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Ligand based drug design and drug discovery

Introduction

Computer-aided drug design is a very useful tool for drug designing as it minimizes the
time utilized in identification, characterization, and structural optimization of novel drug
candidate [1-5]. It can be utilized for rational design of drugs. Prodrugs are typically

designed to increase the specificity or bioavailability of the original drug molecule [6-8].

Mainly two approaches are applicable in CADD. The first approach is the Ligand based
drug design and structure-based drug design is the second approach we can apply for the
design of new drug candidates. Ligand based drug design is an indirect approach to
expedite the development of compounds which are pharmacologically active. The
development is done by studying the molecules that interact with the biological target of
interest [9]. While structure-based drug design utilized the knowledge of the 3D structure

of the target molecule to identify and optimize the potential drug candidates [10-12].

Identification of the suitable target molecule is the first and the foremost step in the
process of drug designing which is associated with a disease. Usually a key protein of a
biochemical pathway which is associated with the target disease serve as a potential drug
target [6, 13, 14].

Depending on the disease state, molecules referred to as lead compounds are identified or
designed to inhibit or promote the concerned biochemical pathway [15-18]. The next step
in the process of drug discovery is to optimize the lead molecules to maximize the
interaction with the target molecules. In the process of lead optimization, CADD plays a
very important role. Ligand-based drug design methods are used in the absence of
information regarding the 3D structure of receptor. The information is confined only to

the molecular structure and properties.

Due to the lack of an experimental structure, the known ligand molecules that bind to the
drug target are studied to understand the structural and physicochemical properties of the
ligands that correlate with the desired pharmacological activity [19-22].



Apart from the known ligand molecule, ligand-based methods may also include natural
products or substrate analogues that interact with the target molecule having desired
pharmacological effect [9]. Alternatively, in the presence of a 3D structure of the drug
target, structure-based methods such as molecular docking or in-silico chemical alteration,
are usually applied for lead optimization [23-27].
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The Basics of QSAR

The well-known approaches for ligand-based drug design are the methods of
pharmacophore modelling and QSAR. QSAR is a computational method used to quantify
the correlation between the chemical structures of a series of compounds and its chemical
and biological responses. The basic hypothesis behind QSAR method is that the similar
structural and physiological properties yield similar activity [28,29]. Initially a group of
lead molecules are identified which represents the desired biological activity of interest. A
quantitative relationship is established between the physico-chemical features of the active
molecule and the biological activity. The developed QSAR model is then used to
optimize the active compounds to enhance the biological activity. The compounds
predicted are then experimentally tested for the desired activity. The QSAR method can
be thus used as a tool for identification of compound modifications with improved

activity.
The general methodologies of QSAR is built upon a series of consecutive steps:

1) Identify the ligands with experimentally measured values of the desired biological
activity. These ligands should have a large variation in biological activity.

2) ldentify and determine the molecular descriptors associated with various structural
and physicochemical properties of the molecules under study.

3) Discover the correlations between the molecular descriptors and the biological
activity that can explain the variation in activity.

4) Test the statistical stability and predictive power of the QSAR model.

The biological activity of the series of compounds is experimentally measured and this
will act as a dependent variable in QSAR modelling. The molecules are selected and are
insilico modelled. To bring molecules to a stable configuration, the energy of the
molecules are minimized by using various energy minimization procedures like molecular

mechanics or quantum mechanical methods [21,30-33].

Next step is the generation of molecular descriptors for the set of molecules which affect
the biological activity of the molecule. Molecular descriptors can be topological,
structural, molecular weight variable, lipophilicity etc. depending upon the QSAR method,
guantum or mechanical tools can be used to develop a mathematical relationship between

the molecular descriptors and biological activity. The biological activity of the molecules



is dependent upon the molecular descriptors. They can increase as well as can lead to
decrease in biological activity. The final step is the validation of model generated by
using the set of molecules. The validation method adopted includes both internal as well
as external validation, to test the statistical significance, predictive power and robustness

of molecules.

The strength of the classical QSAR is that by using very simplistic mathematical
relations involving various physicochemical properties and chemical substituents it is
able to explain and predict biological activity of a series of similar molecules.

