0,749	0,003	Histamine antagonist
3	0,457	0,010	Antiinfertility, female
4	0,427	0,054	Anticonvulsant
5	0,441	0,179	Nootropic
6	0,289	0,037	Antiparkinsonian, tremor relieving
7	0,288	0,083	Antihypertensive
8	0,256	0,070	Antidiabetic symptomatic
9	0,263	0,077	Antiischemic
10	0,340	0,170	Antiviral (Picornavirus)
11	0,256	0,092	Antiparkinsonian
12	0,346	0,211	Kidney function stimulant
13	0,247	0,116	Atherosclerosis treatment

Table: 4.9 PASS Pridiction date

14	0,225	0,109	Antiparkinsonian, rigidity relieving
15	0,312	0,228	Antiviral (Rhinovirus)
16	0,244	0,176	Analgesic
17	0,205	0,138	Angiogenesis stimulant
18	0,082	0,018	Acetylcholine muscarinic agonist
19	0,044	0,016	Dipeptidyl peptidase IV inhibitor
20	0,023	0,023	5. Hydroxytryptamine 4E antagonist

4.5.10 Heptyl-4-(3-benzyl-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperazine-1-carboxylate (4j):

Compound-4j shows some of the important activities like Antiinfertility, female, Ophthalmic drug, Antiviral (Picornavirus), Antiparkinsonian, Antidiabetic symptomatic, Atherosclerosis treatment, Muscle relaxant and Platelet aggregation inhibitor.

Sr.No2	Pa	Pi	Activity
3	0,767	0,003	Antihistaminic
4	0,749	0,003	Histamine antagonist
5	0,457	0,010	Antiinfertility, female
6	0,416	0,009	Anti-Helicobacter pylori
7	0,427	0,054	Anticonvulsant
8	0,404	0,090	Leukopoiesis stimulant
9	0,338	0,037	Ophthalmic drug
10	0,441	0,179	Nootropic
11	0,289	0,037	Antiparkinsonian, tremor relieving
12	0,280	0,038	Antieczematic atopic
13	0,254	0,019	Diabetic nephropathy treatment
14	0,288	0,083	Antihypertensive
15	0,256	0,070	Antidiabetic symptomatic

Table: 4.10 PASS Pridiction data

16	0,263	0,077	Antiischemic
17	0,340	0,170	Antiviral (Picornavirus)
18	0,256	0,092	Antiparkinsonian
19	0,247	0,116	Atherosclerosis treatment
20	0,225	0,109	Antiparkinsonian, rigidity relieving
21	0,311	0,225	Platelet aggregation stimulant
22	0,312	0,228	Antiviral (Rhinovirus)
23	0,202	0,125	Platelet aggregation inhibitor
24	0,177	0,108	Antitussive
25	0,219	0,152	Antiasthmatic
26	0,244	0,176	Analgesic
27	0,059	0,027	Angiotensin II receptor antagonist
28	0,044	0,016	Dipeptidyl peptidase IV inhibitor

4.5.11 Heptyl 4-(3-(4-nitrobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6-dioxopyrimidin-4-yl)piperazine-1-carboxylateyl)piperazine-1-carboxylate (4k):

Compound-4k shows some of the important activities like Antiinfertility, female, Ophthalmic drug , Antiviral (Picornavirus), Antiparkinsonian, Antidiabetic symptomatic, Antihypertensive, Antineoplastic (pancreatic cancer) and Gastroesophageal reflux disease treatment.

Sr.No	Pa	Pi	Activity
1	0,653	0,004	Antihistaminic
2	0,639	0,004	Histamine antagonist
3	0,424	0,014	Antiinfertility, female
4	0,394	0,066	Anticonvulsant
5	0,405	0,082	Antianginal
6	0,354	0,055	Antihypertensive
7	0,389	0,119	Antiviral (Picornavirus)

Table: 4.11 PASS Pridiction data	Table:	4.11	PASS	Pridiction	data
----------------------------------	--------	------	------	------------	------

8	0.291	0.059	Ophthalmic drug
9	0,233	0,058	Antiparkinsonian, tremor relieving
10	0,230	0,094	Antidiabetic symptomatic
11	0,224	0,110	Antiparkinsonian, rigidity relieving
12	0,229	0,136	Cardiotonic
13	0,103	0,033	Gastroesophageal reflux disease treatment
14	0,340	0,283	Nootropic
15	0,204	0,155	Antiparkinsonian
16	0,232	0,188	Superoxide dismutase inhibitor
17	0,202	0,171	Analeptic
18	0,259	0,236	Leukopoiesis stimulant
19	0,039	0,024	Dipeptidyl peptidase IV inhibitor
20	0,198	0,193	Antineoplastic (pancreatic cancer)

4.5.12 Heptyl-4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4l):

Compound-4l shows some of the important activities like Antiinfertility, female, Ophthalmic drug, Atherosclerosis treatment, Antidiabetic symptomatic, Analgesic, symptomatic, Antihypertensive, Antineoplastic (pancreatic cancer) and Antihypertensive.

Sr.No	Pa	Pi	Activity
1	0,743	0,003	Histamine H1 receptor antagonist
2	0,663	0,004	Antihistaminic
3	0,490	0,038	Anticonvulsant
4	0,430	0,013	Antiinfertility, female
5	0,343	0,035	Ophthalmic drug
6	0,311	0,034	Antidiabetic symptomatic
7	0,314	0,071	Atherosclerosis treatment

Table: 4.12 PASS Pridiction data

8	0,249	0,028	Aldose reductase substrate
9	0,416	0,199	Nootropic
10	0,317	0,116	Analgesic
11	0,317	0,122	Neurodegenerative diseases treatment
12	0,269	0,081	Antiparkinsonian
13	0,264	0,098	Antihypertensive
14	0,130	0,021	Leukocyte elastase inhibitor
15	0,245	0,145	Analgesic, non-opioid
16	0,235	0,136	Chitinase inhibitor
17	0,231	0,134	Cardiotonic
18	0,194	0,097	Diabetic nephropathy treatment
19	0,119	0,036	Female sexual dysfunction treatment
20	0,200	0,163	Antidiabetic
21	0,190	0,167	Alzheimer's disease treatment
22	0,109	0,090	Myocardial ischemia treatment
23	0,118	0,110	Narcolepsy treatment

4.5.13 2-ethylbutyl 4-(3-(2-fluorobenzyl)-1,2,3,6-tetrahydro-1-methyl-2,6dioxopyrimidin-4-yl)piperazine-1-carboxylate (4m):

Compound-4m shows some of the important activities like Female sexual dysfunction treatment , Antihistaminic , Antiinfertility, female, Ophthalmic drug, Atherosclerosis treatment, Analgesic, Analgesic, symptomatic, Antihypertensive, Antineoplastic (pancreatic cancer) and Antihypertensive.

Table:	4.13	PASS	Pridiction	data
--------	------	------	------------	------

Sr.No	Pa	Pi	Activity
1	0,590	0,004	Histamine H1 receptor antagonist
2	0,582	0,022	Anticonvulsant
3	0,436	0,006	Antihistaminic

4	0,396	0,019	Antiinfertility, female
5	0,359	0,092	Analgesic
6	0,301	0,053	Ophthalmic drug
7	0,251	0,075	Antidiabetic symptomatic
8	0,255	0,104	Antihypertensive
9	0,249	0,114	Atherosclerosis treatment
10	0,261	0,128	Analgesic, non-opioid
11	0,181	0,067	Antidiabetic (type 2)
12	0,226	0,135	Antidiabetic
13	0,110	0,029	Gastroesophageal reflux disease treatment
14	0,113	0,040	Female sexual dysfunction treatment
15	0,212	0,156	Cardiotonic
16	0,206	0,152	Antiparkinsonian
17	0,131	0,079	Narcolepsy treatment
18	0,334	0,291	Nootropic
19	0,169	0,136	Antiviral
20	0,116	0,100	Heart failure treatment
21	0,105	0,095	Antiviral (Hepatitis)
22	0,088	0,087	Antiviral (Hepatitis C)

4.5.14	Octyl	4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-
	4-yl)pi	perazine-1-carboxylate (4n):

Compound-4n shows some of the important activities like Female sexual dysfunction treatment , Antihistaminic , Antiinfertility, female, Ophthalmic drug, Atherosclerosis treatment, Analgesic, Anticonvulsant, Antihypertensive, Antidiabetic (type 2) and Antihypertensive.

Table: 4.14 PASS Pridiction data

Sr.No	Pa	Pi	Activity
1	0,590	0,004	Histamine H1 receptor antagonist
2	0,582	0,022	Anticonvulsant
3	0,436	0,006	Antihistaminic
4	0,396	0,019	Antiinfertility, female
5	0,359	0,092	Analgesic
6	0,251	0,075	Antidiabetic symptomatic
7	0,255	0,104	Antihypertensive
8	0,249	0,114	Atherosclerosis treatment
9	0,261	0,128	Analgesic, non-opioid
10	0,152	0,034	Gastrointestinal disorders treatment
11	0,181	0,067	Antidiabetic (type 2)
12	0,226	0,135	Antidiabetic
13	0,113	0,040	Female sexual dysfunction treatment
14	0,212	0,156	Cardiotonic
15	0,206	0,152	Antiparkinsonian
16	0,131	0,079	Narcolepsy treatment
17	0,245	0,197	Neurodegenerative diseases treatment
18	0,169	0,136	Antiviral
19	0,105	0,095	Antiviral (Hepatitis)
20	0,016	0,014	Phosphodiesterase 6A inhibitor
21	0,053	0,052	Lipase inhibitor
22	0,088	0,087	Antiviral (Hepatitis C)

4.5.15 Hexyl 4-(3-(2-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (40):

Compound-40 shows some of the important activities like Anticonvulsant, Heart failure treatment, Alzheimer's disease treatment, Female sexual dysfunction treatment, Antihistaminic, Antiinfertility, female, ophthalmic drug, and
Atherosclerosis treatment, Analgesic, Anticonvulsant, Antihypertensive, Antidiabetic (type 2) and Antihypertensive.

Sr.No	Pa	Pi	Activity				
1	0,743	0,003	Histamine H1 receptor antagonist				
2	0,663	0,004	Antihistaminic				
3	0,490	0,038	Anticonvulsant				
4	0,430	0,013	Antiinfertility, female				
5	0,343	0,035	Ophthalmic drug				
6	0,311	0,034	Antidiabetic symptomatic				
7	0,314	0,071	Atherosclerosis treatment				
8	0,317	0,116	Analgesic				
9	0,317	0,122	Neurodegenerative diseases treatment				
10	0,269	0,081	Antiparkinsonian				
11	0,220	0,034	Antiglaucomic				
12	0,201	0,017	Gastrointestinal disorders treatment				
13	0,328	0,150	Antianginal				
14	0,264	0,098	Antihypertensive				
15	0,137	0,018	Gastroesophageal reflux disease treatment				
16	0,245	0,145	Analgesic, non-opioid				
17	0,119	0,036	Female sexual dysfunction treatment				
18	0,129	0,079	Heart failure treatment				
19	0,200	0,163	Antidiabetic				
20	0,190	0,167	Alzheimer's disease treatment				
21	0,118	0,110	Narcolepsy treatment				

Table: 4.15 PASS Pridiction data

4.5.16 4-methylpentyl-4-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4p):

Compound-4p shows some of the important activities like Menstruation disorders treatment, Anticonvulsant, Antidiabetic (type 2), Heart failure treatment, Gastroesophageal reflux disease treatment, Female sexual dysfunction treatment, Alzheimer's disease treatment, ophthalmic drug and Atherosclerosis treatment.

Sr.No	Pa	Pi	Activity		
1	0,433	0,005	Histamine H1 receptor antagonist		
2	0,359	0,010	Antihistaminic		
3	0,372	0,077	Anticonvulsant		
4	0,239	0,026	Menstruation disorders treatment		
5	0,285	0,090	Antidiabetic		
6	0,279	0,088	Antihypertensive		
7	0,231	0,048	Antidiabetic (type 2)		
8	0,230	0,110	Ophthalmic drug		
9	0,112	0,039	Leukocyte elastase inhibitor		
10	0,128	0,081	Heart failure treatment		
11	0,111	0,079	Gastrointestinal disorders treatment		
12	0,089	0,074	Female sexual dysfunction treatment		
13	0,186	0,175	Alzheimer's disease treatment		
14	0,078	0,077	Gastroesophageal reflux disease treatment		
15	0,188	0,188	Atherosclerosis treatment		

Table: 4.16 PASS Pridiction data

4.5.17 Hexyl 4-(3-(4-fluorobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperazine-1-carboxylate (4q):

Compound-4q shows some of the important activities like Neurodegenerative diseases treatment, Nootropic, Antidiabetic (type 2), Analgesic, Gastroesophageal reflux

disease treatment, Muscle relaxant, Alzheimer's disease treatment, Platelet aggregation inhibitor and CNS active muscle relaxant.

Sr.No	Pa	Pi	Activity			
1	0,779	0,003	Histamine H1 receptor antagonist			
2	0,719	0,004	Antihistaminic			
3	0,442	0,012	Antiinfertility, female			
4	0,501	0,130	Nootropic			
5	0,418	0,057	Anticonvulsant			
6	0,338	0,037	Ophthalmic drug			
7	0,292	0,084	Atherosclerosis treatment			
8	0,316	0,123	Neurodegenerative diseases treatment			
9	0,228	0,040	Diabetic nephropathy treatment			
10	0,255	0,071	Antidiabetic symptomatic			
11	0,197	0,018	Gastrointestinal disorders treatment			
12	0,264	0,085	Antiparkinsonian			
13	0,298	0,129	Analgesic			
14	0,246	0,111	Antihypertensive			
15	0,130	0,020	Gastroesophageal reflux disease treatment			
16	0,119	0,030	Leukocyte elastase inhibitor			
17	0,206	0,142	Alzheimer's disease treatment			
18	0,227	0,164	Analgesic, non-opioid			
19	0,179	0,134	Muscle relaxant			
20	0,140	0,116	Antiparkinsonian, tremor relieving			
21	0,054	0,031	Dipeptidyl peptidase inhibitor			
22	0,178	0,158	Platelet aggregation inhibitor			
23	0,118	0,108	CNS active muscle relaxant			

Table: 4.17	PASS	Pridiction	data
-------------	------	------------	------

5 AN EFFICIENT SYNTHESIS FOR THE PREPARATION OF NOVEL 9H-PURIN-2-AMINE SUBSTITUTED AMINO ACID DERIVATIVES

5.1 INTRODUCTION:

Purines and substituted puriens [138] is well known for its biological activity, the analogues of purine have been showed many kind of biological activity such as antineoplastic [139], antiviral [140], antifuncal [141] agent and some group of agent with similar structures, but it shows some kind of different mechanism of action, indication, pharmacokinetics and adverse effect. In the synthesis of DNA or RNA or both DNA and RNA antimetabolite or competing with triphosphate. In the diseases or infections like Viral, Lymphomas [142] and Leukemia's [143] the analogues of adenine [144] [145], guanine [146] are generally showing excellent activity, Thioguanine, azathiopurine and mercaptopurine which are some substituted thiopurines which are having very much activity against several type Leukemia and also been active against immunosuppressive and immunomodulatory agents in autoimmune condition treatment such as lupus nephritis, Crohn disease, autoimmune hepatitis.

Purine analogues and some other purine derivatives are exclusively showing very good activity against malignant conditions, typically lymphomas and leukemias. The most commonly used and first line treatment of CLL (chronic lymphocytic leukemia) is Fludarabine [147] which is derivative of purine analogue. Fludarabine is also having some other activity against immunosuppressive and also used for the treatment of nonmyeloablative regimen and also for preparation and transplantation of hematopoietic cell. Fludarabine also having very excellent activity against viral infection such as hepatitis B, The adenosine derivatives of Cladribine and Pentostatin [148] are predominantly used for hairy cell leukemia. Cladribine and Pentostatin atleast having hepatotoxic potential so that are used or considered to treat hairy cell leukemia. The

adenine cell has profound immunosuppressive activity and is used in nonmyeloablative regimens in preparation for hematopoietic cell transplantation. Because of its immunosuppressive activity, fludarabine is associated with reactivation of viral infections, including hepatitis B. Cladribine and pentostatin are adenosine derivatives and are used predominantly for hairy cell leukemia. They have minimal hepatotoxic potential, at least at the doses that are used to treat hairy cell leukemia. The adenosine derivatives of Clofarabine is used to treat acute lymphoblastic leukemia which is mostly affected by children who have already failure of other medication,

The guanine derivative of Nelarabine is used to treat in T cell malignancies, generally after failure of prior treatments. During the therapy Nelarabine and Clofarabine are associated with elevated rates of serum aminotransferase and very rare caused liver injury. All the purine derivatives are directly having link with hepatotoxic potential. There are several antineoplastic drugs are available in the market which are Clofarabine, Mercaptopurine, Cladribine, Azathiopine, Fludarabine Thioguanine, Nelarabine and Pentostatin. Purines and substituted purines is the important intermediate for the synthesis of variety of purine and purine nucleoside molecules, several antiviral [149] drugs are available with purine derivatives such as Abacavir, valaciclovir, femciclovir, acyclovir, valganciclovir, ganciclovir etc.,

Reaction Scheme- 5.1: process for the preparation of purine derivatives

Where X= Halogen, R= Amino acid

5.2 GENERAL PROCEDURE:

2-amino-6-Chloropurine 1 (1 mmol), Animo acid 2(1 mmol) were added Sodium carbonate (2.50 mmol) then heated in to reflux till reaction completed, after reaction was completed reaction mass was cooled to 20-30°C, reaction mass was adjusted the pH 6.5 by adding 1:1 dilute hydrochloric acid, the precipitated product was stirred 2 hrs at RT, then the product was isolated by filtration. Wet product was dried at 45°C to obtained desire product.

