
CORRECTNESS OF
DIJKSTRA’S ALGORITHM

Correctness — Part I

Lemma. Initializing d[s]  0 and d[v]  for all
v  V – {s} establishes d[v]  (s, v) for all v  V,
and this invariant is maintained over any sequence
of relaxation steps.

Correctness — Part I
Lemma. Initializing d[s]  0 and d[v]  for all
v  V – {s} establishes d[v]  (s, v) for all v  V,
and this invariant is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < (s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,

d[v] < (s,v)
 (s, u) + (u, v)
 (s,u) + w(u, v)
 d[u] + w(u, v)

supposition
triangle inequality
sh. path  specific path
v is first violation

Contradiction.

Correctness — Part II

Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = (s, u) and edge
(u, v) is relaxed, we have d[v]  (s, v) after the
relaxation.

Correctness — Part II
Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = (s, u) and edge
(u, v) is relaxed, we have d[v]  (s, v) after the
relaxation.

Proof. Observe that (s, v) = (s, u) + w(u, v).
Suppose that d[v] > (s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d[v] >
d[u] + w(u, v) succeeds, because d[v] > (s, v) =
(s, u) + w(u, v) = d[u] + w(u, v), and the
algorithm sets d[v] = d[u] + w(u, v) = (s, v).

Correctness — Part III

Theorem. Dijkstra’s algorithm terminates with
d[v] = (s, v) for all v  V.

Correctness — Part III

s
x y

Theorem. Dijkstra’s algorithm terminates with
d[v] = (s, v) for all v  V.
Proof. It suffices to show that d[v] = (s, v) for every v
 V when v is added to S. Suppose u is the first vertex
added to S for which d[u]  (s, u). Let y be the first
vertex in V – S along a shortest path from s to u, and
let x be its predecessor:

u

S, just before
adding u.

Correctness — Part III (continued)

Since u is the first vertex violating the claimed
invariant, we have d[x] = (s, x). When x was
added to S, the edge (x, y) was relaxed, which
implies that d[y] = (s, y)  (s, u)  d[u]. But,
d[u]  d[y] by our choice of u. Contradiction.

s
x y

uS

Analysis of Dijkstra

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

|V |
times

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

degree(u)
times

|V |
times

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma (E) implicit DECREASE-KEY’s.

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma (E) implicit DECREASE-KEY’s.

Time = (V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

Analysis of Dijkstra (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

Analysis of Dijkstra (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary
heap

O(V) O(1) O(V2)

O(lg V) O(lg V) O(E lg V)

Analysis of Dijkstra (continued)
Time = (V)·TEXTRACT-MIN +(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary
heap

Fibonacci
heap

O(V) O(1) O(V2)

O(lg V)

O(lg V)
amortized

O(lg V)

O(1)
amortized

O(E lgV)

O(E + V lg V)
worst case