The molecular descriptors used for correlation with the activity were mostly
representative of fragments of the parent molecule, including substituents on the
parent. The advantage of using fragment-based descriptors is their ready availability
for a wide-range of substituents computational ease and the ability to keep the
mathematical implementation fairly understandable [34]

3D QSAR

Descriptors that describe 3D features of a molecule. As the name suggests, 3D
QSAR method includes develop a QSAR model. Various geometric,
physicalcharacteristics and quantum chemical descriptors may be used to describe the
3D features of the ligands in the 3D QSAR method. Such molecular descriptors are
then combined to create a pharmacophore that can explain the biological activity of
the ligands. A pharmacophore is defined as the 3D spatial orientation of various
features, such as hydrogen bond donors or acceptors, which are essential for the
desired biological activity [35-36].

The developed pharmacophore model is tested for the stability and statistical
significance to obtain the final 3D QSAR model. There are several review articles
available that elaborately discuss various techniques of 3D QSAR modeling [34, 35,
38-37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. To avoid redundancy, the following
section will briefly describe the major 3D QSAR techniques currently in use for
drug design. The concluding section will provide a detailed description of the CSP-

SAR method developed in our laboratory along with applications of the method.

CoMFA



COMFA uses lennard-Jones and coulombic potential function to calculate steric and
electrostatic interaction, respectively, which can cause unrealistically high values
forthese energy terms due to the hyperbolic natures of the energy functions. An
arbitrary cutoff value for thesepotential functions is assigned in CoMFA to avoid
such behavior [49,50].

Comparative Molecular Field Analysis (CoMFA) [51] is one of the most widely
used 3D QSAR methods. CoMFA was the first QSAR method to relate 3D shape-
dependent steric and electrostatic properties of a molecule to its biological activity.
In this method the molecules are aligned based on their 3D structures on a 3D grid
and the values of steric and electrostatic potential energies are calculated at each
grid point. Usually CoMFA assumes that the minimumenergy conformer is the
bioactive conformer. For systems with known crystal structures, crystal coordinates
may be used to define bioactive conformers. Field values corresponding to the
potential energy terms are calculated at each grid point for every molecule and
correlated with the biological activity. PCA or PLS methods are usually used for
model development in CoMFA. The CoMFA model is then tested for statistical
significance and robustness. The success and predictive ability of CoMFA models
are highly sensitive on the alignment of the bioactive conformers [45, 52-53].

As the bioactive conformation is not necessarily the lowest conformation in the
absence of the receptor [54-55], the assumption made by CoMFA in the selection of
bioactive conformers and the corresponding alignment method may produce erroneous
models. By neglecting the dynamical nature of the ligands CoMFA limits its
applicability. Another limitation of CoMFA is the form of its energy function, as it
does not explicitly account for hydrophobicity or hydrogen bond interactions [45,
53,56].

CoMSIA

Comparative Molecular Similarity Indices (CoMSIA) [57] is a 3D QSAR technique
similar to CoMFA. However, unlike CoMFA, the molecular field expression of
CoMSIA includes hydrophobic, hydrogen-bond donor and acceptor terms in addition
to steric and coulombic contributions. CoMSIA also calculates the similarity indices
instead of interaction energies by comparing each ligand molecule with a common
probe with a radius of 1A, and charge, hydrophobicity and hydrogen bond properties

equal to 1 [58]. CoMSIA uses bell-shaped Gaussian function to describe steric,



electrostatic and hydrophobic components of the energy function. Unlike CoMFA,
this allows CoMSIA to avoid the use of an arbitrary cutoff value for the energy
calculations. Similarity indices corresponding to CoMSIA molecular fields define the

ligand-protein binding interaction [59].
Catalyst

Efforts have been made to include the conformational flexibility in 3D QSAR
methodology. CATALYST is one of the most popular 3D QSAR software packages
that uses conformational variation during model development. CATALYST uses the
poling algorithm [60] to sample conformational space for the ligand molecules.
Typically, 250 conformers are generated in this process with a default cutoff value
of 20 kcal/mol above the energy of global minimum conformation. Spatial
orientations of the functional groups are used to develop the pharmacophore
hypothesis and the estimated and observed activity values are compared to evaluate
the QSAR models. The most common properties or functional groups used to define
the pharmacophoric features are:

. Hydrogen-bond acceptor

. Hydrogen-bond donor

. Positively charges group (basic)

1
2
3
4. Negatively charged group (acidic)
5. Aromatic ring

6. Aliphatic hydrophobic moieties

7. Aromatic hydrophobic moieties

The pharmacophore generation process is divided into constructive and subtractive
phases. During the constructive phase compounds having activity greater than a
cutoff value are used to build a pharmacophore hypothesis. In the subtractive phase
any pharmacophore that fits more than half of the inactive compounds is rejected. A
cost value is assigned to each selected pharmacophore based on its prediction error,

feature weight and complexity.

CATALYST is equipped to overcome most of the drawbacks of the previous 3D
QSAR methods. However, there are a few limitations in CATALYST. The

conformation generator of CATALYST creates a maximum of 250 conformers which



may not include all accessible conformations for flexible ligand molecules. Hence,
CATALYST may fail to include the bioactive conformer of the active compounds,
which in turn may lead to incorrect pharmacophore models. CATALYST also does
not generate models that include both the physico-chemical properties and

pharmacophoric features

CSP-SAR

Principle. CSP-SAR is a novel method for developing 3D QSAR models based on
the Conformationally Sampled Pharmacophore (CSP) method developed in our
laboratory [44, 61, 62]. This method is designed for ligands with conformational
flexibility and avoids problems associated with ligand alignment. As discussed
before, the active or bound conformation of a ligand molecule does not need to be
the lowest-energy conformation in the absence of the target molecule; even the
active conformer may not belong to the ensemble of low energy conformers [63]. In
order to maximize the potential inclusion of the bioactive conformers of the ligand
molecules in the model, a rigorous sampling of the conformational space for each
ligand is essential. Unlike other pharmacophore development methods, CSP considers
all accessible conformations of each ligand molecule for pharmacophore development.
Thus, CSP maximizes the probability of including the bioactive conformer in the
model. Once all accessibly conformations of the ligands have been generated,
typically via molecular dynamics simulations (see below), it is necessary to extract
descriptors of the conformational properties of the ligands for use in model
development. This requires the selection of pharmacophore features for the set of
ligand molecules, and represents a critical step in the CSP approach.

Typically, these features include hydrogen bond donor and acceptors,hydrophobic
groups or any other structural feature that may be important for the biological
activity. Available SAR data on the system of interest may guide but not limit this
selection procedure. For example, the CSP approach was successfully applied to
opioids using previously defined functional groups, such as the basic nitrogen known
to be essential for opioid activity, as well as identifying novel functional groups
during model development [44, 64, 65].

Studies involving relatively large ligands that have not previously been subjected to

significant SAR studies pose more difficulty in the functional group selection



process. Inthe absence of any existing model functional group selection involves the
user considering all functional groups that might have any effect on the biological
activity. After the identification of all possible chemical features that may serve as
pharmacophoric points, all possible distances, angles and dihedral angles between the
feature points need to be considered. Once these descriptors have all been identified
they are regressed against each other to eliminate redundant descriptors from further
analysis (e.g. if descriptors have a correlation coefficient (r?) greater than, for
example, 0.8 one of those may be removed from further consideration). The
remaining descriptors are then systematically regressed against the biological data,
with those having correlation  coefficient (r?) less than a cutoff value (typically
0.01) with respect to the biological data discarded from further analysis. Initially an
extensive calculation of the structural descriptors is highly recommended. For
relatively large ligand molecules the number of possible structural descriptors can be
quite high, being on the order of 100,000 or more. However, automation of this
procedure readily allows the selection of descriptors for additional analysis to be
performed.