5.2.1 SYNTHETIC PROCEDURE AND CHARECTERISATION OF COMPOUNDS 22-33

5.2.2 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3yl)propanoic acid (5a):

2-amino-6-chloropurine (10.00 gm, 0.0589 moles) is suspended with 30 mL water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of triptophen (12.04 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 – 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid as off white solid, Yield: 17.90gm (90.0%); m.p: > 230°C.

¹H NMR (DMSO) \Box ppm 3.29-3.33 (d, 4H, -NH₂-, -NH-), 4.91 (broad, 1H, -CH), 5.93 (broad, 2H, -CH₂), 6.76 (d, 1H, Ar-H), 7.06 (t, 1H, Ar-H), 7.19 (d, 1H, Ar-H), 7.32-7.34 (d, 1H, Ar-H), 7.54 (d, 1H, Ar-H), 7.72 (d, 1H, Ar-H), 10.88 (s, 1H, -COOH). ¹³C NMR \Box ppm 27.54, 53.87, 110, 111.90, 118.67, 118.93, 121.45, 124.24, 127.65, 136.51, 152.39, 154.09, 159.83, 174.63. HRMS (ESI) m/z calc for C₁₆H₁₅N₇O₂, 337.13, Found, [M+ H]: 338.1410.

5.2.3 Preparation of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 mL water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of isoleucine (7.73gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid as off white solid, Yield: 13.87gm (89.0%); m.p: 228-233°C.

¹H NMR (DMSO) \Box ppm 0.87-0.91 (t, 3H, -CH₃), 0.93-0.94 (d, 3H, -CH₃), 1.23-1.34 (m, 1H, -CH₂), 1.43-1.51 (m, 1H, -CH₂), 1.94-2.06 (m, 1H, -CH), 2.50-2.51 (d, 1H, -CH), 8.66 (d, 1H, Ar-H). ¹³C NMR \Box ppm 11.73, 11.92, 15.90, 25.21, 57.90, 105.16, 114.66, 117.56, 120.45, 121.64, 142.59, 148.83152.25, 155.29, 159.44, 159.80, 160.42, 172.66. HRMS (ESI) m/z calc for C₁₁H₁₆N₆O₂, 264.13, Found, [M+ H]: 265.1501.

5.2.4 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of phenyl alanine (9.74 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid as off white solid, Yield: 16.0gm (91.0%); m.p:212-217°C.

¹H NMR (DMSO) □ ppm 3.05-3.08(t, 1H, -CH), 3.30-3.33 (d, 2H, -CH₂), 4.51 (s, 1H, -CH), 5.72 (s, 2H, -NH₂), 7.08-7.14 (m, 5H, Ar-H), 7.66 (s, 1H, Ar-H). ¹³C NMR □ ppm 37.87, 56.19, 112.67, 126.21, 128.19, 129.99, 136.49, 139.42, 152.23, 154.03, 158.14,

160.54, 175.10. HRMS (ESI) m/z calc for $C_{14}H_{14}N_6O_2$, 298.12, Found, [M+ H]: 298.1188.

5.2.5 (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

To a suspen ion of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-Valine (6.908 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to $20-30^{\circ}$ C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at $20-25^{\circ}$ C, the precipitated product isolated by filtration and washed wet product with water and dried at $50-55^{\circ}$ C to gives (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid as off white solid, Yield: 13.0gm (88.13%); m.p: > 238^{\circ}C.

¹H NMR (DMSO + TFA) \Box ppm 0.96-0.98 (t, 3H, -CH₃), 2.21-2.29 (m, 1H, -CH), 7.63-8.02 (broad, 4H, -NH2, -NH), 8.60-8.63 (d, 1H, Ar-H). ¹³C NMR \Box ppm 18.24, 19.28, 30.82, 58.66, 105.16, 111.71, 114.60, 117.49, 120.38, 142.59, 148.54, 152.70, 154.30, 158.82, 172.67. HRMS (ESI) m/z calc for C₁₀H₁₄N₆O₂, 250.12, Found, [M+ H]: 251.1529.

5.2.6 Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)-4-methylpentanoic acid (5e):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-Leucine (9.73 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 – 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (S)-2-(2-amino-9H-purin-6-ylamino)-4-methylpentanoic acid as off white solid, Yield: 13.55gm (87.0%); m.p: > 230°C.

¹H NMR (DMSO + TFA) \Box ppm 0.88-.94 (t, 6H, -CH₃), 1.69-1.74 (t, 1H, -CH₂, -CH), 4.78-4.81 (t, 1H, -CH), 8.18 (d, 1H, Ar-H). HRMS (ESI) m/z calc for C₁₁H₁₆N₆O₂, 264.13, Found, [M+H]: 265.1841.

5.2.7 Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid (5f):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-alanine (5.25 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 – 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid as off white solid, Yield: 11.35gm (86.64%); m.p: > 230°C.

¹H NMR (DMSO + TFA) \Box ppm 2.62-2.65(t, 3H, -CH₃), 3.68-3.71 (t, 1H, -CH), 4.78-4.81 (t, 1H, -CH), 8.11 (d, 1H, Ar-H). HRMS (ESI) m/z calc for C₈H₁₀N₆O₂, 222.09, Found, [M+H]: 223.1307.

5.2.8 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (5g):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-Cystein (7.14 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to $20-30^{\circ}$ C, brought the pH 5.0 – 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at $20-25^{\circ}$ C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (dimer) as off white solid, Yield: 13.27gm (88.50%); m.p: 216-220°C.

¹H NMR (DMSO + TFA) \Box ppm 3.21-3.24(m, 1H, -CH₂), 3.38-3.42 (m, 1H, -CH), 5.07-5.10 (t, 1H, -CH), 8.16 (s, 1H, Ar-H), 13.77 (broad, 1H, -COOH). HRMS (ESI) m/z calc for C₈H₁₀N₆O₂S, 254.06, Found, [M+ H]: 507.1355.

5.2.9 Preparation of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid (5h):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-proline (6.79 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to $20-30^{\circ}$ C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at $20-25^{\circ}$ C, the precipitated product isolated by filtration and washed wet product with water and dried at $50-55^{\circ}$ C to gives (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid as off white solid, Yield: 13.46gm (92.0%); m.p: > 238^{\circ}C.

¹H NMR (DMSO + TFA) \Box ppm 2.04-2.06 (m, 4H, -CH₂), 2.26-2.37 (m, 2H, -CH₂), 3.68-3.83 (m, 1H, -CH₂), 3.98-4.04 (m, 2H, -CH), 4.74-4.76 (d, 1H, -CH), 8.21 (s, 1H, Ar-H), 14.91(broad, 1H, -COOH). HRMS (ESI) m/z calc for C₁₀H₁₂N₆O₂, 248.1, Found, [M+H]: 249.121.

5.2.10 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid (5i):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of D-Serine (6.20 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid as off white solid, Yield: 12.19gm (86.79%); m.p: > 238°C.

¹H NMR (DMSO + TFA) \Box ppm 3.79-3.82 (dd, 1H, -CH₂), 3.93-3.97 (dd, 2H, -CH₂), 4.86-4.88 (t, 1H, -CH), 8.21 (s, 1H, Ar-H), 15.88 (broad, 1H, -COOH). HRMS (ESI) m/z calc for C₈H₁₀N₆O₃, 238.08, Found, [M+ H]: 299.0925

5.2.11 Preparation of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of R-3-amino piperidine (10.21 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 - 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives ((R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine as off white solid, Yield: 12.44gm (90.47%); m.p: > 238°C.

¹H NMR (D₂O) \Box ppm 1.16 (m, 2H, -CH₂), 1.53 (broad, 1H, -CH₂), 1.73 (broad, 1H, -CH₂), 2.06 (broad, 1H, -CH₂), 2.58-2.64 (m, 1H, -CH₂), 2.78 (m, 1H, -CH), 4.22-4.37 (m, 2H, _CH₂)7.39-7.43 (d, 1H, Ar-H). HRMS (ESI) m/z calc for C₁₀H₁₅N₇, 233.14, Found, [M+H]: 234.1235.

5.2.12 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k): To a suspension of 2-amino-6-chloropurine (10.00 gm, 0.0589 moles) in 30 ml water and added sodium carbonate (21.87 gm, 0.2064 moles) followed by addition of L-phenyl glycine (8.91 gm, 0.0589) the reaction mass was refluxed for 8 hrs, reaction completion monitored by TLC, then bring down temperature to 20-30°C, brought the pH 5.0 – 6.0 by addition of acetic acid, precipitated product was stirred for 2 hrs at 20-25°C, the precipitated product isolated by filtration and washed wet product with water and dried at 50-55°C to gives (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid as off white solid, Yield: 15.30gm (91.27%); m.p: 204.2-207.8°C.

¹H NMR (DMSO) □ ppm 5.68 (m, 1H, -CH), 6.37-7.76 (m, 5H, Ar-CH), 8.09 (s, 1H, Ar-H), 12.97 (broad, 1H,-COOH). HRMS (ESI) m/z calc for C₁₃H₁₂N₆O₂, 284.27, Found, [M+H]: 285.1027.

5.12.13 Preparation of 2,9-diacetylguanine (50):

In a 2500 mL round bottom flask charged 600 mL acetic acid and guanine (1a, 25.00 g, and 0.1654 moles) stirred for 10 min at RT, added slowly acetic anhydride (300 mL) at RT, then obtained solution heated to 135°C for 7.5 h. Reaction progress was monitored by TLC, if reaction completed, acetic anhydride were distilled under vacuum and the crude product was obtained as solid, then crude product were recrystallized from DI (de ionized) water to got white powder (1, 36.96 g, yield 95%). m.p. 251 - 256°C. 1 H NMR (DMSO-d6) δ 11.56 (s, 1H, OH), 8.15 (s, 1H, NH), 8.11 (s, 1H, CH), 2.16-2.50 (m, 6H, CH3). IR (KBr) 1530, 1680, 3200 cm⁻¹. MS (70 eV) m/z 234.09 (M); MS m/z (%) 234.09 (M, 20), 192.12 (100), 150.08 (23). Analysis Calculated for C₉H₉N₅O₃: C, 45.93; H, 3.87; N, 29.76; O, 20.37. Found: C, 45.96; H, 3.86; N, 29.78; O, 20.41.

5.2.14 Preparation of 2-amino-6-chloropurine (51):

In 1000 mL round bottom flask took 100 mL Dichloroethane and 2, 9-diacetylguanine (23.50 g, 0.1000 moles) and added PEG-2000 (40 g, 0.0200 moles) at 20-30°C. Then added drop wise POCl₃ (54.00 g, 0.3500 moles) over the period of 30-40 min. at 20-30°C, raise the temperature slowly to 80° C. The reaction progress was monitored by TLC, after 6.0-7.0 hrs, brings down the temperature to 20-30°C, precipitate solid was removed by filtration. The solvent were distilled out under vacuum at 40-50°C, the obtained residue were recrystallized by using DMSO to produce a white powder (2, 14.20 g, yield 84%). m.p. 298-302°C. ¹H NMR (DMSO-d6) δ 8.01 (m, 1H, CH), 6.75-6.79 (m, 3H, NH₂ and NH). IR (KBr) 630, 822, 1292, 1636 cm⁻¹. MS (70 eV) m/z 169.13 (M); MS m/z (%) 169.13 (M), 151.20, 135.13, 116.84. Analysis Calculated for C5H4CIN5: C, 35.37; H, 2.34; Cl, 20.93; N, 41.29. Found: C, 35.41; H, 2.38; Cl, 20.91; N, 41.30.

5.3 DNA BINDING UV ABSORPTION SPECTRUM OF THE ABOVE MOLECULES ARE LISTED BELOW

The DNA binding studies of said compound were done in UV absorption spectroscopy and are listed below.

5.3.1 UV Spectrum of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

Fig: 5.1 : UV Spectrum of Compound 5a

5.3.2 Preparation of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

Fig: 5.2 : UV Spectrum of Compound 5b

- 5.3.3 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):
- Fig: 5.3 : UV Spectrum of Compound 5c

5.3.4 (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

Fig: 5.4 : UV Spectrum of Compound 5d

5.3.5 Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)-4-methylpentanoic acid (5e):

5.3.6 Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid (5f):

Fig: 5.6 : UV Spectrum of Compound 5f

- 5.3.7 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (5g):
- Fig: 5.7 : UV Spectrum of Compound 5g

5.3.8 Preparation of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid (5h):

Fig: 5.8: UV Spectrum of Compound 5h

- 5.3.9 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid (5i):
- Fig: 5.9 : UV Spectrum of Compound 5i

5.3.10 Preparation of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

Fig: 5.10 : UV Spectrum of Compound 5j

5.3.11 Preparation of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

Fig: 5.11 : UV Spectrum of Compound 5k

5.4 NMR, MASS AND IR SPECTRUM OF COMPOUNDS (5a-5k)

5.4.1 H¹ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

5.4.2 C¹³ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

5.4.3 Dept NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

5.4.4 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

5.4.5 IR Spectrum of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3yl)propanoic acid (5a):

5.4.6 H¹ NMR of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

5.4.7 C¹³ NMR of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

5.4.8 Dept NMR of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

5.4.9 HRMS of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

5.4.10 IR Spectrum of (2R)-2-(2-amino-9H-purin-6-ylamino)-3-methylpentanoic acid (5b):

5.4.11 H¹ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):

Current Data Parameters NAME EXPNO 2 PROCNO 1
 PROCNO
 1

 F2 - Acquisition Parameters Date
 20170828

 Time
 12.39

 INSTRUM
 spect

 PROBHD 5 mm PABBO BB-PULPROG
 zgpg30

 TD
 65536

 SOLVENT
 DMSO

 NS
 1024

 DS
 4

 SWH
 24038.461 Hz

 FIDRES
 0.366798 Hz

 AQ
 1.3631488 sec

 RG
 20.800 usec

 DE
 6.50 usec

 TE
 291.6 K

 DI
 0.0000000 sec

 DI
 0.3000000 sec

 DI
 1
-56.19 -56.19 -39.87 -39.46 -39.46 -39.25 -39.04 -39.04 -37.87 == CHANNEL f1 -----100.6245897 MHz 13C 8.50 usec 63.65000153 W SFO1 NUC1 P1 PLW1
 CHANNEL f2

 SFO2
 400.1386005 MHz

 NUC2
 1H

 CPDPRG[2
 walz16

 PCPD2
 90.00 usec

 PLW2
 16.18000031 W

 PLW12
 0.27814001 W

 PLW13
 0.22529000 W

 F2 - Processing parameters

 SI
 32768

 SF
 100.6145287 MHz

 WDW
 EM

 SSB
 0

 LB
 1.00 Hz

 GB
 0

 PC
 1.40
200 180 160 140 120 100 80 60 40 20 0 ppm

5.4.12 C¹³ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):

5.4.13 Dept NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):

5.4.14 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-phenylpropanoic acid (5c):

5.4.17 C¹³ NMR of (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

5.4.18 Dept NMR of (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

5.4.19 HRMS of (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

5.4.20 IR Spectrum of (S)-2-(2-amino-9H-purin-6-ylamino)-3-methylbutanoic acid (5d):

5.4.21 H¹ NMR of Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)-4methylpentanoic acid (5e):

5.4.22 HRMS NMR of Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)-4methylpentanoic acid (5e):

5.4.23 IR Spectrum of Preparation of (S)-2-(2-amino-9H-purin-6-ylamino)-4methylpentanoic acid (5e):

5.4.25 HRMS of (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid (5f):

8/28/2017 2:45:23 PM

5.4.26 IR Spectrum of (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid (5f):

5.4.27 H¹ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (5g):

5.4.28 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (5g):

5.4.29 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-mercaptopropanoic acid (5g):

5.4.30 H¹ NMR of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid (5h):

5.4.31 HRMS of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid (5h):

5.4.32 HRMS of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2-carboxylic acid (5h):

5.4.33 H¹ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid (5i):

5.4.34 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid (5i):

5.4.35 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-3-hydroxypropanoic acid (5i):

5.4.37 C¹³ NMR of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

5.4.38 Dept NMR of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

5.4.40 HRMS of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

5.4.41 H¹ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

5.4.42 C¹³ NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

5.4.43 Dept NMR of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

5.4.44 HRMS of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

5.4.45 IR Spectrum of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

5.5 **BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS PREDICTION:**

Compounds 5a-5k shows tremendous activity in PASS prediction in various diseases, some of the important activities are listed below tables

5.5.1 PASS Prediction data of (R)-2-(2-amino-9H-purin-6-ylamino)-3-(1H-indol-3-yl)propanoic acid (5a):

Compound-5a shows some of the important activities like Antineoplastic antimetabolite, Antiviral (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), Cancer associated disorders treatment, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant and Antineoplastic (solid tumors).

