SITY School of Computing Science and Engineering

Lecture Notes

on

Divide and Conquer with examples
such as Sorting, Matrix Multiplication

& GALGOTIAS
UNIVERSITY

(Establishad under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

*" GA School of Computing Science and Engineering

w e

,25
{720
!
22

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

— The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) =2 T(n/2) + O(n)

\
subproblems work dividing

subproblem size and combining

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

* Master theorem (reprise)
T(n) =aT(n/b) + f(n)

CASE 1: f(n) = O(n'°2* %), constant & > 0
= T(n) = O(n'oe?)

CASE 2: f(n) = O(n'°2 1g"n), constant k > 0
= T(n) = O(n'o#r? 1gk1p)

CASE 3: f(n) = Q(n'2r¢ ") constant £ > 0,

and regularity condition

= T(n) = O(f(n)) .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

 Master theorem (reprise)
T(n) = aT(n/b) + f(n)
CASE 1: f(n) = O(n'°2¢~#), constant € > 0
= T(n) = O(n'°er?) ,
CASE 2: f(n) = O(n'°2* 1g"n), constant k& > 0
= T(n) = O(n'°er¢ 1g"1p) .

CASE 3: f(n) = Q(n'2be "¢, constant € > 0,
and regularity condition

= T(n) = 6(f(n)) .
Merge sort: o =2,b =2 = nloers = ploe? =y
= CASE2 (k=0) = T(n)=0(nlgn).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.
3. Combine: Trivial.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

~ &~ Recurrence for binary search

T(n) =1 T(n/2) + (1)

\
subproblems work dividing

subproblem size and combining

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

~ & Recurrence for binary search

T(n) =1 T(n/2) + (1)

\
subproblems work dividing

subproblem size and combining

nlogrt = plosl = 0 =1 = CASE 2 (k=0)
= T(n)=0(Ign).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

Powering a number

Problem: Compute a”, where n € /.

Naive algorithm: O(n).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Powering a number

Problem: Compute a”, where n € /.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

n?2 ., n/2

a" - a if n 1s even;

n—
“ a2 D200 if nis odd.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

| Powering a number

Problem: Compute a”, where n € /.
Naive algorithm: O(n).
Divide-and-conquer algorithm:

) am?. gn? if n is even;
a” = . .
a2 g2 g if nis odd.

T(n) = T(n/2) + ©(1) = T(n)=0(gn).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

Fibonacci numbers

0 ifn=0;
F =<1 ifn=1;
F ,+F , ifn>2.

n n

0O I 1 2 3 5 8 1321 34

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

@ 9ﬁ‘LGO-5r|IAS School of Computing Science and Engineering

Fibonacci numbers

Recursive definition:
0 ifn=0;
F,=41 ifn=1;
F ,+F, , ifn>2.

o 1 1 2 3 5 8 1321 34 .-

Naive recursive algorithm: Q(¢")
(exponential time), where ¢ =(1++/5)/2
is the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Course: Design & Analysis of an Algorithm Course Code: BCSE3031

Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Computing Fibonacci
numbers

Bottom-up:

« Compute 7, I}, I, ..., I, in order, forming
each number by summing the two previous.

* Running time: O(n).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

= Computing Fibonacci
~*| numbers

Bottom-up:

« Compute £, I}, I, ..., I, in order, forming
each number by summing the two previous.

* Running time: O(n).
Naive recursive squaring:

F,= ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: O(lg) time.

* This method is unreliable, since floating-point
arithmetic 1s prone to round-off errors.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

Recursive squaring

Fn+l F,

Theorem: "l=

n Fn—l

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Recursive squaring

F 17"

F 1
Theorem: | "' "=

F. .| [1 0

n n

Algorithm: Recursive squaring.
Time = O(lg n) .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

~ &+ Recursive squaring

n
Theorem: {Fnﬂ Er }—F 1}
|

F 1 0

n n—

Algorithm: Recursive squaring.
Time = O(lg n) .

Proof of theorem. (Induction on 7.)

1

F, F 1 1
Base (n = 1): 2 Thig .
F F 1 0

Course: Design & Analysis of an Algorithm Course Code: BCSE3031

Mr. Ankit Kumar

@ 9}3‘}9&1[‘?& School of Computing Science and Engineering

v~ Recursive squaring

Inductive step (7 > 2):

Fn+1 Fn :_Fn Fn—l _1 1
F, F,.| |F_ F 10

n n—

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

@ %"QLGO-SFJAS School of Computing Science and Engineering

Matrix multiplication

Input: [U],B:[Z.j],} o
Output: C = u] iL,j=1,2,...,n.