The nature the descriptors, which include selected pharmacophore features in
combination with all accessible conformations of each ligand, is the key feature of
the CSP approach. This combination requires that the descriptors be treated as
probability distributions that include, for example, all possible distances between two
pharmacophore features or all possible angles between three pharmacophore features,
and so on. To better elucidate this concept, we will expand on published results of
a CSP study of bile acid conjugates and their transporter (Apical Sodium-dependent
Bile acid Transporter or ASBT) [43]. Presented in Fig. (2) are three conjugates of
the bile acid 9, 2 and 21, on which three pharmacophore points are shown (note
that in the original study, a total of 30 pharmacophore points were initially
considered on a total of 13 compounds). For the present example, three conjugates
shown in Fig. (2) will be considered. Each of these conjugates was subjected to MD
simulations to obtain all possible conformations from which probability distributions
of descriptors based on the pharmacophore features were determined. Onedimensional
descriptors associated with the NG-OA distance and OA-NG-CG angles are
compounds 9 (red), 2 (blue) and 21 (turquoise) [43]. As is evident, each conjugate
samples a range of conformations as represented by the probability distributions. It

is these distributions that represent the individual descriptors and the degree of



overlap between the descriptors (see following paragraph) may be used as
independent variables for model development. In addition, the descriptors may be
developed in two or more dimensions. An example of 2D probability distributions
for the two structural descriptors . From the distributions it is evident that 9 and 2
share high degree of structural similarity with respect to the given descriptors, while
21 did not sample conformational space similar to either 9 or 2. Accordingly, based
on this qualitative analysis, 9 and 2 would be predicted to have similar activity vs
21. Notably, this analysis did not require any alignment of the ligands, simply a
comparison of the probability distributions of the selected pharmacophore features.
The lack of a requirement for structural alignment represents another strength of the
CSP approach.

While use of the CSP approach in a qualitative manner is of utility, as described
below, quantitative analysis is required to predict inhibition constants, potencies and
so on. This requires that the degree of overlap of the probability distributions of the
individual ligands be determined, vyielding overlap coefficients that may be used
directly in regression analysis. 1D overlap coefficient of a single structure descriptor
between two ligands can be calculated using the following relation for discrete
probability density

functions [43, 66],

Computational Method.

The primary requirement of the CSP method is adequate conformational sampling
for the ligand molecules. In order to achieve a complete sampling of conformational
space rigorous molecular dynamics (MD) simulations [67] are an essential part of
CSP. However, other sampling methods such as systematic grid search [68-69],
fragment-based search [47, 70], random search or Monte Carlo (MC) simulations
[71], distance geometry [72], genetic algorithm [73-74], simulated annealing [75, 76],
taboo search [77] etc. can also be applied for conformational sampling purpose as
long as exhaustive sampling of conformational space can be assured. A detail
description of these searching algorithms can be found in several review articles and
book chapters [66, 78-79].

Empirical force fields [20] are an integral part of in silico modeling. Any molecular
force field such as CHARMM [71], AMBER [80], MMFF [80-81] or OPLS [82]



which is suitable for small molecules can be used for CSPSAR modeling. However,
it is important that the force field used accurately model the structural properties of
the molecules of interest. Test of this accuracy may be performed by quantifying the
ability of the force field to reproduce minimum energy geometries with those
obtained from quantum mechanical (QM) calculations or high resolution crystals
structures such as those obtained from the Cambridge Structural Database [83]. In
addition, the use of QM methods allows the ability of a force field to reproduce the
change in energy as a function of ligand conformation to be validated and
optimized, as required. Proper treatment of the conformational energies is particular
important for the CSP approach as it is based on conformational distributions.
Methods for force field validation and optimized have been described elsewhere [47,
84].

CSP-SAR models developed by our laboratory used MD simulations as a tool for
conformational search. MD generates consecutive conformations of a molecular
system

using Newton’s second law of motion in which the force acting on a system along
with velocities of the atoms in the system are used to predict new conformations by
integrating over time[85]*. The time evolution of the position and velocity of the
molecular system is estimated from the analytical solution of the differential equation
of motion. For flexible ligands replica-exchange MD simulations [86-87] are
preferably employed for sampling the conformational space.Replica-exchange MD
simulation methods reduce the probability of a molecular system getting trapped in
local minimum energy region during a simulation facilitating complete sampling of
the accessible conformational space.