Sr.No	Pa	Pi	Activity
1	0,795	0,005	Mitochondrial processing peptidase inhibitor
2	0,685	0,004	3'-Demethylstaurosporine O-methyltransferase inhibitor
3	0,669	0,026	Pseudolysin inhibitor
4	0,424	0,015	Antineoplastic antimetabolite
5	0,442	0,037	Antiasthmatic
6	0,455	0,061	Antineoplastic (non-Hodgkin's lymphoma)
7	0,462	0,069	Antiviral (Picornavirus)
8	0,386	0,042	Antiviral (Herpes)
9	0,372	0,034	Antiviral (Poxvirus)
10	0,365	0,029	Cancer associated disorders treatment
11	0,364	0,069	Autoimmune disorders treatment
12	0,311	0,031	Analgesic stimulant
13	0,316	0,048	Multiple sclerosis treatment
14	0,320	0,057	Venom exonuclease inhibitor
15	0,337	0,076	Antiallergic

Table:	5.1	PASS	Pridiction	date
--------	-----	------	------------	------

16	0,302	0,106	Rhinitis treatment
17	0,269	0,076	Fibroblast growth factor 1 agonist
18	0,244	0,054	Antiviral (Hepatitis B)
19	0,215	0,049	Growth stimulant
20	0,260	0,127	Antineoplastic (solid tumors)
21	0,237	0,122	Antiviral (Influenza A)
22	0,254	0,147	Antineoplastic (multiple myeloma)
23	0,101	0,018	Aralkylamine N-acetyltransferase inhibitor
24	0,114	0,032	Histamine N-methyltransferase inhibitor
25	0,094	0,012	rRNA (adenosine-2'-O-)-methyltransferase inhibitor
26	0,200	0,119	Anticarcinogenic
27	0,152	0,072	Antimigraine
28	0,233	0,160	Antiviral (Adenovirus)
29	0,230	0,177	Antiinfective
30	0,204	0,172	Antiviral (CMV)

5.5.2 PASS Prediction data of(2R)-2-(2-amino-9H-purin-6-ylamino)-3methylpentanoic acid (5b):

Compound-5b shows some of the important activities like **Fibroblast growth factor agonist, Antineoplastic antimetabolite, Kidney function stimulant, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), **Cancer associated disorders treatment, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant** and **Antineoplastic (solid tumors).**

Table: 5.2	PASS	Pridiction	date
------------	------	------------	------

Sr No	Pa	Pi	Activity
1	0,709	0,005	Thiol oxidase inhibitor
2	0,572	0,026	Antiviral (Picornavirus)

3	0,523	0,029	Fibroblast growth factor agonist
4	0,522	0,029	Antineoplastic (non-Hodgkin's lymphoma)
5	0,461	0,012	Antineoplastic antimetabolite
6	0,466	0,023	Antiviral (Poxvirus)
7	0,418	0,028	Antiviral (Herpes)
8	0,483	0,109	Kidney function stimulant
9	0,398	0,047	Antiviral (Influenza)
10	0,359	0,016	Antiviral (Influenza A)
11	0,357	0,021	Antiviral (Hepatitis B)
12	0,342	0,045	Fibroblast growth factor 1 agonist
13	0,341	0,059	Antiviral (Adenovirus)
14	0,324	0,064	HCV IRES inhibitor
15	0,332	0,079	Antiinfective
16	0,288	0,037	Antiviral (CMV)
17	0,363	0,119	Antineoplastic
18	0,305	0,065	Venom exonuclease inhibitor
19	0,314	0,078	Cancer associated disorders treatment
20	0,263	0,044	Hematopoietic
21	0,323	0,105	S-formylglutathione hydrolase inhibitor
22	0,271	0,071	Anticarcinogenic
23	0,196	0,039	Antineoplastic (lymphocytic leukemia)
24	0,226	0,076	Antiviral
25	0,247	0,104	Analgesic stimulant
26	0,253	0,134	Antineoplastic (solid tumors)
27	0,225	0,145	Antiasthmatic
28	0,132	0,053	Antiviral (Hepatitis)
29	0,207	0,136	Antipsoriatic
30	0,201	0,147	Angiogenesis stimulant
31	0,106	0,052	Antiviral (Hepatitis C)
32	0,199	0,173	Analeptic

5.5.3 PASS Prediction data of (R)-2-(2-amino-9H-purin-6-ylamino)-3phenylpropanoic acid (5c):

Compound-5c shows some of the important activities like **Fibroblast growth factor agonist, Antineoplastic antimetabolite, Antiallergic, Antithyroid, Kidney function stimulant, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), **Cancer associated disorders treatment, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant** and **Antineoplastic (solid tumors).**

Sr.No	Pa	Pi	Activity
1	0,831	0,014	Methylenetetrahydrofolate reductase (NADPH) inhibitor
2	0,776	0,004	Thiol oxidase inhibitor
3	0,680	0,003	Thiopurine S-methyltransferase inhibitor
4	0,660	0,014	Nucleotide metabolism regulator
5	0,598	0,019	Antiviral (Picornavirus)
6	0,584	0,015	Antiviral (Poxvirus)
7	0,584	0,017	Antiasthmatic
8	0,550	0,013	Antiprotozoal (Trypanosoma)
9	0,523	0,029	Fibroblast growth factor agonist
10	0,485	0,031	Antiallergic
11	0,458	0,013	Antineoplastic antimetabolite
12	0,479	0,046	Antineoplastic (non-Hodgkin's lymphoma)
13	0,518	0,086	Kidney function stimulant
14	0,434	0,005	Inosine nucleosidase inhibitor
15	0,408	0,024	Multiple sclerosis treatment
16	0,409	0,032	Antiviral (Herpes)
17	0.384	0.007	Antidiarrheal

Table: 5.3 PASS Pridiction date
18	0,402	0,029	Venom exonuclease inhibitor
19	0,411	0,057	Pancreatic elastase inhibitor
20	0,374	0,032	Inflammatory Bowel disease treatment
21	0,346	0,043	Cancer associated disorders treatment
22	0,395	0,096	Leukopoiesis stimulant
23	0,449	0,166	Antieczematic
24	0,306	0,032	Antiviral (Hepatitis B)
25	0,307	0,034	Analgesic stimulant
26	0,272	0,051	Antiviral (CMV)
27	0,279	0,059	Antiviral (Influenza A)
28	0,289	0,090	Antineoplastic (multiple myeloma)
29	0,279	0,108	Antiviral (Adenovirus)
30	0,231	0,093	Anticarcinogenic
31	0,159	0,043	Antithyroid
32	0,258	0,142	Antiinfective
33	0,249	0,139	Antineoplastic (solid tumors)
34	0,132	0,068	Antineoplastic (lymphocytic leukemia)
35	0,176	0,125	Antiviral
36	0,206	0,167	Analeptic
37	0,106	0,083	Fibroblast growth factor 2 antagonist
38	0,051	0,040	Antifungal (Pneumocystis)

5.5.4 PASS Prediction data of (S)-2-(2-amino-9H-purin-6-ylamino)-3methylbutanoic acid (5d):

Compound-5d shows some of the important activities like **Fibroblast growth factor agonist, Liver cirrhosis treatment, Antineoplastic , Antiallergic, Antithyroid, Kidney function stimulant, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), **Cancer associated disorders treatment, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant** and **Antineoplastic (solid tumors).**

Table: 5.4 PASS Pridiction date

Sr.No	Pa	Pi	Activity
1	0,796	0,003	Thiol oxidase inhibitor
2	0,772	0,022	Methylenetetrahydrofolate reductase (NADPH) inhibitor
3	0,609	0,016	Fibroblast growth factor agonist
4	0,606	0,018	Antiviral (Picornavirus)
5	0,556	0,017	Antiviral (Poxvirus)
6	0,521	0,030	Antineoplastic (non-Hodgkin's lymphoma)
7	0,495	0,011	Antineoplastic antimetabolite
8	0,448	0,019	Antiviral (Herpes)
9	0,431	00,026	Fibroblast growth factor 1 agonist
10	0,451	0,065	Leukopoiesis stimulant
11	0,407	0,027	Venom exonuclease inhibitor
12	0,432	0,093	Antineoplastic
13	0,338	0,011	Antidiarrheal
14	0,343	0,024	Antiviral (Hepatitis B)
15	0,364	0,046	Antiviral (Adenovirus)
16	0,321	0,019	Antiviral (CMV)
17	0,278	0,010	Antimetabolite
18	0,350	0,093	Insulin promoter
19	0,258	0,025	Antineoplastic (lymphocytic leukemia)
20	0,304	0,086	Antiviral (Influenza)
21	0,274	0,064	Analgesic stimulant

22	0,278	0,104	Antineoplastic (multiple myeloma)
23	0,254	0,081	Anticarcinogenic
24	0,286	0,114	Antiinfective
25	0,215	0,084	Antiviral
26	0,272	0,140	Antinephritic
27	0,116	0,046	Liver cirrhosis treatment
28	0,239	0,182	HCV IRES inhibitor
29	0,115	0,088	Antithyroid
30	0,187	0,185	Analeptic

5.5.5 PASS Prediction data of (S)-2-(2-amino-9H-purin-6-ylamino)-4methylpentanoic acid (5e):

Compound-5e shows some of the important activities like **Fibroblast growth factor agonist, Liver cirrhosis treatment, Antineoplastic , Antiallergic, Immunosuppressant, Insulin promoter, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), **Antiinfective, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant** and **Antineoplastic (solid tumors).**

Sr.No	Pa	Pi	Activity
1	0,740	0,004	Thiol oxidase inhibitor
2	0,726	0,027	Methylenetetrahydrofolate reductase (NADPH) inhibitor
3	0,574	0,025	Antiviral (Picornavirus)
4	0,502	0,010	Antineoplastic antimetabolite
5	0,509	0,033	Antineoplastic (non-Hodgkin's lymphoma)
6	0,488	0,021	Antiviral (Poxvirus)
7	0,435	0,022	Antiviral (Herpes)

Table: 5	5.5 PAS	SS Pridic	tion date
----------	---------	-----------	-----------

8	0,430	0,026	Fibroblast growth factor 1 agonist
9	0,416	0,023	Antiviral (Adenovirus)
10	0,465	0,121	Kidney function stimulant
11	0,347	0,023	Antiviral (Hepatitis B)
12	0,317	0,031	Antiviral (Influenza A)
13	0,348	0,065	Antiasthmatic
14	0,307	0,034	Analgesic stimulant
15	0,290	0,020	Antidiarrheal
16	0,284	0,040	Antiviral (CMV)
17	0,312	0,081	Cancer associated disorders treatment
18	0,304	0,075	Antineoplastic (multiple myeloma)
19	0,305	0,086	Antiviral (Influenza)
20	0,320	0,104	Immunosuppressant
21	0,266	0,074	Anticarcinogenic
22	0,277	0,108	Antiallergic
23	0,281	0,119	Antiinfective
24	0,300	0,138	Insulin promoter
25	0,214	0,085	Antiviral
26	0,255	0,133	Antineoplastic (solid tumors)
27	0,256	0,139	Autoimmune disorders treatment
28	0,228	0,150	Analeptic
29	0,237	0,187	HCV IRES inhibitor
30	0,123	0,075	Antineoplastic (lymphocytic leukemia)
31	0,111	0,063	Liver cirrhosis treatment
32	0,198	0,163	Antineoplastic (bone cancer)
33	0,111	0,083	Antiviral (Hepatitis)
34	0,235	0,207	Leukopoiesis inhibitor

5.5.6 PASS Prediction data of (S)-2-(2-amino-9H-purin-6-ylamino)propanoic acid (5f):

Compound-5f shows some of the important activities like **Fibroblast growth factor agonist, Antiasthmatic, Antidiarrheal, Antineoplastic , Antiallergic, Immunosuppressant, Insulin promoter, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), **Antiinfective, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant** and **Antileukemic.**

Sr.No	Pa	Pi	Activity
1	0,863	0,002	Thiol oxidase inhibitor
2	0,859	0,011	Methylenetetrahydrofolate reductase (NADPH) inhibitor
3	0,747	0,011	ADP-thymidine kinase inhibitor
4	0,654	0,010	Antiviral (Picornavirus)
5	0,643	0,012	Antiviral (Poxvirus)
6	0,562	0,019	Antiasthmatic
7	0,559	0,023	Fibroblast growth factor agonist
8	0,522	0,009	Antineoplastic antimetabolite
9	0,501	0,014	Venom exonuclease inhibitor
10	0,551	0,066	Kidney function stimulant
11	0,486	0,031	Antiallergic
12	0,436	0,022	Antiviral (Herpes)
13	0,398	0,030	Antiviral (Adenovirus)
14	0,375	0,008	Antidiarrheal
15	0,353	0,022	Antiviral (Hepatitis B)
16	0,299	0,030	Antiviral (CMV)
17	0,295	0,045	Antiviral (Influenza A)
18	0,305	0,074	Antineoplastic (multiple myeloma)

Table: 5.6 PASS Pridiction date

19	0,308	0,084	Antiviral (Influenza)
20	0,234	0,010	Adenosine receptor antagonist
21	0,306	0,098	Antiinfective
22	0,322	0,140	Antineoplastic
23	0,293	0,113	Analeptic
24	0,281	0,107	Antineoplastic (solid tumors)
25	0,274	0,120	Autoimmune disorders treatment
26	0,125	0,075	Antithyroid
27	0,025	0,008	Antibiotic Trimethoprim-like
28	0,026	0,010	Adenosine receptor agonist
29	0,131	0,122	Antileukemic

5.5.7 PASS Prediction data of (R)-2-(2-amino-9H-purin-6-ylamino)-3mercaptopropanoic acid (5g):

Compound-5g shows some of the important activities like Venom exonuclease inhibitor, Cancer associated disorders treatment, Antidiarrheal, Antineoplastic, Bilirubin oxidase inhibitor, Immunosuppressant, Insulin promoter, Antiviral (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), Antiinfective, Autoimmune disorders treatment, Multiple sclerosis treatment, Growth stimulant and Antileukemic.

Table: 5.	7 PASS	Pridiction	date
-----------	--------	------------	------

Sr.No	Pa	Pi	Activity
1	0,947	0,001	Thiol oxidase inhibitor
2	0,911	0,003	NADPH peroxidase inhibitor
3	0,885	0,002	Glyoxylate reductase (NADP+) inhibitor
4	0,780	0,003	Venom exonuclease inhibitor
5	0,768	0,004	Fibroblast growth factor agonist
6	0,690	0,004	Bilirubin oxidase inhibitor

7	0,659	0,010	Antiviral (Picornavirus)
8	0,564	0,017	Antiviral (Poxvirus)
9	0,422	0,015	Antineoplastic antimetabolite
10	0,417	0,022	HCV IRES inhibitor
11	0,394	0,038	Antiviral (Herpes)
12	0,351	0,010	Antidiarrheal
13	0,338	0,022	Antiviral (Influenza A)
14	0,394	0,113	Antineoplastic (non-Hodgkin's lymphoma)
15	0,308	0,031	Antiviral (Hepatitis B)
16	0,310	0,047	Antitoxic
17	0,286	0,099	Antiviral (Influenza)
18	0,255	0,070	Antiviral (CMV)
19	0,251	0,082	Anticarcinogenic
20	0,196	0,099	Antiviral
21	0,261	0,178	Antineoplastic
22	0,222	0,154	Analeptic
23	0,223	0,178	Antineoplastic (solid tumors)
24	0,082	0,060	Aminopeptidase I inhibitor
25	0,109	0,090	Antineoplastic (lymphocytic leukemia)
26	0,205	0,190	Analgesic stimulant
27	0,247	0,235	Pancreatic elastase inhibitor
28	0,221	0,216	Cancer associated disorders treatment
29	0,019	0,014	Antibiotic Trimethoprim-like

5.5.8 PASS Prediction data of (S)-1-(2-amino-9H-purin-6-yl)pyrrolidine-2carboxylic acid (5h):

Compound-5h shows some of the important activities like Antineoplastic (non-Hodgkin's lymphoma), Antieczematic, Stroke treatment, Respiratory analeptic, Antineoplastic (solid tumors), Bilirubin oxidase inhibitor, Immunosuppressant, Insulin promoter, Antiviral (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C,

hepatitis-B), Fibroblast growth factor 1 agonist, Antiamyloidogenic and Antileukemic.

