
School of Computing Science and Engineering

Lecture Notes

on

Greedy Algorithms:

Knapsack Problem

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Greedy algorithms – Recap

I A greedy algorithm makes the choice that looks best at the moment,
without regard for future consequence

I The proof of the greedy algorithm producing an optimal solution is
based on the following two key properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

1 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Greedy algorithms – Recap

I A greedy algorithm makes the choice that looks best at the moment,
without regard for future consequence

I The proof of the greedy algorithm producing an optimal solution is
based on the following two key properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

1 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Greedy algorithms – Recap

I A greedy algorithm makes the choice that looks best at the moment,
without regard for future consequence

I The proof of the greedy algorithm producing an optimal solution is
based on the following two key properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

1 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Greedy algorithms – Recap

I A greedy algorithm makes the choice that looks best at the moment,
without regard for future consequence

I The proof of the greedy algorithm producing an optimal solution is
based on the following two key properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

1 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Greedy algorithms – Recap

I A greedy algorithm makes the choice that looks best at the moment,
without regard for future consequence

I The proof of the greedy algorithm producing an optimal solution is
based on the following two key properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

1 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Problem statement:

I Given n items {1, 2, . . . , n}
I Item i is worth vi, and weight wi

I Find a most valuable subset of items with total weight ≤W

Rule: have to either take an item or not take it (“0-1 Knapsack”) – cannot
take part of it.

Example:

I Given
i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

I Find a most valuable subset of items with total weight ≤W = 5

2 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Problem statement:

I Given n items {1, 2, . . . , n}
I Item i is worth vi, and weight wi

I Find a most valuable subset of items with total weight ≤W

Rule: have to either take an item or not take it (“0-1 Knapsack”) – cannot
take part of it.

Example:

I Given
i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

I Find a most valuable subset of items with total weight ≤W = 5

2 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Problem statement:

I Given n items {1, 2, . . . , n}
I Item i is worth vi, and weight wi

I Find a most valuable subset of items with total weight ≤W

Rule: have to either take an item or not take it (“0-1 Knapsack”) – cannot
take part of it.

Example:

I Given
i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

I Find a most valuable subset of items with total weight ≤W = 5

2 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Problem statement, mathematically – version 1:

Find a subset S ⊆ {1, 2, . . . , n} such that

maximize
∑

i∈S

vi

subject to
∑

i∈S

wi ≤W

3 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Problem statement, mathematically – version 2:

Let x = (x1, x2, . . . , xn), and

xi =

{
1 i-th item is in the knapsack
0 i-th item is not in the knapsack

Then the knapsack problem is

maximize
n∑

i=1

vixi

subject to xi ∈ {0, 1}
n∑

i=1

wixi ≤W

4 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

The brute-force algorithm

I 2n feasible solutions

I Total cost = O(n · 2n)

5 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

The brute-force algorithm

I 2n feasible solutions

I Total cost = O(n · 2n)

5 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

The brute-force algorithm

I 2n feasible solutions

I Total cost = O(n · 2n)

5 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value vi

2. Greedy by least weight wi

3. Greedy by largest value density
vi
wi

6 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value vi

2. Greedy by least weight wi

3. Greedy by largest value density
vi
wi

6 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value vi

2. Greedy by least weight wi

3. Greedy by largest value density
vi
wi

6 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Example

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

Greedy by value density vi/wi:

I take items 1 and 2.

I value = 16, weight = 3

I Leftover capacity = 2

Optimal solution

I take items 2 and 3.

I value = 22, weight = 5

I no leftover capacity

Question: how about greedy by highest value? by least weight?

7 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Example

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

Greedy by value density vi/wi:

I take items 1 and 2.

I value = 16, weight = 3

I Leftover capacity = 2

Optimal solution

I take items 2 and 3.

I value = 22, weight = 5

I no leftover capacity

Question: how about greedy by highest value? by least weight?

7 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Example

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

Greedy by value density vi/wi:

I take items 1 and 2.

I value = 16, weight = 3

I Leftover capacity = 2

Optimal solution

I take items 2 and 3.

I value = 22, weight = 5

I no leftover capacity

Question: how about greedy by highest value? by least weight?

7 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Example

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4

Total weight W = 5

Greedy by value density vi/wi:

I take items 1 and 2.

I value = 16, weight = 3

I Leftover capacity = 2

Optimal solution

I take items 2 and 3.

I value = 22, weight = 5

I no leftover capacity

Question: how about greedy by highest value? by least weight?

7 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Another example

Given the following six items with W = 100:

Greedy by optimal solution
i vi wi vi/wi value weight vi/wi

1 40 100 0.4 1 0 0 0
2 35 50 0.7 0 0 1 1
3 18 45 0.4 0 1 0 1
4 4 20 0.2 0 1 1 0
5 10 10 1 0 1 1 0
6 2 5 0.4 0 1 1 1

Total value 40 34 51 55
Total weight 100 80 85 100

All three greedy approaches generate feasible solutions, but none of them
generate the optimal solution. Greedy algorithms doesn’t work for the 0-1
knapsack problem!

8 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

0-1 knapsack problem

Another example

Given the following six items with W = 100:

Greedy by optimal solution
i vi wi vi/wi value weight vi/wi

1 40 100 0.4 1 0 0 0
2 35 50 0.7 0 0 1 1
3 18 45 0.4 0 1 0 1
4 4 20 0.2 0 1 1 0
5 10 10 1 0 1 1 0
6 2 5 0.4 0 1 1 1

Total value 40 34 51 55
Total weight 100 80 85 100

All three greedy approaches generate feasible solutions, but none of them
generate the optimal solution. Greedy algorithms doesn’t work for the 0-1
knapsack problem!

8 / 8

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Q & A?
Queries are welcome on slack channel
for discussion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar


