
CORRECTNESS OF
DIJKSTRA’S ALGORITHM



Correctness — Part I

Lemma. Initializing d[s]  0 and d[v]  for all  
v  V – {s} establishes d[v]  (s, v) for all v  V,  
and this invariant is maintained over any sequence  
of relaxation steps.



Correctness — Part I
Lemma. Initializing d[s]  0 and d[v]  for all  
v  V – {s} establishes d[v]  (s, v) for all v  V,  
and this invariant is maintained over any sequence  
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for  
which d[v] < (s, v), and let u be the vertex that  
caused d[v] to change: d[v] = d[u] + w(u, v). Then,

d[v] < (s,v)
 (s, u) + (u, v)
 (s,u) + w(u, v)
 d[u] + w(u, v)

supposition  
triangle inequality
sh. path  specific path
v is first violation

Contradiction.



Correctness — Part II

Lemma. Let u be v’s predecessor on a shortest  
path from s to v. Then, if d[u] = (s, u) and edge  
(u, v) is relaxed, we have d[v]  (s, v) after the  
relaxation.



Correctness — Part II
Lemma. Let u be v’s predecessor on a shortest  
path from s to v. Then, if d[u] = (s, u) and edge  
(u, v) is relaxed, we have d[v]  (s, v) after the  
relaxation.

Proof. Observe that (s, v) = (s, u) + w(u, v).  
Suppose that d[v] > (s, v) before the relaxation.  
(Otherwise, we’re done.) Then, the test d[v] >  
d[u] + w(u, v) succeeds, because d[v] > (s, v) =
(s, u) + w(u, v) = d[u] + w(u, v), and the  
algorithm sets d[v] = d[u] + w(u, v) = (s, v).



Correctness — Part III

Theorem. Dijkstra’s algorithm terminates with
d[v] = (s, v) for all v  V.



Correctness — Part III

s
x y

Theorem. Dijkstra’s algorithm terminates with
d[v] = (s, v) for all v  V.
Proof. It suffices to show that d[v] = (s, v) for every v
 V when v is added to S. Suppose u is the first vertex  
added to S for which d[u]  (s, u). Let y be the first  
vertex in V – S along a shortest path from s to u, and  
let x be its predecessor:

u

S, just before  
adding u.



Correctness — Part III  (continued)

Since u is the first vertex violating the claimed  
invariant, we have d[x] = (s, x). When x was  
added to S, the edge (x, y) was relaxed, which  
implies that d[y] = (s, y)  (s, u)  d[u]. But,  
d[u]  d[y] by our choice of u. Contradiction.

s
x y

uS



Analysis of Dijkstra

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)
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Analysis of Dijkstra

degree(u)  
times

|V |
times

Handshaking Lemma (E) implicit DECREASE-KEY’s.

Time = (V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s  
minimum spanning tree algorithm.

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)



Analysis of Dijkstra  (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total



Analysis of Dijkstra  (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2)



Analysis of Dijkstra  (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary  
heap

O(V) O(1) O(V2)

O(lg V) O(lg V) O(E lg V)



Analysis of Dijkstra  (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary  
heap

Fibonacci  
heap

O(V) O(1) O(V2)

O(lg V)

O(lg V)  
amortized

O(lg V)

O(1)
amortized

O(E lgV)

O(E + V lg V)
worst case