Table: 5.8 PASS Pridiction date

Sr.No	Pa	Pi	Activity
1	0,867	0,009	Glutamate-5-semialdehyde dehydrogenase inhibitor
2	0,722	0,028	Methylenetetrahydrofolate reductase (NADPH) inhibitor
3	0,704	0,011	Pterin deaminase inhibitor
4	0,613	0,012	Antineoplastic (non-Hodgkin's lymphoma)
5	0,533	0,004	Glutamate 5-kinase inhibitor
6	0,497	0,018	DNA synthesis inhibitor
7	0,565	0,103	Antieczematic
8	0,446	0,078	Antiviral (Picornavirus)
9	0,404	0,037	Antiprotozoal (Trypanosoma)
10	0,413	0,059	Fibroblast growth factor agonist
11	0,402	0,091	Leukopoiesis stimulant
12	0,350	0,044	Antiparkinsonian
13	0,336	0,044	Antiviral (Poxvirus)
14	0,316	0,029	Antiviral (Hepatitis B)
15	0,335	0,050	Venom exonuclease inhibitor
16	0,315	0,032	Antiviral (Influenza A)
17	0,302	0,023	Antineoplastic antimetabolite
18	0,317	0,079	Antiviral (Influenza)
19	0,316	0,080	Antiviral (Herpes)
20	0,329	0,094	Analeptic
21	0,273	0,050	Antiviral (CMV)
22	0,297	0,092	Antiviral (Adenovirus)
23	0,321	0,117	Antimyopathies
24	0,299	0,098	Cancer associated disorders treatment
25	0,280	0,101	Antineoplastic (multiple myeloma)
26	0,240	0,066	Stroke treatment

27	0,288	0,115	Respiratory analeptic
28	0,220	0,063	Antidiarrheal
29	0,163	0,039	Antibacterial, ophthalmic
30	0,322	0,208	Antiviral (Rhinovirus)
31	0,293	0,236	Acute neurologic disorders treatment
32	0,120	0,063	Vasculitis treatment
33	0,207	0,167	Antiamyloidogenic
34	0,187	0,160	Fibroblast growth factor 1 agonist
35	0,326	0,302	Nootropic
36	0,215	0,192	Antineoplastic (solid tumors)
37	0,101	0,090	Constipation treatment
38	0,090	0,081	Antineoplastic (squamous cell carcinoma)
39	0,018	0,011	Antibiotic Naphthyridine-like

5.5.9 PASS Prediction data of (R)-2-(2-amino-9H-purin-6-ylamino)-3hydroxypropanoic acid (5i):

Compound-5i shows some of the important activities like Antineoplastic antimetabolite, Antiallergic, Antieczematic , Venom exonuclease inhibitor, Respiratory analeptic, Cancer associated disorders treatment, Analeptic, Antiviral (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), Wound healing agent, Antineoplastic (lymphocytic leukemia), Constipation treatment and Antitoxic.

Table: 5.9 PASS Pridiction date	Table:	5.9 PASS	Pridiction	date
---------------------------------	--------	----------	------------	------

Sr.No	Pa	Pi	Activity
1	0,860	0,011	Methylenetetrahydrofolate reductase (NADPH) inhibitor
2	0,811	0,011	NADPH peroxidase inhibitor
3	0,794	0,003	Thiol oxidase inhibitor
4	0,759	0,002	Thiopurine S-methyltransferase inhibitor

5	0,753	0,003	Interleukin 4 antagonist
6	0,755	0,020	Mannotetraose 2-alpha-N-acetylglucosaminyltransferase inhibitor
7	0,723	0,010	Nucleotide metabolism regulator
8	0,659	0,011	Antiasthmatic
9	0,658	0,012	Antiviral (Poxvirus)
10	0,593	0,016	Antiallergic
11	0,578	0,024	Antiviral (Picornavirus)
12	0,504	0,010	Antineoplastic antimetabolite
13	0,515	0,031	Antineoplastic (non-Hodgkin's lymphoma)
14	0,467	0,017	Venom exonuclease inhibitor
15	0,470	0,040	Fibroblast growth factor agonist
16	0,439	0,021	Antiviral (Herpes)
17	0,386	0,017	Antiviral (Hepatitis B)
18	0,368	0,008	Antidiarrheal
19	0,389	0,034	Antiviral (Adenovirus)
20	0,319	0,020	Antiviral (CMV)
21	0,335	0,053	Cancer associated disorders treatment
22	0,310	0,032	Analgesic stimulant
23	0,332	0,059	HCV IRES inhibitor
24	0,328	0,057	Antineoplastic (multiple myeloma)
25	0,305	0,038	Antiviral (Influenza A)
26	0,323	0,073	Antineoplastic (solid tumors)
27	0,321	0,086	Antiinfective
28	0,291	0,062	Anticarcinogenic
29	0,308	0,084	Antiviral (Influenza)
30	0,271	0,124	Analeptic
31	0,275	0,133	Antinephritic
32	0,225	0,094	Wound healing agent
33	0,175	0,046	Antineoplastic (lymphocytic leukemia)
34	0,229	0,105	Multiple sclerosis treatment
35	0,175	0,083	Antiprotozoal (Plasmodium)
36	0,339	0,248	Antieczematic

37	0,113	0,051	Constipation treatment
38	0,193	0,139	Antieczematic atopic
39	0,104	0,054	Isocitrate dehydrogenase (NAD+) inhibitor
40	0,194	0,144	Antitoxic
41	0,241	0,192	Antineoplastic
42	0,173	0,130	Antiviral
43	0,111	0,094	Antithyroid
44	0,050	0,043	Antifungal (Pneumocystis)

5.5.10 PASS Prediction data of (R)-6-(3-aminopiperidin-1-yl)-9H-purin-2-amine (5j):

Compound-5j shows some of the important activities like Antineoplastic antimetabolite, Alopecia treatment, Antineoplastic (multiple myeloma), Immunosuppressant, Antiparkinsonian, Antineoplastic (pancreatic cancer), Antineoplastic (lymphoma), Analeptic, Antiviral (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B),and Antidiarrheal.

Table: 5.10 PASS Pridiction date

Sr.No	Pa	Pi	Activity
1	0,574	0,014	Thiol oxidase inhibitor
2	0,566	0,006	Thiopurine S-methyltransferase inhibitor
3	0,568	0,013	Na+-transporting two-sector ATPase inhibitor
4	0,554	0,018	Cytostatic
5	0,560	0,029	Antiviral (Picornavirus)
6	0,548	0,033	Alopecia treatment
7	0,511	0,006	HCV IRES inhibitor
8	0,511	0,033	Antineoplastic (non-Hodgkin's lymphoma)
9	0,480	0,012	Antineoplastic (multiple myeloma)
10	0,489	0,045	Immunosuppressant
11	0,423	0,006	Antiviral (Influenza A)

12	0,352	0,039	Antiviral (Poxvirus)
13	0,355	0,062	Antiviral (Influenza)
14	0,301	0,023	Antineoplastic antimetabolite
15	0,325	0,075	Antiviral (Herpes)
16	0,308	0,061	Antiparkinsonian
17	0,274	0,041	Antiviral (Hepatitis B)
18	0,296	0,093	Antineoplastic (solid tumors)
19	0,207	0,013	Antibacterial, ophthalmic
20	0,253	0,072	Antiviral (CMV)
21	0,281	0,106	Antiviral (Adenovirus)
22	0,219	0,065	Antidiarrheal
23	0,242	0,115	Antimetastatic
24	0,160	0,041	Antiemetic
25	0,226	0,133	Venom exonuclease inhibitor
26	0,155	0,064	Antihistaminic
27	0,139	0,051	Histamine antagonist
28	0,116	0,043	Fibroblast growth factor 3 antagonist
29	0,220	0,156	Analeptic
30	0,215	0,176	Cystic fibrosis treatment
31	0,080	0,049	Fibroblast growth factor 1 antagonist
32	0,171	0,140	Antineoplastic enhancer
33	0,137	0,125	Antineoplastic (lymphoma)
34	0,199	0,189	Antineoplastic (pancreatic cancer)
35	0,075	0,065	Fibroblast growth factor antagonist

5.5.11 PASS Prediction data of (R)-2-(2-amino-9H-purin-6-ylamino)-2-phenylacetic acid (5k):

Compound-5k shows some of the important activities like **Fibroblast growth factor agonist, Respiratory distress syndrome treatment, Cancer associated disorders treatment, Antineoplastic (multiple myeloma), Growth factor agonist, Antineoplastic (pancreatic cancer), Antineoplastic (lymphoma), Analeptic, Antiviral** (Picornavirus, hrpes, poxivirus, Influenza A, hepatitis-C, hepatitis-B), and Antineoplastic (lymphocytic leukemia).

Sr.No	Pa	Pi	Activity
1	0,847	0,003	Thiol oxidase inhibitor
2	0,790	0,020	Methylenetetrahydrofolate reductase (NADPH) inhibitor
3	0,691	0,015	ADP-thymidine kinase inhibitor
4	0,650	0,004	Thiopurine S-methyltransferase inhibitor
5	0,521	0,016	Antiprotozoal (Trypanosoma)
6	0,522	0,038	Leukopoiesis stimulant
7	0,491	0,021	Antiviral (Poxvirus)
8	0,440	0,005	Respiratory distress syndrome treatment
9	0,480	0,060	Antiviral (Picornavirus)
10	0,423	0,015	Antineoplastic antimetabolite
11	0,463	0,056	Antineoplastic (non-Hodgkin's lymphoma)
12	0,422	0,055	Fibroblast growth factor agonist
13	0,394	0,038	Antiviral (Herpes)
14	0,386	0,033	Venom exonuclease inhibitor
15	0,375	0,062	Analgesic, non-opioid
16	0,373	0,073	Immunosuppressant
17	0,273	0,026	Antidiarrheal
18	0,283	0,038	Antiviral (Hepatitis B)
19	0,315	0,078	Antiviral (Adenovirus)
20	0,312	0,081	Cancer associated disorders treatment
21	0,284	0,055	Proliferative diseases treatment
22	0,272	0,051	Antiviral (CMV)
23	0,291	0,087	Antineoplastic (multiple myeloma)
24	0,283	0,105	Antineoplastic (solid tumors)
25	0,279	0,101	Antiasthmatic
26	0,302	0,126	Analgesic

Table: 5.11 PASS Pridiction date

27	0,256	0,089	Antiviral (Influenza A)
28	0,373	0,219	Antieczematic
29	0,261	0,139	Antiinfective
30	0,227	0,107	Fibroblast growth factor 1 agonist
31	0,252	0,143	Autoimmune disorders treatment
32	0,204	0,101	Antiprotozoal
33	0,184	0,084	Growth factor agonist
34	0,195	0,100	Antineoplastic enhancer
35	0,230	0,155	Antiviral (Influenza)
36	0,222	0,152	Analgesic stimulant
37	0,193	0,128	Anticarcinogenic
38	0,249	0,186	Antineoplastic
39	0,122	0,064	Antihyperammonemic
40	0,211	0,175	Antiallergic
41	0,116	0,083	Antineoplastic (lymphocytic leukemia)
42	0,117	0,085	Antithyroid
43	0,052	0,039	Antifungal (Pneumocystis)

6. HIGH FACILE SYNTHESIS OF NOVEL 2,2-DIMETHYL PROPIONIC ACID 4-[2-(2-AZA-BICYCLO[2.2.1]HEPT-3-YL)-1H-BENZOIMIDAZOL-5-YL]-PYRROLO[2,3-d]PYRIMIDIN-7-YLMETHYL ESTER AND ITS DERIVATIVES

6.1 INTRODUCTION:

Compound containing pyrrolopyrimidine ring or pyrrolo[2,3d]pyrimidine derivatives are most important heterocyclic compound in the medicinal chemistry because of this pharmaceutical activity of all areas and also present in naturally occurring products this have been attracted more by the organic and medicinal chemist. Various biological activities of Pyrrolo[2,3-d] pyrimidine derivatives are known such as antitumor, antiviral [150], antibacterial [151] [152] [153], anti-inflammatory [154], antiallergic [155], antifungal, antiocular hypertension [156], cytotoxic [157] and enzyme inhibitor [158].

Access of highly desirable active structure provide by pyrrolo[2,3-d]pyrimidines intermediate and its derivatives, so it is interesting intermediated in organic synthesis. In recent years of organic considerable important received by novel molecules because of their biological activity are mild and good condition to preparing the corresponding products that are high selectivity and excellent yield. There is limited prior art and quite limited of this molecular synthesis are attract us to report novel, simple, efficient, facile, eco-friendly and biologically active compound 2,2-Dimethyl-propionic acid 4-[2-(2-aza-bicyclo[2.2.1]hept-3-yl)-1H-benzoimidazol-5-yl]-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester derivatives.

6.2 **REACTION SCHEME:**

Reaction Scheme-6.1: process for the preparation of target molecules

6.2.1 EXPERIMENTAL PROCEDURE CHARACTERIZATION OF COMPOUND 62-66a-66d:

6.2.2 Preparation of compound 62:

A suspension of compound 1 (100.00 gm, 0.6511 mole) in 400 mL acetone was stirred 10 min at 20-30°C, followed by addition of potassium carbonate (107.99 gm, 0.7814 moles) obtained reaction mixture was stirred 30 min at 20-30°C, then slowly added BOM Chloride (107.87 gm, 0.7162 moles) at 20-30°C during time period of 30-40 min., reaction maintained reflux till completion of reaction, reaction progress monitored by TLC then reaction mass cooled to 20-30°C, added slowly 1000 mL water over the period of 2-3 hrs, then stirred reaction mixture for 3-4 hrs at 20-30°C, then isolated the precipitated product and dried at 45°C for 6-8 hrs to obtained (4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-yl)methyl pivalate (compound 2) as white solid 158.8 gm (91.0%).

H NMR (DMSO-d ₆, 400 MHz) δ ppm 8.71 (s, 1H), 7.83 (d, 1H, J = 3.7 Hz), 6.73 (d, 1H, J = 3.8 Hz), 6.23 (s 2H), 1.06 (s, 9H). HRMS (ESI) m/z calc for C₁₂H₁₄ClN₃O₂, 267.08, Found, [M+H]: 268.09.

6.2.3 Preparation of compound 64:

Charged 700 mL 2Me THF and passed argon gas for 30 min to removed dissolved oxygen in solvent, then charged $Pd(OAc)_2$ (7.31 gm, 0.0325 moes) and triphenyl phosphine (12.81 gm, 0.0488 moles) was stirred one hour at 20-30°C, followed by charged compound 2 (100.00 gm, 0.3635 moles), compound 3 (180.51 gm, 0.4108 moles) sodium carbonate (76.61 gm, 0.7227 moles) and water 300 ml was heated into reflux, and continued reflux until reaction completion, gradually cool the reaction mass to 30-40°C, the layer was separated out, resulting organic layer was successively washed with 4% N-acetyl-L-Cysteine at 50-60°C, distilled off solvent completely under reduced pressure at 45°C to obtained compound 4 ((1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate) as a brown solid.

¹H NMR (DMSO) \Box ppm 1.19 (s, 11H), 1.41 (broad, 2H,), 1.55 (broad, 11H,), 1.77 (broad, 2H), 1.88-190 (broad, 6H), 2.18 (s, 1H), 2.58-2.62 (t, 0.62H), 3.51(d, 1H), 4.20 (s, 1H), 4.61(s, 1H), 6.29 (s, 2H), 6.92 (d, 1H), 7.56-7.59 (m, 1H), 7.66-7.70 (m, 1H), 7.88-8.50 (m, 2H) 9.01 (s, 1H. HRMS (ESI) m/z calc for C₃₀H₃₆N₆O₄, 544.28, Found, [M+H]: 545.3395

6.2.4 Preparation of compound 65:

Compound 4 dissolved in IPA 1500 mL followed by addition of Con.HCl at 20-30°C and then the reaction mass temperature was maintained at 50-55°C for 3-4 hrs after reaction was completed solvent distilled off completely under reduced pressure to produce compound 5 (2,2-Dimethyl-propionic acid 4-[2-(2-aza-bicyclo[2.2.1]hept-3-yl)-1H-benzoimidazol-5-yl]-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester) as brown colored solid.

6.2.5 Preparation of compound 66 a:

Compound 5 (10.00 gm, 0.0224 moles) dissolved in DMF in 100 mL followed by addition of Moc-L-Valine (4.21 gm, 0.02040 moles) then HATU (10.26 gm, 0.0269 moles) (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium3-oxidehexa fluorophosphate and triethylamine (5.69 gm, 0.0562 moles) was added in to it at 0-5°C, stirred 2-3 hrs of this reaction mixture at 0-5°C, reaction monitored by TLC after reaction completion water added in to it, the compound was extracted with MDC followed by washed with water, organic layer moisture were removed by sodium sulphate drying, then the compound was purified by column chromatography by MDC and methanol as eluent to obtained compound-6a (2,2-Dimethyl-propionic acid 4-{2-[2-(2-methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-1H-enzoimidazol-5-yl}-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester as pale brown colored solid 10.55 gm, (60.0%).

¹H NMR (DMSO) \Box ppm 0.76-0.96 (m, 6H), 1.11-1.17 (s, 9H), 1.23 (m, 1H), 1.23-1.55(m, 4H)1.78-1.80 (m, 1H), 1.84 (m, 1H), 1.92 (m, 1H), 1.99 (m, 1H), 2.69 (s,1H), 3.56-3.60 (s, 3H), 4.18-4.20 (m, 1H), 4.56-4.69 (m, 2H), 6.29(s, 2H), 7.02(s,1H), 7.24-7.26 (d, 1H), 7.65-7.71 (m, 1H), 7.79 (s,1H), 7.99-8.04 (m, 1H), 8.30 (d, 1H), 8.93 (s, 1H). HRMS (ESI) m/z calc for C₃₂H₃₉N₇O₅, 601.3, Found, [M+ H]: 602.3761.

6.2.6 Preparation of compound 66 b:

Compound 5 (10.00 gm, 0.0224 moles) dissolved in acetone 100 mL and water 40 mL mixture followed by addition of potassium carbonate (4.66 gm, 0.0337 moles) followed by addition of pentylchloroformate (3.39 gm, 0.0224 moles) 20-25°C, then obtained reaction mixture were stirred for 2-3 hrs at 20-25°C after, reaction progress monitored by TLC after reaction was judged to completed water added in to it, the compound was partitioned with ethylacetate followed by washed with water, moisture in organic layer

were removed by addition of sodium sulphate, then the title compound were purified by column chromatography by using ethylacetate and hexane as eluent to obtained compound-6b (1R,3S,4S)-pentyl 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate as pale brown colored solid 6.91 gm, (55.0%).

