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CO1 To know about fundamentals of algorithm.

CO2
To understand the concepts of advanced data structure.
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Apply algorithms and design techniques to solve problems.

CO4 Apply Graph  algorithm to find a shortest path.
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To learn about algebraic computation and string matching.
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Data and File Structures. Knowledge and 
experience of programming in a high level 

language like C, C++
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Syllabus

Unit I: Introduction to Algorithms: 8 lecture hours

Introduction to Algorithms & Analysis- Design of Algorithms, Growth of function, Complexity of Algorithms, Asymptotic Notations,

Recurrences.

Sorting: Insertion Sort, Quick Sort, Merge Sort

Unit II: Advance Data Structure: 6 lecture hours

Advanced Data Structure:  Binary Search Trees, Red Black Trees, B-Tree

Unit III: Advance Design and Analysis Techniques:                                           7 lecture hours

Advanced Design and Analysis Techniques: Dynamic programming-Matrix chain multiplication, Longest common sequence and Knapsack 

problem, Greedy Algorithm-Huffman Coding, and Knapsack problem

Unit IV: Graph Algorithms 8 lecture hours

Graph Algorithms: Elementary Graph Algorithms, Breadth First Search, Depth First Search, Minimum Spanning Tree, Kruskal’s Algorithms, 

Prim’s Algorithms, Single Source Shortest Path 

Unit V: Special Topics in AAD 5 lecture hours

String Matching, Introduction of NP-Hard and NP-Completeness, Matrix Operations

Unit VI: Research 6 lecture hours

Research Topics : Approximation Algorithms : The Traveling Salesman Problem.

Discussion of some latest papers published in IEEE transactions and ACM transactions, Web of Science and SCOPUS indexed journals as well 

as high impact factor conferences as well as symposiums.
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Text books
• T. Cormen, C.E. Leiserson, R.L. Rivest & C. Stein – Introduction to 

Algorithms – PHI – 2nd Edition, 2005.

Reference Book
• Knuth E. Donald, Art of Computer Programming Sorting and Searching 

Vol3, Second Edition, Pearson Education.
• Brassard Bratley, “Fundamental of Algorithms”, PHI
• A V Aho etal, “The Design and analysis of Algorithms”, Pearson Education
• Adam Drozdek, “Data Structures and Algorithms in C++”, Thomson Asia

Additional online materials
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What is an algorithm?

• An algorithm is a finite set of instructions for solving a
problem.

• An algorithm step by step process.

• Algorithms are the ideas behind computer programs.

• An algorithm has to solve a general, specified problem.
An algorithmic problem is specified by describing the
set of instances it must work on and what desired
properties the output must have.
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Algorithms

• Properties of algorithms: (all algorithms must satisfy the following properties)

• Input: Zero or more quantities are externally supplied.

• Output: At least one quantity is produced(solution).

• Definiteness: Each instruction is clear and 
unambiguous

• Finiteness: Algorithm must be terminate after a finite 
number of steps.

• Effectiveness: It also must be feasible(desire output).

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name:   ADA                 



8

Growth of Function
• Asymptotic notation (O, Θ, Ω)

– Big-oh O

– Theta Θ

– Omega Ω

• Informal definitions:
– Given a complexity function f(n),

–(f(n)) is the set of complexity functions that are 
lower bounds on f(n)

– O(f(n)) is the set of complexity functions that are upper 
bounds on f(n)

–(f(n)) is the set of complexity functions that, given 
the correct constants, “correctly” describes f(n)



Asymptotic Notations

• A way to describe behavior of functions in the limit

– How we indicate running times of algorithms

– Describe the running time of an algorithm as n grows to 

• O notation:

•  notation:

•  notation:

asymptotic “less than and equal”: f(n) “≤” cg(n)

asymptotic “greater than and equal”:f(n) “≥” cg(n)

asymptotic “equality”: f(n) “=” cg(n)

F(n) = n2 +n+1

G(n)= O(n2) 
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Analysis of algorithm

• Analysis of algorithm or performance analysis 
refers to the task of determine how much 
computing (CPU) time  and storage (RAM) 
time requires.

• Time complexity
– The time complexity of an algorithm is the amount of 

computer time it needs to run to completion.

• Space complexity
– The space complexity of an algorithm is the amount of 

memory it needs to run to completion.



Continue 

• Input Size: Size of problem say n

– The best notation for input size depends on the 
problem being studied.