In this method a number of replicas of the same system are simultaneously
simulated at different temperatures and with coordinates or other properties swapped
between the replicas performed at regular interval. The probability of the exchange
of two replicas is subjected to the Metropolis Criterion [88] thereby assuring that
the system maintains a proper Boltzmann distribution. MD simulations of each replica
are typically performed using 20ns Langevin dynamics [89] with an integration time
step of 0.002ps in the presence of an implicit solvent model [90-91], such as
Generalized Born Continuum Solvent Model (GBMV) [92],

[93]. Usually 20ns simulations yield conformational convergence for flexible ligands

with moderate size (~ 650 Daltons); testing that additional simulation time does not



lead to additional sampling is often adequate to verify that the full range of
accessible conformations of the molecule has been sampled. Coordinate frames are
saved from the MD trajectories and used to determine the conformational distribution
of the structural descriptors from which the overlap coefficients are calculated.
During in silico modeling the protonation state of any ionizable chemical group
should be properly assigned based on the pH of the experimental condition used to
measure the biological activity.

1D and 2D probability distributions of various pharmacophoric feature points are
obtained by analyzing the trajectories from the MD simulations. Overlap coefficients
of the conformational distributions are combined with the physico-chemical properties
of the ligands to obtain a set of molecular descriptors. The molecular descriptors are
subjected to single-variable as well as multivariable linear regression (MLR) analysis
against the biological activity of interest. All possible combinations of the molecular
descriptors are subjected to MLR analysis to identify the combination of descriptors
(candidate models) that can explain the variability of the biological activity of the
ligands. To avoid overfitting, any combination of independent variables having
correlation between each other greater than 0.8 are not included for multivariable
regression.Akaike information criteria [94, 95] is applied to rank the candidate
models for systems with more than one statistically significant quantitative models.
Simple SHELL scripts may be used to automate the process of capturing snapshots
from the MD trajectories and calculating the overap coefficients of the structural
features. MLR analysis for all possible combinations of molecular descriptors and
calculation of AIC values of the selected candidate models can also be automated
using statistical software like R in conjunction with a SHELL script. The
combination of CSP approach with 3D QSAR method, named CSP-SAR, thus
potentially can capture information on the bioactive conformation in model
development which facilitates an understanding of the biological interactions dictating

activity without any available ligand-target 3D structure.

Applications.
The CSP method was developed and first successfully applied on opioid ligands
[44,62,63,]. CSP was used to study both peptidic as well as non peptidic opioids

and the derived pharmacophore model distinguished opioid agonists from the



antagonists. Using qualitative CSP models for opioid ligands Bernard and coworkers
[44] discovered that DPI2505, a compound previously suggested to be a antagonist,
may act as an agonist. The qualitative model was also used to design novel opioid
ligands.

Subsequent application of quantitative CSP for opioid ligands [63] yielded efficacy
and affinity models that were able to distinguish between ligands that differed by a
single substitution on an aromatic ring. These efforts also discovered a novel
hydrophobic moiety imporant for efficacy and affinity that had not been identified in
previous studies. This represented a significant advance in our understanding of
opioid SAR, as previous thinking assumed that the hydrophobic moiety was limited
to aromatic groups, whereas as the CSP approach showed that aliphatic moieties
could also serve as the hydrophobic groups in certain ligands. Notably, the models
of opioid developed by the CSP methods encompassed low molecular weight,
nonpeptidic opioids as well as peptidic ligands. Previous opioid models were not
able to bridge this gap.