11 2 app ot Ay by by - by,
021 022 a21 azz o | byy byy -+ by,
Cnl Cn2 app Ay =t Ayy bnl bn2 bnn
n
Cj = D ik by
k=1
Course Code: BCSE3031 Mr. Ankit Kumar

Course: Design & Analysis of an Algorithm

SITY School of Computing Science and Engineering

Standard algorithm

fori< 1 ton
do for;j < 1 ton
do cy.(—O
for k< 1ton
do cl.j<—clj+aik-bkj

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Standard algorithm

fori< 1 ton
do for;j < 1 ton
do cy.(—O
for k< 1ton
do cl.j<—clj+aik-bkj

Running time = O(7?)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

= &+ Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (7/2)x(n/2) submatrices:

fAREAIEA

C = A - B
r =ae+bg
s =af +bh (_ 8 mults of (1/2)x(n/2) submatrices
t =ce+dg | 4 addsof (n/2)x(n/2) submatrices
u =cf +dh

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

= &+ Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (7/2)x(n/2) submatrices:

fAREAIEA

C = A - B
r =ae+bg | recursive
s =af +bh ([8mults of (1/2)x(n/2) submatrices
t =ce+dh | 4 addsof (n/2)x(n/2) submatrices
u =cf +dg

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
submatrices work adding

.. submatrices
submatrix size

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
submatrices work adding

L submatrices
submatrix size

nlogrt = plogd = 3 = CASE 1 = T(n) = O(nd).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Analysis of D&C algorithm

T(n) = 8 T(n/2) + O(n?)

\
submatrices work adding

L submatrices
submatrix size

nlogrt = plogd = 3 = CASE 1 = T(n) = O(nd).

No better than the ordinary algorithm.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Py=a-(f=h)

P,=(a+b) h
Pi=(c+d)-e
Py=d-(g-e)

Pi=(a+d)-(e+h)
Po=(b—d)-(g+h)
Pi=(a—0o)(e+f)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P =a-(f-h) r =P, +P,—P,+ P
P,=(a+b)-h s =P, +P,
Pi=(c+d)-e t =P, +P,
P,=d-(g—e) u=P;+P —P,—P,

Pi=(a+d)-(e+h)
Po=(b—d)-(g+h)
Pi=(a—0o)(e+f)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

| Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P =a-(f-h) r =P, +P,—P,+ P
P,=(a+b)-h s =P, +P,
Pi=(c+d)-e t =P, +P,
P,=d-(g—e) u=P;+P —P,—P,

Pi=(a+d)-(e+h)
P.=(b-d)-(g+h) 7 mults, 18 adds/subs.

Po=(a—c)-(e+f) Note: No .re.hance on
commutativity of mult!

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Sy Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-h) r=Ps+Py—Py+ P
Py=(a+b)-h =(a+d)(e+h)
Py=(c+d)-e +d(g—e)—(a+b)h
P,=d-(g-e) +(b—d)(g+h)
P;=(a+d)-(e+h) =ae + ah + de + dh
Pi=(0b-d)-(g+h) + dg —de — ah — bh
P,=(a—c)-(etf) + bg + bh—dg — dh
=ae + bg

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

| Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Congquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

| Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Congquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7 T(n/2) + O(n2)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

TY School of Computing Science and Engineering

ALGORITHMS

Analysis of Strassen

T(n) =7T(n/2) + O(n?)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

TY School of Computing Science and Engineering

ALGORITHMS

Analysis of Strassen

T(n) =7T(n/2) + O(n?)

nlogbd = plowr? ~ p28l = CASE 1 = T(n) = O(n'e’).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

~ &+ Analysis of Strassen

T(n) =7T(n/2) + O(n?)
n'ogbt = plogr’ x p28l = CASE 1 = T(n) = O(n'e").

The number 2.8 1 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for » > 32 or so.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

~ &+ Analysis of Strassen

T(n) =7T(n/2) + O(n?)
n'ogbt = plogr’ x p28l = CASE 1 = T(n) = O(n'e").

The number 2.8 1 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for » > 32 or so.

Best to date (of theoretical interest only): ®(n?37%),

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

ALGORITHMS

gy, Conclusion

‘\‘

» Divide and conquer is just one of several
powerful techniques for algorithm design.

* Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* The divide-and-conquer strategy often leads
to efficient algorithms.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

