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GRAPHS
• Graph representation
• Minimum spanning trees
• Optimal substructure
• Greedy choice
• Prim’s greedy MST  algorithm



Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E  V  V of edges.

In an undirected graph G = (V, E), the edge  
set E consists of unordered pairs of vertices.

In either case, we have |E | = O(V 2). Moreover,  
if G is connected, then | E |  | V | – 1, which  
implies that lg |E | = (lgV).

(Review CLRS, Appendix B.)



A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j)  E,
0 if (i, j)  E.

Adjacency-Matrix  representation



Adjacency-Matrix  representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j)  E,
0 if (i, j)  E.

A 1 2 3 4
2 1 1 0 1 1 0

2 0 0 1 0
3 4 3 0 0 0 0

4 0 0 1 0

(V 2) storage
 dense
representation.



An adjacency list of a vertex v  V is the list Adj[v]  
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

Adjacency-Matrix  representation



Adjacency-list representation
An adjacency list of a vertex v  V is the list Adj[v]  
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).  
For digraphs, |Adj[v] | = out-degree(v).



Adjacency-list representation
An adjacency list of a vertex v  V is the list Adj[v]  
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Handshaking Lemma: vV degree(v) = 2 | E | for
undirected graphs  adjacency lists use (V + E)
storage — a sparse representation.



Minimum spanning trees
Input: A connected, undirected graph G = (V, E)  
with weight function w : E  R.
• For simplicity, assume that all edge weights are  

distinct. (CLRS covers the general case.)



Minimum spanning trees
Input: A connected, undirected graph G = (V, E)  
with weight function w : E  R.
• For simplicity, assume that all edge weights are  

distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects  
all vertices — of minimum weight:

w(T)  w(u,v) .
(u,v)T



Example of MST
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Optimal substructure

MST T:

(Other edges of G
are not shown.)
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Remove any edge (u, v)  T.
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Remove any edge (u, v)  T. Then, T is partitioned  
into two subtrees T1 and T2.

T1
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Optimal substructure
MST T:

(Other edges of G
are not shown.)
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Optimal substructure

Remove any edge (u, v)  T. Then, T is partitioned  
into two subtrees T1 and T2.
Theorem. The subtree T1 is an MST of G1 = (V1, E1),  
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = { (x, y)  E : x, y  V1 }.

Similarly for T2.

MST T:

(Other edges of G
are not shown.)




