SITY School of Computing Science and Engineering

Lecture Notes

on

Merge Sort

a GALGOTIAS
P UNITVERSITY

(Establishad under Galgotias University Uttar Pradesh Act Mo 14 of 2011)

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

(5 %;QLGOIJqAé School of Computing Science and Engineering

Merge Sort

® |t is based on divide and conquer approach.

® |t contain nice property that in the worst case it's time
complexity is O(nlogn).

® |f there is n elements array a[l],,a[n], then merge sort split
the array into two sets of size a[l]...a[| % |] & a[| 5| + 1]...a[n].

® Each set is individually sorted & the resulting sorted sequences
are merged to produce a single sorted sequence of n elements.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Running example:
These numbers indicate

the order in which | 38 ‘ 27 | 43

steps are processed

2l 12
=] [BF] s
/ 3 /7\ 13 17
ENRERENRENENEINEN
4 5 8 9 14 15
y
sfw] [i]=] [=
6 16 18
- Y
|3 27 38|43‘ ‘9‘10|82|

N S ®
|3‘9|10 27‘3s|4a|82‘20

Course: Design & Analysis of an Algorithm

Course Code: BCSE3031 Mr. Ankit Kumar

(5 EQLGOIJAS School of Computing Science and Engineering

Drawbacks:

® Recursive Calls Result In Additional Overhead Making It
Unsuitable For Small Number of input.

® Sorting Is Done In Place Requiring The Client To Keep A Copy
Of The Original Elements. Requires Additional Memory To Sort
The Elements.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Algorithm:

Merge-sort(a[],low,high)

{

if(low==high)
return(a);
else

m|d=(low«;high);
Merge-sort(a,low,mid);
Merge-sort(a,mid+1,high);
Merge(a,low,mid,high);

return(a);

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

merge(a,low,mid,high)

h=low; i=low; j=mid+1;

while((h<=mid) && (j<=high)) do

//until 1st half is not over & 2nd half also not
over, comparing first element of 1st half to the 1st
element of the second half.

if(a[h]<=alj])then

b[i]=a[h];
h=h+1;

else

{
b[i]=alj];
=it

3
i=i+1;

if(h>mid) then
for(k=j to high) do

b[i]=a[k];
// copy 2nd half remaining elements to B, b[i].
i=i+1;
else
for(k=h to mid) do

b[i]=a[k];
// copy 1st half remaining elements to B, bl[i].
i=i+1;

fzr(k=low to high) do
a[k]=bl[k];

Course: Design & Analysis of an Algorithm

Course Code: BCSE3031

Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Analysis

Recurrence relation for divide & conquer:

T(n)= {2T(O(1);ifn =1 }

5) + n; otherwise
® after applying master's method
® T(n) = f(nlogan)
e if any array is given then two sorted sub-array is merged. so
same procedure in all cases.
® best-case=worst-case
® T(n) = 0(nlogan)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

SITY School of Computing Science and Engineering

Q & A?
Queries are welcome on slack channel
for discussion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

	Analysis of an Algorithm

