Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

AMORTIZED ANALYSIS

UNIVERSITY

- Dynamic tables
- Aggregate method
- Accounting method
- Potential method

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, "grow" it by allocating (via **malloc** or **new**) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert

GALGOTIAS UNIVERSITY

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
6. INSERT
7. INSERT

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n^2)$.

UNIVERSITY

Let's see why.

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Tighter analysis

Let
$$c_i$$
 = the cost of the *i* th insertion
=
$$\begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Tighter analysis

Let
$$c_i$$
 = the cost of the *i* th insertion
=
$$\begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

i $size_i$ c_i	1	2	3	4	5	6	7	8	9	10
$size_i$	1	2	4	4	8	8	8	8	16	16
	1	1	1	1	1	1	1	1	1	1
c_i		1	2		4				8	

Name of the Faculty: Unnikrishnan

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Tighter analysis (continued)

Cost of
$$n$$
 insertions = $\sum_{i=1}^{n} c_i$

$$\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^j$$

$$\leq 3n$$

$$= \Theta(n).$$

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.

Name of the Faculty: Unnikrishnan