HRMS (ESI) m/z calc for C₃₁H₃₈N₆O₄, 558.3, Found, [M+H]: 559.2517

6.2.7 Preparation of compound 66 c:

Compound 5 (10.00 gm, 0.0224 moles) dissolved in acetone 100 mL and water 40 mL mixture followed by addition of potassium carbonate (4.66 gm, 0.0337 moles) followed by addition of heptylchloroformate (4.02 gm, 0.0225 moles) 20-25°C, then the reaction mixture were stirred for 2-3 hrs at 20-25°C after, reaction progress monitored by TLC after reaction was judged to completed water was added in to it, the compound was extracted with ethylacetate followed by washed with water, organic layer moisture was removed by addition of sodium sulphate, then the title compound were purified by column chromatography by using ethylacetate and hexane as eluent to obtained compound-6d (1R,3S,4S)-heptyl 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate) as pale brown colored solid 7.96 gm, (60.30%).

¹H NMR (DMSO) \Box ppm 0.86-0.87 (m, 3H), 1.07-1.12 (s, 9H), 1.18-1.24 (m, 3H), 1.24-1.38 (m, 4H)1.38(m, 1H), 1.64-1.79 (m, 5H), 1.92 (m, 2H), 2.50-2.51 (m, 2H), 4.54-4.64(m, 3H), 6.22(d, 2H), 7.02(m,1H), 7.55-7.57(m, 1H), 7.60-7.65(m, 2H), 7.78-7.79 (m,1H), 8.32 (m, 1H), 8.93-8.97 (d, 1H). HRMS (ESI) m/z calc for C₃₃H₄₂N₆O₄, 586.33, Found, [M+ H]: 587.2412

6.2.8 Preparation of compound 66 d:

Compound 5 (10.00 gm, 0.0224 moles) dissolved in acetone 100 mL and water 40 mL mixture followed by addition of potassium carbonate (4.66 gm, 0.0337 moles) followed by addition of hexylchloroformate (3.70 gm, 0.0182 moles) 20-25°C, then the reaction mixture were stirred for 2-3 hrs at 20-25°C after, reaction progress monitored by TLC after reaction was judged to completed water added in to it, the compound was partitioned with ethylacetate followed by washed with water, organic layer moisture was removed by addition of sodium sulphate, then the title compound were purified by column chromatography by using ethylacetate and hexane as mobile phase to obtained compound-6c ((1R,3S,4S)-hexyl 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2-carboxylate) as pale brown colored solid 7.96 gm, (60.30%).

HRMS (ESI) m/z calc for C32H40N6O4, 572.31, Found, [M+H]: 573.2342

6.3 ¹HNMR, ¹³C NMR, DEPT AND MASS SPECTROSCOPY OF TARGET COMPOUNDS

6.3.1 ¹HNMR Spectra of (4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-yl)methyl pivalate (62)

6.3.2 Mass Spectra of (4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-yl)methyl pivalate (62)

6.3.3 ¹HNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

6.3.4 ¹HNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

6.3.5 ¹HNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

6.3.6 ¹³CNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

6.3.7 DEPTNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

6.3.8 MassSpectra of (1R,3S,4S)-tert-butyl 3-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (3)

Figure 1: MS acquired ESI⁺

6.3.9 ¹HNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

6.3.10 ¹HNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

6.3.11 ¹³CNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

6.3.12 ¹³CNMR Spectra of (1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

6.3.13 MassSpectra of ((1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

6.3.14 HNMR Spectra of 2,2-Dimethy-propionic acid 4-[2-[2-(2methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3yl]-1Hbenzoinidazol-5-yl]-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester (64a) 6.3.15 Mass Spectra of 2,2-Dimethy-propionic acid 4-[2-[2-(2methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3yl]-1Hbenzoinidazol-5-yl]-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester (64a) 6.3.16 HNMR Spectra of (1R, 3S, 4S)-3-{5-[7-(2,2-Dimethy-propionyloxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-benzoimidazole-2-yl}-2-azabicyclo[2.2.1]heptanes-2-carboxylic acid pentyl ester (64b)
6.3.17 HNMR Spectra of (1R, 3S, 4S)-3-{5-[7-(2,2-Dimethy-propionyloxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-benzoimidazole-2-yl}-2-azabicyclo[2.2.1]heptanes-2-carboxylic acid pentyl ester (64b)

6.3.18 HNMR Spectra of (1R, 3S, 4S)-3-{5-[7-(2,2-Dimethy-propionyloxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-benzoimidazole-2-yl}-2-azabicyclo[2.2.1]heptanes-2-carboxylic acid heptyl ester (64c)

6.3.19 HNMR Spectra of (1R, 3S, 4S)-3-{5-[7-(2,2-Dimethy-propionyloxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-benzoimidazole-2-yl}-2-azabicyclo[2.2.1]heptanes-2-carboxylic acid heptyl ester (64c)

6.4 BIOLOGICAL POTENTIAL OF COMPOUNDS BY PASS PREDICTION

Compounds 64, 65, 66a-66c shows tremendous activity in PASS prediction in various diseases, some of the important activities are listed below tables.

6.4.1 PASS Prediction data of (1R,3S,4S)-tert-butyl 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (64)

Compound-64 shows some of the important activities like Antiparkinsonian, Antiviral, Ophthalmic drug, Antineoplastic enhancer and Respiratory distress syndrome treatment.

Sr.No	Pa	Pi	Activity
1	0,527	0,067	Nicotinic alpha4beta4 receptor agonist
2	0,380	0,017	Antiviral
3	0,336	0,049	Antiparkinsonian
4	0,321	0,043	Ophthalmic drug
5	0,320	0,046	DNA polymerase I inhibitor
6	0,288	0,034	RNA directed DNA polymerase inhibitor
7	0,250	0,054	Respiratory distress syndrome treatment
8	0,262	0,073	Raynaud's phenomenon treatment
9	0,270	0,096	Antimetastatic
10	0,304	0,132	Neurodegenerative diseases treatment
11	0,180	0,019	Antiviral (Hepatitis)
12	0,173	0,015	Interleukin 8 antagonist
13	0,160	0,017	Xanthine oxidase substrate
14	0,257	0,127	CYP17 inhibitor

Table: 6.1 PASS Pridiction date

15	0,177	0,052	DNA directed RNA polymerase inhibitor
16	0,147	0,038	Inosine nucleosidase inhibitor
17	0,206	0,109	Cyclic GMP phosphodiesterase inhibitor
18	0,127	0,029	Antiviral (Hepatitis C)
19	0,221	0,127	Interferon alpha agonist
20	0,360	0,270	CYP2H substrate
21	0,185	0,115	Antineoplastic enhancer
22	0,254	0,185	Fibroblast growth factor agonist
23	0,147	0,079	Antiglaucomic
24	0,114	0,048	Nicotinic alpha3beta4 receptor agonist
25	0,048	0,003	HCV NS5A inhibitor
26	0,221	0,181	Antineoplastic (solid tumors)
27	0,148	0,114	Niemann-Pick C1-like 1 protein antagonist
28	0,075	0,044	Phosphodiesterase II inhibitor
29	0,034	0,018	Equilibrative nucleoside transport protein 1 inhibitor
30	0,030	0,014	Elastase 2 inhibitor
31	0,052	0,043	Elastase 1 inhibitor
32	0,224	0,216	Transcription factor NF kappa B stimulant
33	0,224	0,216	Transcription factor stimulant
34	0,175	0,170	Macrophage stimulant
35	0,025	0,022	Equilibrative nucleoside transport protein inhibitor

6.4.2 PASS Prediction data of 2,2-Dimethyl-propionic acid 4-{2-[2-(2methoxycarbonylamino-3-methyl-butyryl)-2-aza-bicyclo[2.2.1]hept-3-yl]-1Hbenzoimidazol-5-yl}-pyrrolo[2,3-d]pyrimidin-7-ylmethyl ester (65)

Compound-65 shows some of the important activities like Antineoplastic (solid tumors), Antineoplastic (thyroid cancer), Fibroblast growth factor agonist, Antiviral (HIV, Influenza-A, hepatitis-C), Antineoplastic (melanoma), Antifungal enhancer and Respiratory distress Antineoplastic (lymphocytic leukemia).

Table: 6.2 PASS Pridiction date

Sr.No	Pa	Pi	Activity
1	0,491	0,085	Nicotinic alpha4beta4 receptor agonist
2	0,387	0,016	Antiviral
3	0,287	0,034	Respiratory distress syndrome treatment
4	0,209	0,012	Antiviral (Hepatitis)
5	0,255	0,089	Antiviral (Influenza A)
6	0,168	0,012	Antiviral (Hepatitis C)
7	0,171	0,035	Antiemphysemic
8	0,125	0,002	HCV NS5A inhibitor
9	0,374	0,250	CYP2H substrate
10	0,160	0,054	Antiviral (HIV)
11	0,242	0,148	Antineoplastic (solid tumors)
12	0,167	0,079	Antineoplastic (thyroid cancer)
13	0,277	0,190	CYP2C19 inducer
14	0,254	0,185	Fibroblast growth factor agonist
15	0,181	0,117	RNA directed DNA polymerase inhibitor
16	0,107	0,046	Antifungal enhancer
17	0,068	0,016	Elastase inhibitor
18	0,143	0,095	DNA directed RNA polymerase inhibitor
19	0,188	0,152	Macrophage stimulant
20	0,190	0,155	Cyclic GMP phosphodiesterase inhibitor
21	0,098	0,073	Acetylcholine M2 receptor agonist
22	0,139	0,114	Antineoplastic (melanoma)
23	0,189	0,164	Dolichyl-phosphate beta-glucosyltransferase inhibitor
24	0,193	0,170	Antimetastatic
25	0,033	0,012	Elastase 2 inhibitor
26	0,186	0,177	Interferon alpha agonist
27	0,102	0,096	Antineoplastic (lymphocytic leukemia)

6.4.3 PASS Prediction data of 3-(5-(7-((pivaloyloxy)methyl)-7H-pyrrolo[2,3d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-aza-bicyclo[2.2.1]heptane-2carboxylate (66a)

Compound-66a shows some of the important activities like Antiglaucomic, Antiparkinsonian, Antiparkinsonian, Neurodegenerative diseases treatment, Alzheimer's disease treatment, Ophthalmic drug, Alzheimer's disease treatment, Antineoplastic (solid tumors), Antineoplastic (melanoma), Antiviral (Hepatitis C), and Respiratory distress Antiinfertility, female.

Sr.No	Pa	Pi	Activity
1	0,489	0,086	Nicotinic alpha4beta4 receptor agonist
2	0,383	0,027	Ophthalmic drug
3	0,322	0,054	Antiparkinsonian
4	0,281	0,044	Antiviral
5	0,279	0,083	Immunomodulator
6	0,227	0,031	Antiglaucomic
7	0,310	0,127	Neurodegenerative diseases treatment
8	0,221	0,069	RNA directed DNA polymerase inhibitor
9	0,220	0,076	Respiratory distress syndrome treatment
10	0,285	0,144	Benzoate-CoA ligase inhibitor
11	0,232	0,123	Antimetastatic
12	0,224	0,122	Alzheimer's disease treatment
13	0,218	0,121	Macrophage stimulant
14	0,163	0,067	DNA directed RNA polymerase inhibitor
15	0,177	0,091	Prenyl-diphosphatase inhibitor
16	0,286	0,204	Glyceryl-ether monooxygenase inhibitor
17	0,198	0,130	Cyclic GMP phosphodiesterase inhibitor
18	0.326	0.260	Antieczematic

Table: 6.3 PASS Pridiction date

19	0,125	0,062	Antiviral (Hepatitis)
20	0,159	0,102	Antineoplastic (thyroid cancer)
21	0,132	0,075	Endoglycosylceramidase inhibitor
22	0,078	0,025	Purinergic P2T antagonist
23	0,223	0,177	Antineoplastic (solid tumors)
24	0,103	0,058	Interleukin 8 antagonist
25	0,154	0,109	Retinol dehydrogenase inhibitor
26	0,217	0,176	Analgesic, non-opioid
27	0,144	0,109	Antineoplastic (melanoma)
28	0,076	0,043	Phosphodiesterase II inhibitor
29	0,036	0,004	HCV NS5A inhibitor
30	0,231	0,202	Transcription factor NF kappa B stimulant
31	0,231	0,202	Transcription factor stimulant
32	0,098	0,068	Nicotinic alpha3beta4 receptor agonist
33	0,230	0,201	DNA polymerase I inhibitor
34	0,120	0,102	Antiemphysemic
35	0,093	0,076	Antiviral (Hepatitis C)
36	0,035	0,019	Purinergic P2Y12 antagonist
37	0,066	0,050	Purinergic receptor antagonist
38	0,091	0,075	Inosine nucleosidase inhibitor
39	0,206	0,191	Anticonvulsant
40	0,041	0,031	Purinergic P2Y antagonist
41	0,146	0,138	Nicotinic alpha4beta2 receptor antagonist
42	0,052	0,044	Elastase 1 inhibitor
43	0,180	0,178	Undecaprenyl-phosphate mannosyltransferase inhibitor
44	0,160	0,158	Antiinfertility, female
45	0,024	0,022	Elastase 2 inhibitor

6.4.4 PASS Prediction data of (1R,3S,4S)-pentyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (66b)

Compound-66b shows some of the important activities like Antiparkinsonian, Antiparkinsonian, Neurodegenerative diseases treatment, Alzheimer's disease treatment, Ophthalmic drug, Alzheimer's disease treatment, Antineoplastic (solid tumors), Antineoplastic (melanoma), Antiviral (Hepatitis C), and Respiratory distress Anticonvulsant.

Sr.No	Pa	Pi	Activity
1	0,489	0,086	Nicotinic alpha4beta4 receptor agonist
2	0,383	0,027	Ophthalmic drug
3	0,322	0,054	Antiparkinsonian
4	0,281	0,044	Antiviral
5	0,279	0,083	Immunomodulator
6	0,227	0,031	Antiglaucomic
7	0,310	0,127	Neurodegenerative diseases treatment
8	0,221	0,069	RNA directed DNA polymerase inhibitor
9	0,220	0,076	Respiratory distress syndrome treatment
10	0,285	0,144	Benzoate-CoA ligase inhibitor
11	0,232	0,123	Antimetastatic
12	0,224	0,122	Alzheimer's disease treatment
13	0,218	0,121	Macrophage stimulant
14	0,163	0,067	DNA directed RNA polymerase inhibitor
15	0,177	0,091	Prenyl-diphosphatase inhibitor
16	0,286	0,204	Glyceryl-ether monooxygenase inhibitor
17	0,198	0,130	Cyclic GMP phosphodiesterase inhibitor

 Table: 6.4 PASS Pridiction date

18	0,326	0,260	Antieczematic
19	0,125	0,062	Antiviral (Hepatitis)
20	0,159	0,102	Antineoplastic (thyroid cancer)
21	0,132	0,075	Endoglycosylceramidase inhibitor
22	0,078	0,025	Purinergic P2T antagonist
23	0,223	0,177	Antineoplastic (solid tumors)
24	0,103	0,058	Interleukin 8 antagonist
25	0,154	0,109	Retinol dehydrogenase inhibitor
26	0,217	0,176	Analgesic, non-opioid
27	0,144	0,109	Antineoplastic (melanoma)
28	0,076	0,043	Phosphodiesterase II inhibitor
29	0,036	0,004	HCV NS5A inhibitor
30	0,231	0,202	Transcription factor NF kappa B stimulant
31	0,231	0,202	Transcription factor stimulant
32	0,098	0,068	Nicotinic alpha3beta4 receptor agonist
33	0,230	0,201	DNA polymerase I inhibitor
34	0,120	0,102	Antiemphysemic
35	0,093	0,076	Antiviral (Hepatitis C)
36	0,035	0,019	Purinergic P2Y12 antagonist
37	0,066	0,050	Purinergic receptor antagonist
38	0,091	0,075	Inosine nucleosidase inhibitor
39	0,206	0,191	Anticonvulsant
40	0,041	0,031	Purinergic P2Y antagonist
41	0,146	0,138	Nicotinic alpha4beta2 receptor antagonist
42	0,052	0,044	Elastase 1 inhibitor
43	0,180	0,178	Undecaprenyl-phosphate mannosyltransferase inhibitor
44	0,160	0,158	Antiinfertility, female
45	0,024	0,022	Elastase 2 inhibitor

6.4.5 PASS Prediction data of (1R, 3S, 4S)-hexyl 3-(5-(7-((pivaloyloxy)methyl)-7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazol-2-yl)-2-azabicyclo[2.2.1]heptane-2-carboxylate (66 c)

Compound-66c shows some of the important activities like Antiparkinsonian, Antiparkinsonian, Neurodegenerative diseases treatment, Alzheimer's disease treatment, Ophthalmic drug, Alzheimer's disease treatment, Antineoplastic (solid tumors), Antineoplastic (melanoma), Antiviral (Hepatitis C), and Respiratory distress Anticonvulsant.

