
School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Lecture-34
Object:

An object (instance) is an instantiation of a class. When class is defined, only the
description for the object is defined. Therefore, no memory or storage is
allocated.

The example for object of parrot class can be:

obj = Parrot()

Here, obj is an object of class Parrot.

Suppose we have details of parrots. Now, we are going to show how to build the
class and objects of parrots.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Instantiating objects:

To instantiate an object, type the class name, followed by two brackets. You can
assign this to a variable to keep track of the object.

ozzy = Dog() And print it:

print(ozzy)<__main__.Dog object at 0x111f47278>

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Adding attributes to a class:

After printing ozzy, it is clear that this object is a dog. But you haven't added any attributes
yet. Let's give the Dog class a name and age, by rewriting it:

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

You can see that the function now takes two arguments after self: name and age. These then
get assigned to self.name and self.age respectively. You can now create a new ozzy object,
with a name and age:

ozzy = Dog("Tommy", 2)

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

To access an object's attributes in Python, you can use the dot notation. This is done by typing
the name of the object, followed by a dot and the attribute's name.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

ozzy = Dog("Tommy", 2)

print('Dog name:',ozzy.name)

print('Do

OUTPUT:
Dog name: Tommy

Dog age: 2 g age:',ozzy.age)

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

• Define methods in a class:

Now that you have aDog class, it does have a name and age which you can keep track of, but
it doesn't actually do anything. This is where instance methods come in. You can rewrite the
class to now include a bark() method. Notice how the def keyword is used again, as well as
the self argument.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def bark(self):

print("bark bark!")

OUTPUT:
>>>

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

The bark method can now be called using the dot notation, after instantiating a new ozzy object.
The method should print "bark bark!" to the screen. Notice the parentheses (curly brackets)
in .bark(). These are always used when calling a method. They're empty in this case, since
the bark() method does not take any arguments.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def bark(self):

print("bark bark!")

ozzy = Dog("Ozzy", 2)

ozzy.bark()

OUTPUT:

bark bark!

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Recall how you printed ozzy earlier? The code below now implements this functionality in
the Dog class, with the doginfo() method. You then instantiate some objects with different
properties, and call the method on them.

class Dog:
def __init__(self, name, age):

self.name = name

self.age = age

def doginfo(self):

print(self.name + " is " + str(self.age) + " year(s) old.")

ozzy = Dog("Ozzy", 2)
skippy = Dog("Skippy", 12)

filou = Dog("Filou", 8)

ozzy.doginfo()
skippy.doginfo()

filou.doginfo()

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

OUTPUT:

Ozzy is 2 year(s) old.

Skippy is 12 year(s) old.

Filou is 8 year(s) old.

As you can see, you can call the doginfo() method on objects with the dot notation. The
response now depends on which Dog object you are calling the method on.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

The __init__() Function

All classes have a function called __init__(), which is always executed when the class is being
initiated.

Use the __init__() function to assign values to object properties, or other operations that are
necessary to do when the object is being created:

Example:

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:
def __init__(self, name, age):
self.name = name
self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)

Output:

John
36

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Creating Instance Objects:

Example: Python Class

class Employee:

'Common base class for all employees'

empCount = 0

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary “

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

“This would create first object of Employee class“

emp1 = Employee("Zara", 2000)

#"This would create second object of Employee class“

emp2 = Employee("Manni“,5000)

emp1.displayEmployee()

emp2.displayEmployee()

OUTPUT:

Name : Zara , Salary: 2000

Name : Manni , Salary: 5000

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Accessing Attributes:

You access the object's attributes using the dot operator with object. Class variable would be
accessed using class name as follows −

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together −

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

class Employee:

'Common base class for all employees'

empCount = 0

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1

def displayEmployee(self):

print ("Name : ", self.name, ", Salary: ", self.salary)

#"This would create first object of Employee class“

emp1 = Employee("Zara", 2000)

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

#"This would create second object of Employee class“

emp2 = Employee("Manni“,5000)

emp1.displayEmployee()

emp2.displayEmployee()

print ("Total Employee %d" % Employee.empCount)

When the above code is executed, it produces the following result −

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Accessing Attributes and Methods in Python:

Attributes of a class are function objects that define corresponding methods of its instances.
They are used to implement access controls of the classes.
Attributes of a class can also be accessed using the following built-in methods and functions
:

The getattr(obj, name[, default]) − to access the attribute of object.

The hasattr(obj,name) − to check if an attribute exists or not.

The setattr(obj,name,value) − to set an attribute. If attribute does not exist, then it would be
created.

The delattr(obj, name) − to delete an attribute.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Example: # Python code for accessing attributes of class

class emp:

name='Harsh'

salary='25000'

def show(self):

print (self.name)

print (self.salary)

e1 = emp()

Use getattr instead of e1.name

print (getattr(e1,'name'))

returns true if object has attribute

print (hasattr(e1,'name'))

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

sets an attribute

setattr(e1,'height',152)

returns the value of attribute name height

print (getattr(e1,'height'))

delete the attribute

delattr(emp,'salary')

returns true if object has attribute

print (hasattr(e1,' salary '))

Output :

Harsh

True

152

False

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

References:

1.Introduction to Computation and Programming using Python, by John Guttag,
PHI Publisher

2. Fundamentals of Python first Programmes by Kenneth A Lambert,
Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)

3. https://www.tutorialspoint.com/python/index.htm

4. https://www.geeksforgeeks.org/python-programming-language

5. https://www.w3schools.com/python/

https://www.tutorialspoint.com/python/index.htm
https://www.geeksforgeeks.org/python-programming-language

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

****End of the Lecture***

Thank You