• Running Time: T(n)

– The running time of an algorithm on a particular 
input is the number of primitive operations or 
steps executed.

11
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Best, Worst, and Average-Case

• The worst case complexity of the algorithm is the
function defined by the maximum number of
steps taken on any instance of size n.

• The best case complexity of the algorithm is the
function defined by the minimum number of
steps taken on any instance of size n.

• The average-case complexity of the algorithm is
the function defined by an average number of
steps taken on any instance of size n.

• Each of these complexities defines a numerical
function - time vs. size!

Program Name: BCA Program Code:
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Best, Worst, and Average-Case
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Asymptotic Notations

• A way to describe behavior of functions in the limit

– How we indicate running times of algorithms

– Describe the running time of an algorithm as n grows to 

• O notation:

•  notation:

•  notation:

asymptotic “less than and equal”: f(n) “≤” cg(n)

asymptotic “greater than and equal”:f(n) “≥” cg(n)

asymptotic “equality”: f(n) “=” cg(n)

F(n) = n2 +n+1

G(n)= O(n2) 
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Recurrence relation

• A recurrence relation is an equation which is 
defined in terms of itself. 

• There are three type of recurrence solutions :
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Recurrence Relations
• Equation or an inequality that characterizes a 

function by its values on smaller inputs.

• Solution Methods (Chapter 4)
– Substitution Method.

– Recursion-tree Method.

– Master Method.

• Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms.
– Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) + C(n) otherwise
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Substitution Method
• Guess the form of the solution, then 

use mathematical induction to show it correct.

– Substitute guessed answer for the function when the 
inductive hypothesis is applied to smaller values –
hence, the name.

• Works well when the solution is easy to guess.

• No general way to guess the correct solution.
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1. Total cost of each sub problems are equal 

• Like merge sort recurrence relation 

• T(n)=2T(n/2)+ cn if n>1
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Recursion Tree for Merge Sort
For the original problem, we have 
a cost of cn, plus two 
subproblems each of size (n/2) 
and running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems has a cost 
of cn/2 plus two subproblems, each 
costing T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and 
merge. 

Cost of sorting 
subproblems.

Program Name: BCA Program Code:
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Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

log n

cn

cn

cn

cn

Total           : cnlogn+cn

Program Name: BCA Program Code:
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Recursion Tree

• At ith level no. of nodes 2i, 
• Sub-problem size at level i is: n/2i

• Sub-problem size hits 1 when 1 = n/2i n= 2i

– Taking log, i=log2 n (Height of tree)

• Total cost = cost of each level × Height of tree 

• T(n)= cn (log n+ 1)

• T(n)= cnlog n+ cn
– Ignore low-order term n and constant coefficient c

• T(n)= Θ(n log n),

Program Name: BCA Program Code:



2. Total cost of each sub-problems 
are not equal and size of sub-
problems are also not equal. 

• T(n)=T(n/2)+T(n/4)+n2

Program Name: BCA Program Code:
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Recursion Tree 
Continue expanding until the problem size reduces to 1.

cn2

c(n/4)2 c(n/2)2

c(n/16)2 c(n/8)2 c(n/8)2 c(n/4)2

c c c cc c

i=log2 n

c(5/16)0n2

c(5/16)1n2

c(5/16)2n2

c(5/16)in2

Program Name: BCA Program Code:



• T(n)=c(5/16)0n2 +c(5/16)1n2 + c(5/16)2n2 + ….. 
+ c(5/16)in2
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3. Total cost of each sub-problems are not 
equal but size of sub-problems are equal.

• Example : T(n) = 3 T(n/4) + cn2

Program Name: BCA Program Code:



Example : T(n) = 3 T(n/4) + cn2

◼ Sub-problem size at level i is: n/4i

◼ Sub-problem size hits 1 when 1 = n/4i  i = log4n

◼ Cost of a node at level i = c(n/4i)2

◼ Number of nodes at level i = 3i  last level has 3log
4

n = nlog
4

3 nodes
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Total cost:  T(n) = O(n2)
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30 cn2+ 31c(n/4)2+ 32c(n/16)2+----

Or

(3/16)0 cn2+ (3/16)1cn2+ (3/16)2cn2+----

Assignment :->  T(n) = 4 T(n/2) +n, solve by recursion tree

Worst case consider here
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The Master Method

◼ Based on the Master theorem.