Sr.No	Pa	Pi	Activity
1	0,421	0,020	Ophthalmic drug
2	0,473	0,095	Nicotinic alpha4beta4 receptor agonist
3	0,366	0,038	Antiparkinsonian
4	0,355	0,142	Glyceryl-ether monooxygenase inhibitor
5	0,330	0,041	DNA polymerase I inhibitor
6	0,329	0,028	Antiviral
7	0,326	0,260	Antieczematic
8	0,308	0,126	Benzoate-CoA ligase inhibitor
9	0,296	0,139	Neurodegenerative diseases treatment
10	0,291	0,076	Immunomodulator
11	0,286	0,076	Macrophage stimulant
12	0,275	0,039	RNA directed DNA polymerase inhibitor
13	0,270	0,096	Antimetastatic
14	0,259	0,179	Fibroblast growth factor agonist
15	0,258	0,148	Anticonvulsant
16	0,244	0,180	Transcription factor NF kappa B stimulant
17	0.244	0.180	Transcription factor stimulant

Table: 6.5 PASS Pridiction date

18	0,233	0,029	Antiglaucomic
19	0,230	0,062	Cyclic GMP phosphodiesterase inhibitor
20	0,226	0,197	Alcohol O-acetyltransferase inhibitor
21	0,220	0,172	CYP17 inhibitor
22	0,217	0,187	Antineoplastic (solid tumors)
23	0,192	0,079	Prenyl-diphosphatase inhibitor
24	0,192	0,153	Undecaprenyl-phosphate mannosyltransferase inhibitor
25	0,175	0,126	Respiratory distress syndrome treatment
26	0,166	0,151	Antineoplastic enhancer
27	0,166	0,143	Antiviral (Hepatitis B)
28	0,165	0,064	DNA directed RNA polymerase inhibitor
29	0,165	0,096	Retinol dehydrogenase inhibitor
30	0,145	0,140	Nicotinic alpha4beta2 receptor antagonist
31	0,144	0,039	Antiviral (Hepatitis)
32	0,144	0,020	Xanthine oxidase substrate
33	0,141	0,066	Endoglycosylceramidase inhibitor
34	0,134	0,045	Inosine nucleosidase inhibitor
35	0,131	0,068	Alcohol dehydrogenase substrate
36	0,122	0,043	Aldehyde dehydrogenase substrate
37	0,121	0,099	Antiemphysemic
38	0,108	0,050	Interleukin 8 antagonist
39	0,107	0,021	Phosphodiesterase II inhibitor
40	0,099	0,064	Antiviral (Hepatitis C)
41	0,096	0,071	Nicotinic alpha3beta4 receptor agonist
42	0,085	0,021	Purinergic P2T antagonist
43	0,055	0,038	Elastase 1 inhibitor
44	0,044	0,024	Purinergic P2Y antagonist
45	0,041	0,004	HCV NS5A inhibitor
46	0,036	0,016	Purinergic P2Y12 antagonist
47	0,030	0,025	Equilibrative nucleoside transport protein 1 inhibitor
48	0,026	0,018	Elastase 2 inhibitor

6.4.6 PASS Prediction data of 2, 2-Dimethyl-propionic acid 4-[2-(2-azabicyclo[2.2.1]hept-3-yl)-1H-benzoimidazol-5-yl]-pyrrolo[2,3-d]pyrimidin-7ylmethyl ester (65)

Compound-66c shows some of the important activities like Antiparkinsonian, Platelet aggregation inhibitor, HIV attachment inhibitor, Platelet aggregation inhibitor, Autoimmune disorders treatment, Antidepressant, Anxiolytic and Analgesic, non-opioid.

Sr.No	Pa	Pi	Activity
1	0,574	0,049	Nicotinic alpha4beta4 receptor agonist
2	0,467	0,030	HERG 1 channel blocker
3	0,434	0,003	TRKB antagonist
4	0,404	0,009	Nicotinic alpha4beta2 receptor antagonist
5	0,381	0,067	Cyclic AMP phosphodiesterase inhibitor
6	0,331	0,030	HIV attachment inhibitor
7	0,328	0,051	Antiparkinsonian
8	0,164	0,019	Nicotinic alpha3beta4 receptor agonist
9	0,221	0,105	Platelet aggregation inhibitor
10	0,248	0,148	Autoimmune disorders treatment
11	0,203	0,106	Antidepressant
12	0,122	0,027	TRKA antagonist
13	0,337	0,249	Antieczematic
14	0,205	0,118	Anxiolytic
15	0,103	0,018	Phosphatidylinositol kinase inhibitor
16	0,108	0,028	Protein kinase B gamma inhibitor
17	0,116	0,037	Antiacromegalic
18	0,092	0,021	Phosphatidylinositol 3-kinase inhibitor
19	0,061	0,003	HCV NS5A inhibitor
20	0,081	0,026	Adrenaline uptake inhibitor

 Table: 6.6 PASS Pridiction date

21	0,113	0,067	Epidermal growth factor receptor kinase inhibitor
22	0,062	0,016	Phosphatidylinositol 3-kinase beta inhibitor
23	0,126	0,088	Nicotinic alpha6 receptor agonist
24	0,331	0,296	Nootropic
25	0,108	0,084	Antiemetic
26	0,080	0,057	p38 MAP kinase inhibitor
27	0,042	0,018	Phosphatidylinositol 3-kinase gamma inhibitor
28	0,209	0,186	Analgesic, non-opioid
29	0,137	0,114	Protein kinase (CK1) inhibitor
30	0,050	0,031	Dopamine transporter inhibitor
31	0,068	0,049	Alpha 3 adrenoreceptor agonist
32	0,080	0,061	Protein kinase B inhibitor
33	0,073	0,056	Insulin like growth factor 1 antagonist
34	0,063	0,046	Phosphodiesterase III inhibitor
35	0,023	0,010	DNA-dependent protein kinase inhibitor
36	0,068	0,056	Platelet activating factor beta antagonist
37	0,131	0,119	Protein kinase (CK1) epsilon inhibitor
38	0,029	0,017	mTOR inhibitor
39	0,109	0,097	Interleukin 1 antagonist
40	0,082	0,072	Platelet activating factor antagonist
41	0,066	0,058	Threonine-tRNA ligase inhibitor
42	0,101	0,097	Protein kinase (CK1) delta inhibitor
43	0,045	0,040	Prolactin release inhibitor
44	0,058	0,055	Adenosine receptor antagonist
45	0,043	0,041	Cholestenol delta-isomerase inhibitor

7. CONCLUSION

- We have been developed new, highly efficient, environment friendly, less cost novel Uracil based Moc-L-Valine derivatives.
- 2. We have reported one pot synthesis for preparation of novel 13 compounds of Moc-L-Valine derivatives with higher yield, in one pot synthesis we have been used single solvents in multiple steps this reduce environmental hazards, cost and also reduce effluent waste.
- 3. We have been eliminated highly hazardous sodium hydride and DMF mixture, and replaced by less hazardous chemicals and reagents when compare with prior art.
- 4. We have been reported high yield (overall yield) synthesis, this leads to low cost.
- 5. We have been reported Binding and docking study of target molecules, and we found that some of the molecules showing good binding with DNA.
- 6. We have been reported Pass prediction analysis of target molecules and all those molecules are showing good activity towards various diseases.
- 7. Compounds A-L was soluble in Methanol, THF, and DMF. The dockingaffinities varied from 3.3 to 4.6 kcal/mol, and the compounds formed 1-3 hydrogen bonds with the amino acid residues of aspulvinone dimethylallyltransferase enzyme. The reported compounds may be future anti-cizmatics, anti-fobic disorder and inhibition of aspulvinone dimethylallyltransferase properties to control Alzheimer's, Schizophrenia etc. diseases.
- 8. We have been reported further 17 new compounds with chloroformate series, smooth conversion from starting material to targeted molecules,
- 9. Developed facile, industrially viable and high efficient synthesis of targeted molecules, where higher yield has been reported by our process.
- 10. Simple, easily available, less cost, less hazardous and environment friendly raw materials, reagents and solvents have been used throughout the reported process.

- 11. We have been synthesized new 11 compounds of purine series, since purine has good activity against most of the diseases.
- 12. We have been developed protocol for the preparation of target molecule by highly efficient synthesis; we have been used simple easily available, lower cost, environmental hazardous free water as a solvent and sodium carbonate as a base.
- All the compounds in purine series are soluble in acidic and basic solutions only and it does not having solubility solvents like ethanol, methanol, ethyl acetate, MDC etc.
- The entire target compounds UV absorption spectrum reported along with DNA UV absorption spectrum.
- 15. We have been isolated entire target compounds with higher yield (87-92%), due to higher yield achievement and water as solvent used, the entire cost of the product are reduce as low as much as possible.
- We have been prepared novel Pyrrolo[2,3-d] pyrimidine intermediate, because of Pyrrolo[2,3-d] pyrimidine activity towards all kind of diseases.
- 17. We have been prepared chiral pure and higher yield synthesis of its intermediates, which may have important in drug synthesis.
- 18. We have been reported PASS prediction details of all the targeted molecules and all the molecules are showing good activity towards various diseases.

REFERENCES

- Zhiwei Wen, Sazzad H. Suzol, Jufang Peng, Yong Liang1, Robert Snoeck, Graciela Andrei, Sandra Liekens, and Stanislaw F. Wnuk, Antiviral and Cytostatic Evaluation of 5-(1-Halo-2-sulfonylvinyl)- and 5-(2-Furyl)uracil Nucleosides, Arch. Pharm. Chem. Life Sci. 2017, 350, e1700023.
- Donald E. Bergstrom, Jerry L. Ruth, Synthesis of C-5 Substituted Pyrimidine Nucleosides,, via Organopalladium Intermediates, Journal of the American Chemical Society ,1976, 98, 6 , 1587-1589, DOI: 10.1021/ja00422a056.
- Han Ma, Wen-RongJiang, NicoleRobledo, VincentLeveque, SamirAli, TeresaLara-Jaime, MohammadMasjedizadeh, DavidB. Smith, NickCammack, KlausKlumpp, and JulianSymons, The journal of biological chemistry, 2007, vol. 282, No. 41, 29812–29820.
- Erik De Clercq, Claude Desgranges, Piet Herdewijn, Iain S. Sim,s A. Stanley Jones,li Michael J. McLean,li and Richard T. Walker Synthesis and Antiviral Activity of (E)-5-(2-Bromovinyl) uracil and (E)+ (2-Bromovinyl)uridine. Journal of Medicinal Chemistry, 1986, Vol. 29, No. 2, 213-217, DOI: 10.1021/jm00152a008.
- Jun Feng, Zhiyuan Zhang, Michael B. Wallace, Jeffrey A. Stafford, Stephen W. Kaldor, Daniel B. Kassel, Marc Navre, Lihong Shi, Robert J. Skene, Tomoko Asakawa, Koji Takeuchi,§ Rongda Xu, David R. Webb, and Stephen L. Gwaltney, Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV, J. Med. Chem. 2007, 50, 2297-2300.
- Kate McKeage1, Trelagliptin: First Global Approval, Drugs DOI 10.1007/s40265-015-0431-9.

- Bo-Ram Lee, Jin-Yeong Yu, Seong-Hoon Yoon, Hee-Jung Ban, Yong-Soo Kwon, In-Jae Oh, Kyu-Sik Kim, Yu-Il Kim, Sung-Chul Lim, Young-Chul Kim, Variability in the anti-tumor effect of tegafur-uracil depending on histologic types of lung cancer, Journal of Thoracic Disease, 2015,7(3), 433-438.
- Pauline K. Chang, and Arnold D.Welch, Iodination of 2'-Deoxycytidine and Related Substances, Journal of Medicinal Chemistry, 1963, 6 (4),428– 430,DOI: 10.1021/jm00340a019.
- V.E.Semenov, A.D. Voloshina, E.M. Toroptzova, N.V.Kulik, V.V.Zobov, R.K. Giniyatullin, A.S. Mikhailov, A.E.Nikolaev, V.D. Akamsin, and V.S.Renznik, Antibacterial and antifungal activity of acyclic and macrocyclic uracil derivatives with quaternized nitrogen atoms in spacers, European Journal of Medicinal Chemistry, 2006, Vol. 41, Issue 9, 1093-1101, https://doi.org/10.1016/j.ejmech.2006.03.030
- Antonello Mai, Dante Rotili, Silvio Massa, Gerald Brosch, Giovanna Simonetti, Claudio Passariello and Anna Terasa Palamara Discovery of uracil – based histone deacetylase inhibitor able to reduce acquire antifungal resistance and trailing growth in Candida albicans, Bioorganic & Medicinal Chemistry Letters 2007, 17, 1221–1225.
- William A. Carlezon, Jr., Stephen D. Mague, Aimee M. Parow, Andrew L.Stoll, Bruce M. Cohen and Perry F. Renshaw, Antidepressant Effect of Uridine and Mega-3 fatty acids are potentiated combined treatment in rats, Drugs DOI 10.1007/s40265-015-0431-9.
- Yohei Isono, Norikazu Sakakibara, Paula Ordonez, Takayuki Hamasaki, Masanori Baba, Masahiro Ikejiri, Tokumi Maruyama, Synthesis of 1-benzyl-3-(3,5-dimethylbenzyl)uracil derivatives with potential anti-HIV activity. Antiviral Chemistry & Chemotherapy 2011, 22, 57–65, doi: 10.3851/IMP1844.
- Erik De Clercq, HIV Resistance to reverse transcriptase inhibitors, Biochemical Pharmacology, 1994, Vol. 41.Issue.2, 155- 169, https://doi.org/10.1016/0006-2952(94)90001-9.

- Josephine Sire, Gilles Querat, Cecile Esnault and Stephane priet, Uracil within DNA: an actor of antiviral immunity, Reterovirology 2008, 5, 45.
- Zhi-Yong Tian, Gang-Jun Du, Song-Qiang Xie, Jin Zhao, Wen-Yuan Gao, and Chao-Jie Wang, Synthesis and Bioevaluation of 5-Fluorouracil Derivatives, Molecules 2007, 12, 2450-2457.
- Aleksandra Zasada, Ewa Mironiuk-Puchalska, and Mariola Koszytkowska-Stawińska, Synthesis of Tegafur by the Alkylation of 5-Fluorouracil under the Lewis Acid and Metal Salt-Free Conditions, Organic Process Reasearch and Development, 2017, 21 (6), 885–889.
- Cheong, L, Rich, MA; Eidinoff, ML; Introduction of the 5-halogenated uracil moiety into deoxyribonucleic acid of mammalian cells in culture J Biol Chem 1960, 235, 5, 1441-7.
- Luis E.Iglesias, Elizabeth S.Lewkowicz, RosarioMedici, PaolaBianchi, Adolfo M.Iribarren, Biocatalytic approaches applied to the synthesis of nucleoside prodrugs, Biotechnology Advance 2015, vol 33, Issue 5, 412-434, doi: 10.1016/j.biotechadv.2015.03.00.
- V. Prakash Reddy, Organofluorine Compounds in Biology and Medicine, 2015, 133-178. http://dx.doi.org/10.1016/B978-0-444-53748-5.00005-8
- D. Sriram, N. Srichakravarthy, T.R. Bal, P. Yogeeswari, Synthesis of zidovudine prodrugs with broad-spectrum chemotherapeutic properties for the effective treatment of HIV/AIDS, Biomedicine & Pharmacotherapy, 2005, 59, 452–455.
- Alahari Janardhan Raoa, Valasani Koteswara Raoa, Pasupuleti Visweswara Raob, Chamarthi Naga Rajua, and Sunil Kumar Ghosh, Synthesis and bioactivity of phos phorylated derivatives of stavudine, European Journal of Chemistry, 2010, 1 (4), 297-301.
- Jiwon W Kim, Susie H Park, and Stan G Louie, Telbivudine: A Novel Nucleoside Analog for Chronic Hepatitis B, The Annals of Pharmacotherap, 2006, Volume: 40 issue: 3, 472-478, https://doi.org/10.1345/aph.1G027.

- Bruce S. Ross, P. Ganapati Reddy, Hai-Ren Zhang, Suguna Rachakonda, and Michael J. Sofia, Synthesis of Diastereomerically Pure Nucleotide Phosphoramidates, *Journal of Organic Chemistry*, 2011, 76 (20), 8311–8319, DOI: 10.1021/jo201492m.
- Lene Petersen, Per T. Jørgensen, Claus Nielsen, Thomas H. Hansen, John Nielsen, and Erik B. Pedersen, Synthesis and Evaluation of Double-Prodrugs against HIV. Conjugation of D4T with 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine)-Type Reverse Transcriptase Inhibitors via the SATE Prodrug Approach, Journal of Medicinal Chemistry, 2005, 48, 1211-1220, DOI: 10.1021/jm040845b.
- Keshava Navin Kumar Reddy, Murugulla Adharvana Chari, Mayur. D. Khunt, B. Ramachandra Reddy, Vurimidi Himabindu, Ghanta Mahesh Reddy, Improved synthesis of Antiviral Drug Valacyclovir hydrochloride, Letters in Drug Design & Discovery 2014, Vol 11, Issue 4, 484-487,DOI: 10.2174/15701808113106660090.
- TakayoshiTorii, HiroshiShiragami, KeizoYamashita, YumikoSuzuki, ToyotoHijiya, TatsukiKashiwagi, KunisukeIzawa, Practical synthesis of penciclovir from N2-acetyl-7-benzylguanine, Tetrahedron, 2006, 62, 5709–5716, doi:10.1016/j.tet.2006.03.080.
- Wei Shen a, Jae-Seung Kim a , Phillip E. Kish a , Jie Zhang a , Stefanie Mitchell a , Brian G. Gentry b , Julie M. Breitenbach b , John C. Drach b , John Hilfinger, Design and synthesis of vidarabine prodrugs as antiviral agents, Bioorganic & Medicinal Chemistry Letters, 2009,19, 792–796, doi:10.1016/j.bmcl.2008.12.031.
- 28. K. Srihari Babu, P. Srinivas, Y.V. Madhavi, I. Babu, G. Madhusudhan Reddy, P. Haldar, P. Narasimha Rao, V. Krishna, K. Srinivas, G. Venkateshwarulu, P. Pratap Reddy, and R. Vijaya Anand, A succinct synthesis of valganciclovir hydrochloride, a cytomegalovirus (CMV) retinitis inhibitor, ARKIVOC 2011 (ii), 199-208.

