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Information Measures

Mutual Information

The mutual information of two random variables X and Y is defined
as the relative entropy between the joint probability density pXY (x , y)
and the product of the marginals pX (x) and pY (y)

I (X ; Y ) = D(pXY (x , y)||pX (x)pY (y))

=
∑

x∈X

∑

y∈Y
pXY (x , y) log

pX ,Y (x , y)

pX (x)pY (y)
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Mutual Information: Relations with Entropy

Reducing uncertainty of X due to the knowledge of Y :

I (X ; Y ) = H(X ) − H(X |Y )

Symmetry of the relation above: I (X ; Y ) = H(Y ) − H(Y |X )

Sum of entropies:

I (X ; Y ) = H(X ) + H(Y ) − H(X , Y )

“Self” Mutual Information:

I (X ; X ) = H(X ) − H(X |X ) = H(X )
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Mutual Information: Other Relations

Conditional Mutual Information:

I (X ;Y |Z ) = H(X |Z ) − H(X |Y , Z )

Chain Rule for Mutual Information

I (X1, X2, . . . , XM ; Y ) =
M∑

j=1

I (Xj ; Y |X1, . . . , Xj−1)
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Convex and Concave Functions

A function f (·) is convex over ain interval (a, b) if for every
x1, x2 ∈ [a, b] and 0 ≤ λ ≤ 1, if :

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2)

A function f (·) is convex over an interval (a, b) if its second derivative
is non-negative over that interval (a, b).
A function f (·) is concave if −f (·) is convex.
Examples of convex functions: x2, |x |, ex , x log x , x ≥ 0.
Examples of concave functions: log x and

√
x , for x ≥ 0.
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Jensen’s Inequality

If f (·) is a convex function and X is a random variable

E [f (X )] ≥ f (E [X ])

Used to show that relative entropy and mutual information are greater
than zero.
Used also to show that H(X ) ≤ log |X |.
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Log-Sum Inequality

For n positive numbers a1, a2, . . . , an and b1, b2, . . . bn

n∑

i=1

ai log
ai

bi
≥
(

n∑

i=1

ai

)
log
∑n

i=1 ai∑n
i=1 bi

with equality if and only if ai/bi = c .
This inequality is used to prove the convexity of the relative entropy
and the concavity of the entropy.
Convexity/Concavity of mutual information
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Data Processing Inequality

Random variables X , Y , Z are said to form a Markov chain in that
order X → Y → Z , if the conditional distribution of Z depends only
on Y and is onditionally independent of X .

pXYZ (x , y , z) = pX (x)pY |X=x(y)pZ |Y=y (y)

If X → Y → Z , then

I (X ; Y ) ≥ I (X ;Z )

Let Z = g(Y ), X → Y → g(Y ), then I (X ; Y ) ≥ I (X ; g(Y ))
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Fano’s Inequality

Suppose we know a random variable Y and we wish to guess the value
of a correlated random variable X .
Fano’s inequality relates the probability of error in guessing X from Y
to its conditional entropy H(X |Y ).
Let X̂ = g(Y ), if Pe = P(X̂ ̸= X ), then

H(Pe) + Pe log(|X | − 1) ≥ H(X |Y )

where H(Pe) is the binary entropy function evaluated at Pe .
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