The ability of the CSP method to overcome this is based on the inclusion of all
conformations in model development, the lack of the need to align molecules, a
particular problem when both nonpeptidic and peptidic ligands are being studied and
the inclusion of a large number of possible pharmacophore features in model
development. Indeed, that later consideration led to the identification of the novel
hydrophobic moieties in the selected opioids. Recently, the inhibition requirement of
hASBT using amino-piperidine conjugates of bile acids was studied using the CSP-
SAR method [69]. CSP-SAR models developed for hASBT inhibition successfully
identified structural and physico-chemical descriptors that explained the variance of
the biological activity. Despite the fact that the inhibitors used in this study had a
narrow range of activity, theconformational sampling feature of the CSP-SAR method
was able to facilitate identification of the information from the molecular descriptors
necessary to explain the activity. The quantitative CSP-SAR models developed in
this study was able to distinguish between very-potent inhibitors (<16(1M) from
moderately-potent (>16 [1M) inhibitors with some exceptions. However, further
qualitative analysis was able to overcome the limitation of the quantitative models.
Qualitative CSP-SAR demonstrated that very subtle chemical modifications in some
inhibitors led to the formation of salt-bridge interaction resulting in conformational

restriction associated to poorer binding affinity. This study established the strength of



CSP-SAR method to capture the effect of such small chemical modification on
biological activity and it emphasizes the utility of both quantitative and qualitative
CSP approaches.

The CSP method has also been applied and discussed by other researchers in the
context of 3D QSAR [54-60]. CSP models developed by Bernard and coworkers,
demonstrated the importance of including extensive conformational sampling in model
development. This motivated other researchers to include conformational sampling
during the development of 3D QSAR models for other flexible systems. Gilbert and
coworkers applied the concept of CSP method in their work by considering a set of
representative conformations of the flexible ligands to develop selective inhibitors of
DAT/SERT using CoMFA and CoMSIA methods [88]. Mallik and coworkers [95]
used the CSP method for developing 3D pharmacophore for the 13-residue cyclic
peptide, compstatin, an anti-complement peptide and other related peptidic analogues.
Using the CSP methodology the researchers were able to distinguish between active
and inactive analogues. The researchers also extended the original CSP work by
Bernard and coworkers, by including dihedral angles as a pharmacophoric descriptor
to capture 3D structural features of the peptidic ligands. The inclusion of multiple
conformers instead of using only the lowest-energy conformer yielded a stable and
predictive model. Kalaszi and coworkers [90] developed a novel 3D QSAR method
based on thermodynamic properties to predict bioactive conformation of flexible
ligands using conformational analysis of the ligand molecules. In two recent studies
Lexa and coworkers [91] and Kirschner and coworkers [92] used replica exchange
molecular dynamics to explore the conformational space accessible by peptidic ligands
with breast cancer inhibiting properties. They used ligand-based 3D QSAR method
to identify the bioactive conformations of the active ligands. Conformational analysis
of the larger active peptides allowed them to explain the activity of the existing
ligands as well as discover novel smaller peptidic ligands with full biological
activity. The successful works of these researchers confirm the validity and
importance of CSP approach in ligand-based 3D QSAR modeling for flexible
molecules. In addition, CSP has also been mentioned in several review articles [93-
94] as a novel method to utilize the dynamical behavior of flexible biomolecules to
explain ligand-protein binding.

Validation of the CSP Method.



To assess theperformance of CSP method as compared to more traditional 3D
QSAR approaches, additional calculations were performed as part of the present
study. These involved a comparative study of the inhibition pharmacophore model for
hASBT based on the thirteen ligands in G1 and G3 groups as described by
Gonzalez and coworkers [55] with a model developed presently using the Catalyst
approach. Similar to the observation of Gonzalez and coworkers inclusion of the
compounds in G2 group did not yield statistically significant model (r? = 0.55).
Catalyst model development was performed using Discovery Studio 2.1 CatalystTM
(Accelrys, San Diego, CA). The best conformation generation method as
implemented in