- 29. V.V.N.K.V. Prasada Raju, Vedantham Ravindra, Suchitra S. Kamath, Vijayavitthal T. Mathad, Pramod K. Dubey and Padi Pratap Reddy, A facile synthesis of potent antiherpes drug substance, Ganciclovir,9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine, using a new maskedglycerol derivative, ARKIVOC 2009, (xii), 296-301.
- Patrick Marcellin, M.D., Ting-Tsung Chang, M.D., Seng Gee Lim, M.D., Myron J. Tong, Ph.D., M.D., William Sievert, M.D., Mitchell L. Shiffman, M.D., Lennox Jeffers, M.D., Zachary Goodman, M.D., Ph.D., Michael S. Wulfsohn, M.D., Ph.D., Shelly Xiong, Ph.D., John Fry, B.Sc., and Carol L. Brosgart, M.D., Adefovir Dipivoxil for the Treatment of Hepatitis B e Antigen–Positive Chronic Hepatitis B , The New England Journal of Medicine, 2003, 9, 348. doi:10.1056/NEJMoa020681.
- G. V. Satyanarayana, M. Thirumala Chary and E. Laxminarayana, Synthesis and characterization of potent Abacavir impurities, Der Pharma Chemica, 2015, 7(7): 90-94.
- Darren Lyall Riley, David Walwyn, and Chris Edlin, Organic Process Research & Development, 2016, 20 (4), 742–750, DOI: 10.1021/acs.oprd.5b00364.
- Bin Yang, Hongmeng Xie, Kerui Ran, Yongjun Gan, Efficient Synthesis and Resolution of Tenofovir Alafenamide, 2018, vol 15(1), 10-14.
- 34. Efthymia G.Gioti, Theocharis V.Koftis, EfstratiosNeokosmidis, ElliVastardi, Stefanos S.Kotoulas, SakellariosTrakossas, TheodorosTsatsas, Elizabeth E.Anagnostak, Theodoros D.Panagiotidis, ConstantinosZacharisEvanthia P.Tolika. Anastasia-AikateriniVarvogli, ThanosAndreou, John K.Gallos. Tetrahedron, 2018, Volume 74, Issue 4, 519-527.
- 35. Javier Velasco, Xavier Ariza, Laura Badía, Martí Bartra, Ramon Berenguer, Jaume Farras, Joan Gallardo, Jordi Garcia, and Yolanda Gasanz. Total Synthesis of Entecavir, The Journal of Organic Chemistry, 2013, 78 (11), 5482–5491, DOI: 10.1021/jo400607v.

- Sawsan Mahmoud, Sherifa Hasabelnaby, Sherif F. Hammad, Tamer M. Sakr, Antiviral Nucleoside and Nucleotide Analogs: A Review, Journal of advance pharmacy research, 2018, 2 (2), 73-88.
- 37. Basavaraja H S, Jayadevaiah K V, Mumtaz M. Hussain, Vijay Kumar M M J, Basavaraj Padmashali, Synthesis of novel piperazine and morpholine linked substituted pyrimidine derivatives as antimicrobial agents, Journal of Pharmaceutical Science and Research, 2010, Vol.2(1), 5-12.
- 38. Jun Feng, Zhiyuan Zhang, Michael B. Wallace, Jeffrey A. Stafford, Stephen W. Kaldor, Daniel B. Kassel, Marc Navre, Lihong Shi, Robert J. Skene, Tomoko Asakawa, Koji Takeuchi, Rongda Xu, David R. Webb, and Stephen L. Gwaltney, Journal of Medicinal Chemistry, 2007, 50(10), 2297-2300, DOI: 10.1021/jm070104l.
- Zengwei Lai, Chunhong Li,Jun Liu, Lingyi Kong, Xiaoan Wen, Hongbin Sun, European Journal of Medicinal Chemistry, 2014, 83, 547-560, https://doi.org/10.1016/j.ejmech.2014.06.044
- Ajaya R. Shrestha , Takashi Shindo , Noriyuki Ashida , Tomohisa Nagamatsu, Synthesis, biological active molecular design, and molecular docking study of novel deazaflavin–cholestane hybrid compounds, Bioorganic and Medicinal Chemistry, 2008, 16, 8685–8696. doi.org/10.1016/j.bmc.2008.07.089.
- Lei Luo, Guorong Chen, and Yuanchao Li, A New Method for the synthesis to Famciclovir, Heterocycles, 2008, Vol. 75, No. 11, 2803 – 2808, DOI: 10.3987/COM-08-11435.
- 42. C.Wayne Noell and Ronald K.Robins, Potential purine Antagonists.XXXI. The preparation of certain 9-Alkyl-2-amino-purine-6-purinethiols and related Derivativesnas Antitumor Agents. Journal of Medicinal Chemistry 1962, vol.5, 558-588.DOI: 10.1021/jm01238a016
- Ye, Lianbao; Huang, Pengna; Peng, Xuedong; Luo, Yan, One-step synthetic method of 2-amino-6-chloropurine, Zhongguo Kangshengsu Zazhi, 2011, 36(3), 205-206.

- 44. Yu Lin Hu, Qiang Ge, Ming Lu and Hong Fei Lu, Synthesis and Biological activity of 6-alkykguanine derivatives, Bull. Chem. Soc. Ethiop. 2010, 24(3), 425-432.
- 45. Raghida Bou Zerdan, Pamela Cohn, Egle Puodziukynaite, Matthew B. Baker, Maud Voisin, Céline Sarun, and Ronald K. Castellano, Synthesis, Optical Properties, and Electronic Structures of Nucleobase-Containing π-Conjugated Oligomers, Journal of organic chemistry, 2015, 80 (3), 1828–1840, DOI: 10.1021/jo502773g.
- 46. Alhede, Boerge; Clausen, Finn Priess; Juhl-Christensen, Joergen; McCluskey, Klaus K.; Preikschat, Herbert F., A simple and efficient synthesis of 9-substituted guanines. Cyclodesulfurization of 1-substituted 5-[(thiocarbamoyl)amino] imidazole-4-carboxamides under aqueous basic conditions, Journal of Organic Chemistry 1991, 56(6), 2139-43.
- 47. Alan D. Borthwick, Barrie E. Kirk, Keith Biggadike, Anne M. Exall, SuzanneButt, Stanley M. Roberts, David J. Knight, Jonathan A. V. Coates, D. Michael Ryan, Fluorocarbocyclic nucleosides: synthesis and antiviral activity of 2'- and 6'-fluorocarbocyclic 2'-deoxyguanosines, Journal of Medicinal Chemistry, 1991,34, 907-914, DOI: 10.1021/jm00107a006.
- 48. Michael T. Crimmins, Bryan W. King, William J. Zuercher, and Allison L. Choy, An Efficient, General Asymmetric Synthesis of Carbocyclic Nucleosides: Application of an Asymmetric Aldol/Ring-Closing Metathesis Strategy, Journal of organic chemistry, 2000, 65, 8499-8509,DOI: 10.1021/jo005535p.
- Michael T. Crimmins and Bryan W.King, An Efficient Asymmetric Approach to Carbocyclic Nucleosides: Asymmetric Synthesis of 1592U89, a Potent Inhibitor of HIV Reverse Transcriptase, Journal of organic chemistry, 1996, 61, 4192– 4193.
- Spano.V, Montalbano.A, Carbone.B, Diana.p, Cirrincione.G, Castagliuolo.l, Brun.P, Issinger.O, Tisi.S, Primac.I, VEdaidi.D, Salvador.A, Barraja.p, European journal of Medicinal Chemistry 2014, 74, 340.

- 51. Dua.R, Shrivastava.s, Sonwane.S.K, Shrivastava.S.K, Advanced Biological Research 2011, 5, 120.
- 52. Patrizia Diana, Anna Carbone, Paola Barraja, Alessandra Montalbano, Barbara Parrino, Alessia Lopergolo, Marzia Pennati, Nadia Zaffaroni, and Girolamo Cirrincione, Synthesis and Antitumor Activity of 3-(2-Phenyl-1,3- thiazol-4-yl)-1H-indoles and 3-(2-Phenyl-1,3-thiazol-4-yl)-1H-7-azaindoles, ChemMedChem 2011, 6, 1300 1309, DOI: 10.1002/cmdc.201100078.
- 53. Michael P. Clark, Kelly M. George, Roger G. Bookland, Jack Chen, Steven K. Laughlin, Kumar D. Thakur, Wenlin Lee, Jan R. Davis, Ed J. Cabrera, Todd A. Brugel, John C. VanRens, Matthew J. Laufersweiler, Jennifer A. Maier, Mark P. Sabat, Adam Golebiowski, Vijay Easwaran, Mark E. Webster, Biswanath Dea and George Zhanga, Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3), Bioorganic & Medicinal Chemistry Letters, 2007, 17, 1250–1253, https://doi.org/10.1016/j.bmcl.2006.12.018.
- 54. Anandarajan Thiyagarajan, Masaaki Toyama, Masanori Baba, Ashoke Sharon & Chandralata Bal, Synthesis and Anti-HCV Activity of 4-Methoxy-7HPyrrolo[2,3-d] Pyrimidine Carbocyclic Nucleosides, Nucleosides, Nucleotides and Nucleic Acids,2016, 35,6, 305-314, DOI: 10.1080/15257770.2016.1163374.
- 55. Ramin Gharemanzadeh, Seyyedeh Cobra AZIMI, Nader GHOLAMI, and Ayoob Bazgir, Clean Synthesis and Antibacterial Activities of Spiro[pyrimido[4,5-b]-quinoline-5,5-pyrrolo[2,3-d]pyrimidine]-pentaones, Chem. Pharm. Bull. 56(11) 1617—1620 (2008), https://doi.org/10.1248/cpb.56.1617.
- 56. Mosaad Sayed Mohamed, Ramdan Ahmed El-Domany and Rania Helmy Abd El-Hameed, Synthesis of certain pyrrole derivatives as antimicrobial agents, Acta Pharm.2009, 59, 145-158, 10.2478/v10007-009-0016-9.
- 57. Jiaojiao Xub, Jin Cai, Junqing Chenc, Xi Zong, Xuan Wu, Min Jib and Peng Wang, An efficient synthesis of baricitinib, Journal Of Chemical Research 2016, Vol 40, 205-208.

- Raghida Bou, Pamela Cohn, Egle, Matthew B. Baker, Maud Voisin, Sarun and Ronald, Synthesis, Optical Properties, and Electronic Structures of Nucleobase-Containing π-Conjugated Oligomers, Journal of Organic Chemistry, 2015, 80(3), 1828-1840, DOI: 10.1021/jo502773g.
- 59. Mosaad S.Mohamed, RehabKamel, Samar S.Fatahala, Synthesis and biological evaluation of some thio containing pyrrolo [2,3-d]Pyrimidine derivatives for their anti-inflammatory and anti-microbial activities,European Journal of Medicinal Chemistry, 2010, Vol.45, Issue 7, 2994-3004, https://doi.org/10.1016/j.ejmech.2010.03.028.
- Bryce A. Harrison, N. Andrew Whitlock, Michael V. Voronkov, Zheng Y. Almstead, Kun-jian Gu, Ross Mabon, Michael Gardyan, Brian D. Hamman, Jason Allen, Suma Gopinathan, Beth McKnight, Mike Crist, Yulian Zhang, Ying Liu, Lawrence F. Courtney, Billie Key, Julia Zhou, Nita Patel, Phil W. Yates, Qingyun Liu, Alan G. E. Wilson, S. David Kimball, Craig E. Crosson, Dennis S. Rice and David B. Rawlins, Novel Class of LIM-Kinase 2 Inhibitors for the Treatment of Ocular Hypertension and Associated Glaucoma, J. Med. Chem., 2009, 52 (21), 6515–6518, DOI: 10.1021/jm901226j.
- 61. Alqasoumi.S.I,Ghorab.M.M, Ismail.Z.H, Abdel-Gawad.S.M, El-Gaby.M.S, Aly.H.m, Arzneimittelforschung 2009, 59, 666.
- Varaprasad.C.V, Ramasamy.K.S, Girardet.J.L, Gunic.E, Lai.V, Zhong.W, An.H, Hong.Z, Chem Pharm Bull 2008, 56, 1617.
- ShinyaNagashima,TakeshiHondo,HiroshiNagata,TakashiOgiyama,JunMaeda,Hir oakiHoshii,ToruKontani,SadaoKuromitsu,KeikoOhga,MasayaOrita,KazukiOhno, AyakoMoritomo,KoichiShiozuka,MasakoFurutani,MakotoTakeuchi,MitsuakiOht a,Shin-ichiTsukamoto, Bioorganic & Medicinal Chemistry, 2009, Vol.17, Issue 19, 6926-6936, https://doi.org/10.1016/j.bmc.2009.08.021.
- 64. Matthias Gehringer, Michael Forster, and Stefan A. Laufer, Solution-Phase Parallel Synthesis of Ruxolitinib-derived Janus Kinase Inhibitors via Copper

Catalyzed Azide-Alkyne Cycloaddition, ACS Combinatorial Science, 2015, 17(1), 5-10, DOI: 10.1021/co500122h.

- 65. Yogesh S. Patil, Nilesh L. Bonde, Ankush S. Kekan, Dhananjay G. Sathe, and Arijit Das, An Improved and Efficient Process for the Preparation of Tofacitinib Citrate, Organic process research and development, 2014, 18(12), 1714-1720, dx.doi.org/10.1021/op500274j.
- Justin D. Fair , Chad M. Kormos, Flash column chromatograms estimated from thin-layer chromatography data, Journal of Chromatography A, 2008, 1211, 49– 54, doi:10.1016/j.chroma.2008.09.085.
- 67. Ali, Imran, Mohammad Nadeem Lone, Zeid A Al-Othman, Abdulrahman Al-Warthan, and Mohd Marsin Sanagi. "Heterocyclic scaffolds: centrality in anticancer drug development." Current drug targets, 2015, 16, no. 7, 711-734.
- Ali, Imran, Waseem A. Wani, Ashanul Haque, and Kishwar Saleem. "Glutamic acid and its derivatives: candidates for rational design of anticancer drugs." Future medicinal chemistry 2013, 5, no. 8, 961-978.
- 69. Ali, Imran, Ashanul Haque, Kishwar Saleem, and Ming Fa Hsieh. "Curcumin-I Knoevenagel's condensates and their Schiff's bases as anticancer agents: synthesis, pharmacological and simulation studies." Bioorganic & medicinal chemistry, 2013, 21, no. 13, 3808-3820.
- Ali, Imran, Waseem A Wani, Kishwar Saleem, and Ashanul Haque. "Platinum compounds: a hope for future cancer chemotherapy." Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2013, 13, no. 2, 296-306.
- 71. Ali, Imran, Waseem A Wani, Kishwar Saleem, and Ashanul Haque.
 "Thalidomide: A banned drug resurged into future anticancer drug." Current Drug Therapy, 2012, 7, no. 1, 13-23.
- Ali, Imran, Waseem A. Wani, and Kishwar Saleem. "Cancer Scenario in India with Future Perspectives." Cancer therapy, 2011, 8, 56-70.

- 73. Ali, Imran. "Nano anti-cancer drugs: pros and cons and future perspectives." Current cancer drug targets, 2011, 11, no. 2, 131-134.
- 74. Ali, I, Saleem, K, Uddin, R, Haque, A, & El-Azzouny, A. Natural products: human friendly anti-cancer medications. Egypt Pharma J, 2010, 9, 133-179.
- 75. Ali, I, A Wani, W, Saleem, K, & Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper (II) and ruthenium (III) complexes. Medicinal Chemistry, 2013, 9(1), 11-21.
- 76. Ali, I, Saleem, K., Wesselinova, D., & Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium (III) complexes. Medicinal Chemistry Research, 2013, 22(3), 1386-1398.
- 77. Ali, I, Wani, W. A., Saleem, K, & Hseih, M. F. Design and synthesis of thalidomide based dithiocarbamate Cu (II), Ni (II) and Ru (III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
- Ali, I, Wani, W. A., Saleem, K., & Hsieh, M. F, Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies. RSC Advances, 2014, 4(56), 29629-29641.
- 79. Saleem, K, Wani, W. A, Haque, A., Malhotra, A., & Ali, I. Nanodrugs: magic bullets in cancer chemotherapy. Topics Anti Cancer Res, 2013, 58(2), 437-494.
- Ali, I., Nadeem Lone, M., Suhail, M., Danish Mukhtar, S., & Asnin, L. Advances in nanocarriers for anticancer drugs delivery. Current medicinal chemistry, 2016, 23(20), 21592187.
- A. Shah, E.; Nosheen, F. Zafar. Journal of Photochemistry and Photobiology B: Biology, 2012; 117, 269–277.
- 82. C. H. Wu.; C. C. Wu.; and Y. S. Ho. Journal of Cancer Molecules, 2007, 15–22.
- D. J. Brown. Thy Pyrimidines Interscience, New York, NY, USA, 52nd edition, 1994.
- A. F. Pozharskii.; A. T. Soldatenkov, and A. R. Katrizky, John Wiley & Sons, New York, NY, USA, 1997.

