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— The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
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Merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.
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Merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) =2 T(n/2) + O(n)

\
# subproblems work dividing

subproblem size and combining
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* Master theorem (reprise)
T(n) =aT(n/b) + f(n)

CASE 1: f(n) = O(n'°2* %), constant & > 0
= T(n) = O(n'oe?)

CASE 2: f(n) = O(n'°2 1g"n), constant k > 0
= T(n) = O(n'o#r? 1gk1p)

CASE 3: f(n) = Q(n'2r¢ ") constant £ > 0,

and regularity condition

= T(n) = O(f(n)) .
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 Master theorem (reprise)
T(n) = aT(n/b) + f(n)
CASE 1: f(n) = O(n'°2¢~#), constant € > 0
= T(n) = O(n'°er?) ,
CASE 2: f(n) = O(n'°2* 1g"n), constant k& > 0
= T(n) = O(n'°er¢ 1g"1p) .

CASE 3: f(n) = Q(n'2be "¢, constant € > 0,
and regularity condition

= T(n) = 6(f(n)) .
Merge sort: o =2,b =2 = nloers = ploe? =y
= CASE2 (k=0) = T(n)=0(nlgn).
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Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.
3. Combine: Trivial.
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Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15
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Binary search
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Binary search
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Binary search
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ALGORITHMS

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.
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ALGORITHMS

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15
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~ &~ Recurrence for binary search

T(n) =1 T(n/2) + (1)

\
# subproblems work dividing

subproblem size and combining
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~ & Recurrence for binary search

T(n) =1 T(n/2) + (1)

\
# subproblems work dividing

subproblem size and combining

nlogrt = plosl = 0 =1 = CASE 2 (k=0)
= T(n)=0(Ign).
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ALGORITHMS

Powering a number

Problem: Compute a”, where n € /.

Naive algorithm: O(n).
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Powering a number

Problem: Compute a”, where n € /.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

n?2 ., n/2

a" - a if n 1s even;

n—
“ a2 D200 if nis odd.
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ALGORITHMS

| Powering a number

Problem: Compute a”, where n € /.
Naive algorithm: O(n).
Divide-and-conquer algorithm:

) am?. gn? if n is even;
a” = . .
a2 g2 g if nis odd.

T(n) = T(n/2) + ©(1) = T(n)=0(gn).
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ALGORITHMS

Fibonacci numbers

0 ifn=0;
F =<1 ifn=1;
F ,+F , ifn>2.

n n

0O I 1 2 3 5 8 1321 34
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Fibonacci numbers

Recursive definition:
0 ifn=0;
F,=41 ifn=1;
F ,+F, , ifn>2.

o 1 1 2 3 5 8 1321 34 .-

Naive recursive algorithm: Q(¢")
(exponential time), where ¢ =(1++/5)/2
is the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20
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Computing Fibonacci
numbers

Bottom-up:

« Compute 7, I}, I, ..., I, in order, forming
each number by summing the two previous.

* Running time: O(n).
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= Computing Fibonacci
~*| numbers

Bottom-up:

« Compute £, I}, I, ..., I, in order, forming
each number by summing the two previous.

* Running time: O(n).
Naive recursive squaring:

F,= ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: O(lg ) time.

* This method is unreliable, since floating-point
arithmetic 1s prone to round-off errors.
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ALGORITHMS

Recursive squaring

Fn+l F,

Theorem: "l=

n Fn—l
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Recursive squaring

F 17"

F 1
Theorem: | "' "=

F. .| [1 0

n n

Algorithm: Recursive squaring.
Time = O(lg n) .
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~ &+ Recursive squaring

n
Theorem: {Fnﬂ Er }—F 1}
|

F 1 0

n n—

Algorithm: Recursive squaring.
Time = O(lg n) .

Proof of theorem. (Induction on 7.)

1

F, F 1 1
Base (n = 1): 2 Thig .
F F 1 0
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v~ Recursive squaring

Inductive step (7 > 2):

Fn+1 Fn :_Fn Fn—l _1 1
F, F,.| |F_ F 10

n n—
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Matrix multiplication

Input: [U],B:[Z.j],} o
Output: C = u] iL,j=1,2,...,n.