◼ This approach for solving recurrences of the form

T(n) = aT(n/b) + f(n)

◼ a  1, b > 1 are constants.

◼ f(n) is asymptotically positive.

◼ n/b may not be an integer, but we ignore floors and ceilings. 

◼ Requires memorization of three cases.

Program Name: BCA Program Code:
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The Master Theorem
Theorem 

Let a  1 and b > 1 be constants, let f(n) be a function, and 

Let T(n) be defined on nonnegative integers by the recurrence 
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b. 
T(n) can be bounded asymptotically in three cases:

1. If  f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If  f(n) = (nlogba), then T(n) = (nlogbalog n).

3. If  f(n) = (nlogba+) for some constant  > 0, 
and if a×f(n/b)  c f(n), for some constant c < 1 and all sufficiently large n, then T(n) 

= (f(n)).



Using the Master Method

• In each of three cases, we compare the
function f(n) with the function nlog

b
a .

– The larger of two functions determines the solution
to the recurrence.

• For case 1, f(n)< nlog
b

a

• For case 2, f(n)= nlog
b

a

• For case 3, f(n)> nlog
b

a

30
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Example of Master Method
• T(n)=9T(n/3)+n

– For this recurrence we have a=9, b=3 and f(n)=n

– Thus we have that nlog
b

a = nlog
3

9   = Θ(n2)

– We can apply case 1 f(n)< nlog
b

a n<n2

– Since f(n) = O(nlog
3

9-ε), where ε=.1

– The solution is T(n)= Θ(n2)

• T(n)=T(2n/3)+1,
– in which a=1, b=3/2 and f(n)=1

– We have nlog
b

a = nlog
3/2

1   = n0=1                    (f(n)=
nlog

b
a)

– Case 2 applies ,

– Since f(n)= Θ(nlog
3/2

1)= Θ(1)

– The solution of this recurrence is T(n)= Θ(logn) (T(n) = (nlogbalog n))

31
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Example of Master Method

• T(n)=3T(n/4)+nlogn
– We have a=3, b=4 and f(n)=nlogn
– Thus we have that nlog

b
a = nlog

4
3   = O(n0.793)

– Since f(n) = O(nlog
4

3+ε), where ε≈0.207

– f(n)>nlog
b

a  nlogn >n
– case 3 applies if we can show that the regularity condition 

holds for f(n).
– For sufficiently large n, we have that
– af(n/b)<=cf(n)

• af(n/b)=3f(n4)=3(n/4)log(n/4)=(3/4)nlog(n/4)

– (¾)nlog(n/4)<=c nlogn for c=3/4    :: (c<1)
– The solution of this recurrence is T(n)= Θ(nlogn)
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• T(n)= 2T(n/2) + n log n

• a=2, b=2 , f(n)= nlogn and nlog
b

a = n

• nlogn>n case three apply (mistake)

– For sufficiently large n, we have that

– af(n/b)<=cf(n)

– af(n/b)=2(n/2)log(n/2)<=(2/2)nlogn=cf(n) for 
c=2/2=>1    :: (c<1)

– Not hold the condition
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Problems

1. T(n) = 2T(n/2)+ Θ(n)
2. T(n) = 8T(n/2) + Θ(n2)
3. T(n) = 7T(n/2) + Θ(n2)
4. T(n)= T(n/2) +1
5. T(n)= 4T(n/3)+cn2

6. T(n) =2T(n/4)+1
7. T(n)=2T(n/4)+√n
8. T(n) = 2T(n/4) + n2

9. Can the master method be applied to the
recurrence T(n) = 4T(n/2)+ n2 log n? Why or why
not? Give an asymptotic upper bound for this
recurrence.

34

Solve the recurrence relation for
T(1)=O(1)
T(n) = 128T(n/2) + log3n
where n>=2 and a power of 2.
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Insertion Sort
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Procedure
• A good algorithm for sorting a small number of elements.

• Start with an empty left hand and the cards face down on the
table.

• Then remove one card at a time from the table, and insert it
into the correct position in the left hand.

• To find the correct position for a card, compare it with each of
the cards already in the hand, from right to left.

• At all times, the cards held in the left hand are sorted, and
these cards were originally the top cards of the pile on the
table.
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Problem 

• Sort following list by Insertion sort.