- 85. D. De Berker.; J. M. McGregor.; and B. R. Hughes.British Journal of Dermatology, 2007, 156, 2, 222–230, 2007.
- B. Ardalan.; R. Luis, M. Jaime.; and D. Franceschi, Cancer Investigation, 1998, 16, 4, 237–251.
- 87. R. Freelove and A. D. Walling, American Family Physician, 2006, 73, 485–492.
- J. A. Saonere, African Journal of Pharmacy and Pharmacology, 2010, 4, 6, 314– 323.
- 89. E. J. Choi and G.-H. Kim, Oncology Reports, 2009, vol. 22, no. 6, 1533–1537.
- 90. D. B. Longley.; D. P. Harkin.; and P. G. Johnston, Nature Reviews Cancer, 2003, 3, 5, 330–338.
- A. Pałasz and D. Cież, European Journal of Medicinal Chemistry, 2015, vol. 97, 582–611.
- 92. Yujiro Hayashi, Chem. Sci., 2016, 7, pp.866-880.
- 93. Jun Feng.; Zhiyuan Zhang.; Michael B. Wallace.; Jeffrey A. Stafford.; Stephen W. Kaldor.; Daniel B. Kassel.; Marc Navre.; Lihong Shi.; Robert J. Skene.; Tomoko Asakawa,; Koji Takeuchi.; Rongda Xu.; David R. Webb.; and Stephen L. Gwaltney, Journal of Medicinal Chemistry, 2007, 50(10), 2297-2300.
- 94. HanMa.; Wen-RongJiang.; NicoleRobledo.; VincentLeveque.; SamirAli.; TeresaLaraJaime.; Mohammad Masjedizadeh.; DavidB.Smith.; NickCammack.; KlausKlumpp.; and JulianSymons, The journal of Biological chemistry, 2007, Vol. 282, 41, 29812–29820.
- 95. Kate McKeage. Trelagliptin: First Global Approval.
- 96. Donald E. Bergstrom.; Jerry L. Ruth, Nucleosides & Nucleotides, 1982, 1(1), 1-34.
- 97. K. Magnander.; K. Elmroth, Cancer Lett, 2012, 327 (1–2), 90–96. 4661,2.
- M.P. Stone.; H. Huang.; K.L. Brown.; G. Shanmugam.; Chem. Biodivers, 2011, 9, 1571–1615.
- V. Selvaraju.; M. Joshi.; S. Suresh.; J.A. Sanchez.; N. Maulik.; G. Maulik, Toxicol. Mech. Methods, 2012, 22 (5), 330–335.

- E. Tatsch.; G.V. Bochi.; S.J. Piva.; J.A. De Carvalho.; H. Kober.; V.D. Torbitz; T. Duarte; C. Signor.; A.C. Coelho.; M.M. Duarte.; G.F. Montagner.; I.B. Da Cruz.; R.N. Moresco, Mutat. Res. 2012, 732 (1–2),16–20.
- A. Supriya Simon.; D. Dinesh Roy.; V. Jayapal.; T. Vijayakumar, Indian J. Clin.Biochem. 2011, 1, 50–56. 36.
- C. Algire; O. Moiseeva; X. Deschênes-Simard; L. Amrein; L. Petruccelli; E. Birman; B. Viollet; G. Ferbeyre; M.N. Pollak, Cancer Prev. Res. (Phila.), 2012, Q7.
- K. Aziz; S. Nowsheen; G. Pantelias; G. Iliakis; V.G. Gorgoulis; A.G. Georgakilas, Pharmacol. Ther, 2012, 133 (3), 334–501.
- 104. O. Kennard, DNA-drug interactions, Pure Appl. Chem., 1993, 65 (6), 1213–1222.
- 105. Barton; J. K; Danishefsky; A. Goldberg, J. J. Am. Chem. Soc., 1984, 106, 2172.
- 106. H. Sun; J. Xiang; Y. Liu; L. Li; Q. Li; G. Xu; Y. Tang, Biochimie, 2011, 93, 1351–1356.
- 107. J. Jaumot.; R. Gargallo, Curr. Pharmaceut.Des., 2012, 18, 1900–1916.
- 108. C. Wei; J. Wang; M. Zhang, Biophys. Chem, 2010, 148, 51–55.
- 109. K. Bhadra; G.S. Kumar, Biophys. Acta 2011, (1810), 485–496.
- Liu, X. W; Li, J; Deng, H; Zheng, K. C; Mao, Z. W; Ji, L. N. Inorg. Chim.Acta, 2005, 358, 3311.
- 111. Liu, X. W; Li, J; Li, H; Zheng, K. C; Chao, H; Ji, L. N, J. Inorg. Biochem. 2005, 99, 2372
- 112. Liu, J. G; Zhang, Q. L.; Shi, X. F.; Ji, L. N, Inorg.Chem. 2001, 40, 5045.
- 113. Pyle, A. M; Rehmann, J. P; Meshoyrer.; R; Kumar; C. V; Turro, N. J.; Barton, J. K., J. Am. Chem. Soc. 1989, 111, 3051.
- M. Sirajuddin; S. Ali, A. Haider; N.A. Shah; A. Shah; M.R. Khan, Polyhedron, 2012, 40 (1), pp. 19–31.
- M. Sirajuddin; S. Ali; N.A. Shah; M.R. Khan; M.N. Tahir, Spectrochim. Acta A, 2012, 94, 134–142.

- Ali, I.; Lone M. N.; Alothman Z. A.; Alwarthan A, Journal of Molecular Liquids, 2017, 234, 391-402.
- 117. Saleem.K; Wani. W. A; Haque. A; Lone. M. N; Hsieh. M. F; Jairajpuri M. A.; and Ali, I. Future medicinal chemistry, 2013, 5(2), 135-146.
- 118. Ali. I.; Lone. M. N.; and Hsieh. M. F, Biointerface Research in Applied Chemistry, 2016, 6(4) 1356-1379.
- Shahabadi.N.; Kashanian.S.; Purfoulad. M, Spectrochim. Acta, Part A, 2009, 72, 757.
- Indumathy.R.; Kanthimathi.M.; Weyhermuller.T.; Nair. B. U, Polyhedron, 2008, 27, 3443.
- 121. F. Arjmand.; A. Jamsheera.; Spectrochim. Acta A, 2011, 78, 45–51.
- 122. Allardyce. C. S.; Dyson. P. J.; Ellis. D. J.; Heath. S. L, Chem. Commun. 2001, 1396.
- 123. Psomas.G.; Tarushi.A.; Efthimiadou. E. K, Polyhedron, 2008, 27, 133.
- 124. Chen. L. M.; Liu. J.; Chen. J. C.; Tan. C. P.; Shi. S.; Zheng. K. C.; Ji. L. N. J, Inorg. Biochem.2008, 102, 330.
- Zhao.P.; Xu.L.; Huang.J.; Liu.J.; Yu.H.; Zheng.K.; Ji, L. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2008, 71, 1216.
- 126. Arjmand. F.; Parveen. S.; Afzal.M.; Toupet. L.; Ben Hadda, T. Eur. J. Med. Chem. 2012, 49, 141.
- 127. Haq.I, Arch. Biochem.Biophys.2002, 403, 1.Sun. Y.; Zhang.H.; Bi.S.; Zhouf.X.; Wang.L.; Yan. Y. J. Lumin, 2011, 131, 2299.
- 128. Pyle. A. M.; Rehmann. J. P.; Meshoyrer. R.; Kumar. C. V.; Turro. N. J.; Barton. J. K, J. Am. Chem. Soc., 1989, 111, 3051.
- 129. H.A. Benesi.; J.H. Hildebrand. J. Am. Chem. Soc, 1949, 71, 2703–2707.
- 130. Wolfe. A.; Shimer.G. H. Jr.; Meehan, T. Biochemistry, 1987, 26, 6392.
- 131. M.F. Sanner.; Python: a programming language for software integration and development, J. Mol. Graph. Model, 1999, 17, 57–61.
- 132. Protein Data Bank. Available online at: http://www.rcsb.org/pdb.

- 133. G.M. Morris.; D.S. Goodsell.; R.S. Halliday.; R. Huey.; W.E. Hart.; R.K. Belew.;
 A.J. Olson, J. Comput. Chem, 1998, 1639–1662.
- 134. Wallace. A. C.; Laskowski. R. A.; Thornton, J. M. Protein Engineering, Design and Selection, 1995, 8(2), 127-134.
- 135. Denis A. Babkov, Alexaander O.Chlzhov, Anastasia L.Khandazhinskaya, Angela Corona, Francesca Esposito, Enzo Tramontano, Katherine L. Seley-Radtke, Mikhail S. Novikov, An Efficient Route to Novel Uralic-Based Drug-Like Molecules, Synthesis 2015, 47, 1413–1422.
- 136. Aleksandra patasz, Darius ciez, In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications. European Journal of Medicinal Chemistry 97, 2015, 582-611.
- 137. Santos Fustero, Julio Piera, Juan F. Sanz-Cervera, Silvia Catala, and Carmen Ramı'rez de Arellano, A Versatile Synthesis of Fluorinated Uracils in Solution and on Solid-Phase, Organic Letters, 2004, vol.6, no.9, 1417-1420, doi:10.1021/ol049668z.
- 138. Yu Lin Hu, Xiang Liu, Ming Lu, Qiang Ge, and Xiao Bin Liu, Synthesis of Some Biologically Active Halogenopurines, Journal of the Korean Chemical Society 2010, Vol. 54, No. 4.
- 139. Martin h. cohen, John r. Johnson, Robert justice, Richard pazdur, FDADrugApprovalSummary:Nelarabine(Arranon)fortheTreatmentofT-CellLymphoblasticLeukemia/Lymphoma, The Oncologist 2008, 13, 709–714.
- 140. John C. Martin, Gary A. Jeffrey, Danny P. C. McGee, Michael A. Tippie, Donald F. Smee, Thomas R. Matthews, and Julien P. H. Verheyden, Acyclic Analogues of 2'-Deoxynucleosides Related to 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine as Potential Antiviral Agents, Journal of Medicinal Chemistry, 1985, Vol. 28, No. 3, 359.
- 141. Ya-NanWang, Rammohan R. Yadav, Bheemanaboina, Gui-XinCai, Cheng-HeZhou, Bioorganic & Medicinal Chemistry Letters, Vol.28, Issue 9, 2018, 1621-1628, https://doi.org/10.1016/j.bmcl.2018.03.046

- Id2. Jordan E Axelrad, Simon Lichtiger, Vijay Yajnik, Inflammatory bowel disease and cancer: The role of inflammation, immunosuppressant, and cancer treatment, World J Gastroenterol. May 28, 2016; 22(20): 4794-4801,doi: 10.3748/wjg.v22.i20.4794.
- 143. Ken-ichi Fujita, Yasutsuna Sasaki, Pharmacogenomics in Drug-Metabolizing Enzymes Catalyzing Anticancer Drugs for Personalized Cancer Chemotherapy, Current Drug Metabolism, Volume 8 , Issue 6 , 2007, 10.2174/138920007781368890.
- 144. ChangyuanWang, ZhendongSong, HaiqingYu, KexinLiu, XiaodongMa, Acta Pharmaceutica Sinica B, Volume 5, Issue 5, September 2015, Pages 431-441, https://doi.org/10.1016/j.apsb.2015.07.002.
- 145. Hyojae Oh, Dr. Tao Li ,Prof. Jihyun An, Drug Release Properties of a Series of Adenine- Based Metal–Organic Frameworks, Chemistry a European Journal, 2015, 21, 17010 – 17015. DOI: 10.1002/chem.201501560.
- 146. YuanYue, BaoZhihong, LiSanming, ZhaoKun, Electrochemical evaluation of antioxidant capacity in pharmaceutical antioxidant excipient of drugs on guaninebased modified electrode, Journal of Electroanalytical Chemistry, Vol.772, 2016, Pages 58-65, https://doi.org/10.1016/j.jelechem.2016.03.008.
- 147. Olivier Tournilhac, Bruno Cazin, Ste´phane Lepre`tre, Marine Divine´, Karim Maloum, Alain Delmer, Bernard Grosbois, Pierre Feugier, Frederic Maloisel, Florence Villard, Bruno Villemagne, Dominique Bastit, Karim Belhadj, Nabi Azar, Mauricette Michallet, Geraud Manhe`s, and Philippe Travade, Impact of frontline fludarabine and cyclophosphamide combined treatment on peripheral blood stem cell mobilization in B-cell chronic lymphocytic leukemia, Blood, Vol. 103, No. 1, 363.

- 148. Craig Sauter, Nicole Lamanna & Mark A Weiss, Pentostatin in chronic lymphocytic leukemia, Expert Opin. Drug Metab. Toxicol, 2008, 4(9), 1217-1222, https://doi.org/10.1517/17425255.4.9.1217.
- 149. K. Srihari Babu, P. Srinivas, Y.V. Madhavi, Babu,G. Madhusudhan Reddy,P. Haldar,P. Narasimha Rao, V. Krishna, K. Srinivas, G. Venkateshwarulu, P. Pratap Reddy, and R. Vijaya Anand, A succinct synthesis of valganciclovir hydrochloride, a cytomegalovirus (CMV) retinitis inhibitor, ARKIVOC 2011, (ii) 199-208.
- 150. Sawsan Mahmoud, Sherifa, Hasabelnaby, Sherif F. Hammad, Tamer M. Sakr, Antiviral Nucleoside and Nucleotide Analogs: A Review, Journal of advanced pharmacy research, 2018, 2 (2), 73-88.
- 151. Khalid MohammedHassan Hilmy,Maha M.A.Khalifa,Mohammed AbdAllah Hawata,Reda MohammedAboAlzeen Keshk, Abd AlmeneamEl-Torgman, Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents, European Journal of Medicinal Chemistry, Volume 45, Issue 11, November 2010, Pages 5243-5250, https://doi.org/10.1016/j.ejmech.2010.08.043.
- 152. O. S. Sizova, N. E. Britikova, K. Yu. Novitskii, L. I. Shcherbakova, G. N. Pershin, A. I. Kravchenko, V. A. Chernov, Pyrrolo[3,2-d] pyrimidines. IV. Synthesis and antibacterial and antitumor activity of 2,4,7-substituted pyrrolo[3,2-d]pyrimidines, Pharmaceutical Chemistry Journal, 1982, Volume 16, Issue 11, pp 834–838.
- 153. Lee FKuyper, Janice MGarvey, David PBaccanari, John NChampness, David KStammers, Christopher RBeddell, Pyrrolo[2,3-*d*]pyrimidines and pyrido[2,3-*d*]pyrimidines as conformationally restricted analogues of the antibacterial agent trimethoprim, Bioorganic & Medicinal Chemistry, Volume 4, Issue 4, April 1996, Pages 593-602. Doi: https://doi.org/10.1016/0968-0896(96)00045-4.

- 154. Mona M.Hanna, New pyrimido[5,4-*e*]pyrrolo[1,2-*c*]pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies, European Journal of Medicinal Chemistry, Volume 55, September 2012, Pages 12-22. https://doi.org/10.1016/j.ejmech.2012.06.048
- 155. Myung-HoJung, HwanKim, Won-KyoungChoi, Mohammed I.El-Gamal, Jin-HunPark, Kyung HoYoo, Tae BoSim, So HaLee, DaejinBaek, Jung-MiHah, Jung-HyuckCho, Chang-HyunOh, Synthesis of pyrrolo[2,3-d]pyrimidine derivatives and their antiproliferative activity against melanoma cell line, Bioorganic & Medicinal Chemistry Letters, Vol.19, 2009, 6538-6543, https://doi.org/10.1016/j.bmcl.2009.10.051.
- 156. ShinyaNagashima,TakeshiHondo,TakashiOgiyama,JunMaeda,HiroakiHoshii,Tor uKontani,SadaoKuromitsu,KeikoOhga,MasayaOrita,KazukiOhno,AyakoMoritom o,KoichiShiozuka,MasakoFurutani,MakotoTakeuchi,MitsuakiOhta,ShinichiTsukamoto, Novel 7*H*-pyrrolo[2,3-*d*]pyrimidine derivatives as potent and orally active STAT6 inhibitors, Bioorganic & Medicinal Chemistry, Vol.17, Issue 19, 2009, 6926-6936, https://doi.org/10.1016/j.bmc.2009.08.021.
- 157. Fumio Itoh, Orsola Russello , Hiroshi Akimotol, G. Peter Beardsley, Novel pyrrolo[2,3-d]pyrimidine antifolate TNP-351: cytotoxic effect on methotrexate-resistant CCRF-CEM cells and inhibition of transformylases of de novo purine biosynthesis, Cancer Chemother Pharmacol, 34, 1994, 273-279.
- 158. Pavla Perlíková, Michal Hocek, Pyrrolo[2,3- d]pyrimidine (7- deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides, Medicinal Research Review, 2017, 1–32, DOI: 10.1002/med.21465.