11 2 app ot Ay by by - by,
021 022 a21 azz o | byy byy -+ by,
Cnl Cn2 app Ay =t Ayy bnl bn2 bnn
n
Cj = D ik by
k=1
Course Code: BCSE3031 Mr. Ankit Kumar
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Standard algorithm

fori< 1 ton
do for;j < 1 ton
do cy.(—O
for k< 1ton
do cl.j<—clj+aik-bkj
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Standard algorithm

fori< 1 ton
do for;j < 1 ton
do cy.(—O
for k< 1ton
do cl.j<—clj+aik-bkj

Running time = O(7?)
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= &+ Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (7/2)x(n/2) submatrices:

fAREAIEA

C = A - B
r =ae+bg
s =af +bh (_ 8 mults of (1/2)x(n/2) submatrices
t =ce+dg | 4 addsof (n/2)x(n/2) submatrices
u =cf +dh
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= &+ Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (7/2)x(n/2) submatrices:

fAREAIEA

C = A - B
r =ae+bg | recursive
s =af +bh ([ 8mults of (1/2)x(n/2) submatrices
t =ce+dh | 4 addsof (n/2)x(n/2) submatrices
u =cf +dg
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Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
# submatrices work adding

.. submatrices
submatrix size
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Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
# submatrices work adding

L submatrices
submatrix size

nlogrt = plogd = 3 = CASE 1 = T(n) = O(nd).
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Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
# submatrices work adding

L submatrices
submatrix size

nlogrt = plogd = 3 = CASE 1 = T(n) = O(nd).

No better than the ordinary algorithm.
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Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.
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| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Py=a-(f=h)

P,=(a+b) h
Pi=(c+d)-e
Py=d-(g-e)

Pi=(a+d)-(e+h)
Po=(b—d)-(g+h)
Pi=(a—0o)(e+f)
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| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P =a-(f-h) r =P, +P,—P,+ P
P,=(a+b)-h s =P, +P,
Pi=(c+d)-e t =P, +P,
P,=d-(g—e) u=P;+P —P,—P,

Pi=(a+d)-(e+h)
Po=(b—d)-(g+h)
Pi=(a—0o)(e+f)
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| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P =a-(f-h) r =P, +P,—P,+ P
P,=(a+b)-h s =P, +P,
Pi=(c+d)-e t =P, +P,
P,=d-(g—e) u=P;+P —P,—P,

Pi=(a+d)-(e+h)
P.=(b-d)-(g+h) 7 mults, 18 adds/subs.

Po=(a—c)-(e+f) Note: No .re.hance on
commutativity of mult!
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Sy Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-h) r=Ps+Py—Py+ P
Py=(a+b)-h =(a+d)(e+h)
Py=(c+d)-e +d(g—e)—(a+b)h
P,=d-(g-e) +(b—d)(g+h)
P;=(a+d)-(e+h) =ae + ah + de + dh
Pi=(0b-d)-(g+h) + dg —de — ah — bh
P,=(a—c)-(etf) + bg + bh—dg — dh
=ae + bg
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| Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Congquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.
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| Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Congquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7 T(n/2) + O(n2)
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ALGORITHMS

Analysis of Strassen

T(n) =7T(n/2) + O(n?)
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ALGORITHMS

Analysis of Strassen

T(n) =7T(n/2) + O(n?)

nlogbd = plowr? ~ p28l = CASE 1 = T(n) = O(n'e’).
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~ &+ Analysis of Strassen

T(n) =7T(n/2) + O(n?)
n'ogbt = plogr’ x p28l = CASE 1 = T(n) = O(n'e").

The number 2.8 1 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for » > 32 or so.
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~ &+ Analysis of Strassen

T(n) =7T(n/2) + O(n?)
n'ogbt = plogr’ x p28l = CASE 1 = T(n) = O(n'e").

The number 2.8 1 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for » > 32 or so.

Best to date (of theoretical interest only): ®(n?37% ),
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ALGORITHMS

gy, Conclusion

‘\‘

» Divide and conquer is just one of several
powerful techniques for algorithm design.

* Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* The divide-and-conquer strategy often leads
to efficient algorithms.
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