• 4, 3, 2, 10, 12, 1, 5, 6

Program Name: BCA Program Code:
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complexity

• Best Case T(n)= O(n)

• Average Case T(n)= O(n2)

• Worst Case T(n)= O(n2)
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Analysis of Insertion Sort
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Best Case
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Worst Case
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Average Case

• J=J/2
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complexity

• Best Case T(n)= O(n)

• Average Case T(n)= O(n2)

• Worst Case T(n)= O(n2)
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• void InsertionSort(int a[], int n)

• {int i, j, key;

– for(j=1; j<n; j++)

{ key =a[j];

• i = j-1;

• while ( i>= 0) && (A[i] >key)
– A[i+1] = A[i];

– i = i – 1;

• A[i+1] = key;

}
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Introduction to Algorithms
Second Edition

by

Cormen, Leiserson, Rivest & Stein

Chapter 7
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Description of Quick Sort
• Quick sort, like merge sort, is based on divide-

and-Conquer paradigm. Here is three steps for
sorting a Array A[p…r]

• Dividing: Partition the array into two possible
(possible empty) subarrays A[p..q-1] and
A[q+1..r].

• Conquer: Sort the two subarrays A[p..q-1] and
A[q+1..r] by recursive calls to quicksort.

• Combine: Since the subarrays are sorted in
place, no work is needed to combine them: the
entire array A[p..r] is now sorted.
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Quick sort steps

j=p, i=j-1

1. Compare pivot & jth element

2. If jth element is small than
1. Increment in i by 1

2. Exchange ith & jth element

3. Repeat steps 1, 2 & 4 until j reaches to last 
or r+1 location

4. After tracing all elements in array

5. Exchange  pivot element with i+1 position 
element.
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Sort the following sequence by using the Quick sort: { 10, 2, 1, 5, 3, 8, 11, 24, 7 }. 
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Performance of Quick Sort

The running time of quick sort is depends on whether the

partitioning is balanced or unbalanced.

If the partitioning is balanced, the algorithms runs as fast as merge

sort.

If the partitioning is unbalanced, however, it can run as slowly as

insertion sort.

We will analyze quick sort in all three cases:

see in next slide
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Worst Case Partitioning

The Worst-Case behavior for quick sort occurs when the

partitioning routine products one sub-problem with n-1 elements

and one with 0 element.

Let us assume that this unbalanced partitioning arise in each

recursive call.

The portioning cast is Θ(n).

Since the recursive call on array of size 0 just returns, T(0)= Θ(1),

the recurrence for the running time is

T(n)= T(n-1)+T(0)+ Θ(n) when n>1

T(n)= T(n-1)+Θ(n)

T(n)= T(n-1)+ cn          solve by iterative method 
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T(n)= T(n-1)+ cn---------------1

Put n=n-1 in eqn 1st

We get T(n-1)= T(n-2)+c(n-1)

Put T(n-1) in eqn 1st
• T(n)= T(n-2)+c(n-1)+cn---------2
• put n=(n-2) in eqn 1st

• We get T(n-2)=T(n-3)+c(n-2)
• put in eqn 2
• T(n)=T(n-3)+c(n-2)+c(n-1)+cn
• T(n)= T(n-3)+3cn-3c
• ----------------------
• T(n)= T(n-k)+kcn-kc             :: k=n-1
• T(n)=T(n-(n-1))+[(n-1)cn]+c(n-1)
• T(n)=T(1)+cn2-cn+cn-c
• T(n)=Θ(1)+cn2-c
• T(n)=Θ(n2)
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Best Case Partitioning

• In the most even possible spilt, PARTITION 
produces two sub-problems, each of size no 
more than n/2:

– T(n)=2T(n/2)+Θ(n)

– T(n)=Θ(nlogn)
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Average Case Partitioning

• Partitioning ratio is 9:1

• T(n)=T(9n/10)+T(n/10)+ Θ(n)
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Size of subproblem at ith level (9/10)in

i=log10/9 n

Cost of each level is cn

T(n) <= cost of each level × Height of  longest Tree

<=  cn × (log10/9 n+1)

T(n)=O(nlog10/9 n)

Or

T(n)=O(nlogn)
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A Randomized version of quick 

RANDOMIZED-PARTITION(A, p, r)
1. i = Random(p, r)
2. Exchange A[r] with A[i]
3. Return PARTITION(A, p, r)

RANDOMMIZED-QUICKSORT(A, p, r)
1. if p < r
2. q = RANDOMIZED-PARTITION(A, p, r)
3. RANDOMMIZED-QUICKSORT(A, p, q-1)
4. RANDOMMIZED-QUICKSORT(A, q+1, r)
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An Example:  Merge Sort
Sorting Problem: Sort a sequence of n elements into 

non-decreasing order.