CatalystTM was used to generate up to 250 conformers of each ligand based on a
20 kcal/mol energy cutoff. Ten hypotheses were generated using the conformers of
the ligands and their Ki values using five molecular features, such as hydrogen bond
donor, hydrogen bond acceptor, hydrophobic, positively ionizable group and negatively
ionizable group. Out of the ten hypotheses, the hypothesis yielding the lowest total
cost was selected for further analysis. The best inhibition model generated by
Catalyst consisted of five features including one hydrogen-bond acceptor, one
hydrogen-bond donor, two hydrophobic moieties and one positively ionizable group.
The most potent inhibition in the set, compound 9, mapped all the five features of
the pharmacophore ; 3-OH represented the hydrogen-bond acceptor, 7-OH represented
the hydrogen bond donor, C-19 and D-ring represented the two hydrophobes and the
basic piperidine nitrogen depicted the positively ionizable group feature. Top three
CSP-SAR inhibition models also consisted of structural descriptors representing
similar features e.g. 7-OH, basic piperidine nitrogen (positively ionizable group) and
hydrophobic moieties close to C-19 and D-ring such as centroid of B and C rings
and C-20. In addition, CSP-SAR models included structural descriptors involving the
relative orientation of [J-substituent with respect to the steroidal nucleus. However,
CSP-SAR models did not contain any descriptor that explicitly considered 3-OH.
CSP-SAR models also included physico-chemical descriptors such as GB energy
(electrostatic component of solvation free energy) and logP (octanol/water partition
coefficient). This is a clear advantage of CSP-SAR method over Catalyst as there is
no simple tool in Catalyst that can combine structural features with physico-chemical
descriptors. The Catalyst model yielded r?> of 0.849 while the r?> of the best model



reported by Gonzalez and coworkers was 0.813. However, the CSP-SAR model
yielded better RMSD value than the Catalyst model (Table 1).

Table 1 represents the observed and estimated Ki values of the ligands based on
CSP and Catalyst methods.Moreover, the best CSP-SAR model included only two
descriptors to explain the activity while five descriptors were used by Catalyst
model for the same set of compounds. From the comparison of the inhibition
models developed by the two methods it is evident that CSP and Catalyst yielded
very similar fitting quality. Nevertheless, the Catalyst method did not provide any
tool to explanation of the variation in activity due to subtle chemical modifications;
while CSPSAR qualitative model was able to explain such variation in activity via

salt-bridge interaction.

Limitations.

One limitation of the CSP-SAR method is that the selection of pharmacophoric
features of the ligands is user dependent. The selection of functional groups is often
facilitated by previous studies though all the chemical groups present on the ligands
must be considered. This limitation may be overcome by considering probability
distributions between all possible distances, angles and dihedral angles involving all
chemical groups that may impact on biological activity. A second limitation is the
computational requirement. As extensive sampling of conformational space is
required, extended MD simulations must be performed on each ligand. While this
step is computationally demanding, the accessibility of commodity computing
minimizes this limitation. In addition, once the conformational sampling of a ligand
is completed and the generated conformations stored, further analysis may be
performed to identify additional structural or physio-chemical properties that correlate
with biological activity without redoing the MD simulation or other sampling
procedure.



CONCLUSIONS

Ligand-based drug design is inherently a complicated problem as this approach is
restricted to considering only one side of the actual biochemical process. It has been
shown in many cases that receptor molecules and/or ligands undergo significant
conformational changes to facilitate their interaction [95-96]. While traditional
pharmacophore approaches often did not take into account ligand conformational
flexibility by only using minimum energy conformations of the ligands, more recent
methods include a large number of conformations during model development.
Though such methods offer significant improvements, they are still limited by
including a finite range of conformations as well as requiring alignment of the
ligands under study. The CSP method largely overcomes these limitations including
all accessible conformations of the ligands and using the overlap of probability
distributions of pharmacophore features during model development. In addition, the
CSP-SAR method may readily be combined with physicochemical properties. The
utility of this approach has been demonstrated in a number of studies in our
laboratories as well as by other workers. Clearly, ligand-based drug design is an
effective method to understand the features of ligands important for their biological
activity in the absence of the receptor structure.

Investigation of the structural and physico-chemical features of the ligands of a drug
target can indicate the nature of interactions that are essential for the desired
pharmacological response. The method can also predict novel molecular structures
with features facilitating the interaction with the target molecule. As stated above,
there are several different methodologies to perform ligand-based modeling. However,
proper understanding of the underlying principle of the chosen method is highly
recommended for successful application of these methods to complex biological

systems.
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