• Divide: Divide the n-element sequence to be 
sorted into two subsequences of n/2 elements 
each

• Conquer: Sort the two subsequences recursively 
using merge sort.

• Combine: Merge the two sorted subsequences to 
produce the sorted answer.
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Merge Sort – Example 
18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

2618 6 32 1543 1 9 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 326 15 43 1 9 

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6 

6 

32 6 

18 26 32 6 

43

43

15

15

43 15

9 

9 

1 

1 

9 1 

43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 6 32

6 26 3218

1543 1 9 

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence
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Merge-Sort (A, p, r)
INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r)   // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r] 

Initial Call: MergeSort(A, 1, n)

Program Name: BCA Program Code:



Procedure Merge
Merge(A, p, q, r)
1  n1  q – p + 1
2  n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Sentinels, to avoid having to

check if either subarray is

fully copied at each step.

Input: Array containing 

sorted subarrays A[p..q] 

and A[q+1..r].

Output: Merged sorted 

subarray in A[p..r].
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Merge – Example 
6 8 26 32 1 9 42 43… …A

k                                                   

6 8 26 32 1 9 42 43

k                                            k                                     k                            k                            k                      k                 k             

i                          i                          i           i   

 

i   j                      j           j   j 

6 8 26 32 1 9 42 43

1 6 8 9 26 32 42 43

k             

L R
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Correctness of Merge
Merge(A, p, q, r)
1  n1  q – p + 1
2  n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Loop Invariant for the for loop

At the start of each iteration of the   

for loop: 

Subarray A[p..k – 1] 

contains the k – p smallest elements

of L and R in sorted order. 

L[i] and R[j] are the smallest elements of 

L and R that have not been copied back into 

A.

Initialization:

Before the first iteration: 

•A[p..k – 1] is empty.

•i = j = 1.

•L[1] and R[1] are the smallest 

elements of L and R not copied to A.
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Correctness of Merge
Merge(A, p, q, r)
1  n1  q – p + 1
2  n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Maintenance:

Case 1: L[i]  R[j]

•By LI, A contains p – k smallest elements    

of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest 

elements of L and R not yet copied into A.

•Line 13 results in A containing p – k + 1 

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI 

for the next iteration.

Similarly for L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

elements of L and R in sorted order.

•L and R together contain r – p + 3 elements.

All but the two sentinels have been copied 

back into A.
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Analysis of Merge Sort
• Running time T(n) of Merge Sort:

• Divide: computing the middle takes (1)

• Conquer: solving 2 subproblems takes 2T(n/2)

• Combine: merging n elements takes (n)

• Total:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) 
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Example – Exact Function
Recurrence:  T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step: T(n)  = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n

Program Name: BCA Program Code:



Comp 122

Recursion-tree Method
• Making a good guess is sometimes difficult with 

the substitution method.

• Use recursion trees to devise good guesses.

• Recursion Trees

– Show successive expansions of recurrences using 
trees.

– Keep track of the time spent on the subproblems of 
a divide and conquer algorithm.

– Help organize the algebraic bookkeeping necessary 
to solve a recurrence.
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Recursion Tree – Example 

• Running time of Merge Sort:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

• Rewrite the recurrence as
T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.
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Recursion Tree for Merge Sort
For the original problem, 

we have a cost of cn, 

plus two subproblems 

each of size (n/2) and 

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems 

has a cost of cn/2 plus two 

subproblems, each costing 

T(n/4).
cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and 

merge. 

Cost of sorting 

subproblems.
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Recursion Tree for Merge SortContinue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total           : cnlgn+cn
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Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level, 

the number of subproblems doubles, 

but the cost per subproblem halves  

 cost per level remains the same.

•There are lg n + 1 levels, height is 

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each 

level = (lg n + 1)cn = cnlgn + cn = 

(n lgn).
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Recursion Trees – Caution Note

• Recursion trees only generate guesses.

– Verify guesses using substitution method.

• A small amount of “sloppiness” can be 
tolerated. Why?

• If careful when drawing out a recursion tree 
and summing the costs, can be used as direct 
proof.

Program Name: BCA Program Code:




