
School of Computing

Science and Engineering

Program: BCA

Course Code: BCAS2104

Course Name: Introduction to Algorithm Analysis &

Design (ADA)

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA.

Program Name: BCA Program Code:

Course Outcomes :
CO1 To know about fundamentals of algorithm.

CO2
To understand the concepts of advanced data structure.

CO3
Apply algorithms and design techniques to solve problems.

CO4 Apply Graph algorithm to find a shortest path.

CO5
To learn about algebraic computation and string matching.

CO6
To understand the latest research trends in Algorithm Design.

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Course Prerequisites

Data and File Structures. Knowledge and
experience of programming in a high level

language like C, C++

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code :BCAS2104 Course Name: ADA

Program Name: BCA Program Code:

Syllabus

Unit I: Introduction to Algorithms: 8 lecture hours

Introduction to Algorithms & Analysis- Design of Algorithms, Growth of function, Complexity of Algorithms, Asymptotic Notations,

Recurrences.

Sorting: Insertion Sort, Quick Sort, Merge Sort

Unit II: Advance Data Structure: 6 lecture hours

Advanced Data Structure: Binary Search Trees, Red Black Trees, B-Tree

Unit III: Advance Design and Analysis Techniques: 7 lecture hours

Advanced Design and Analysis Techniques: Dynamic programming-Matrix chain multiplication, Longest common sequence and Knapsack

problem, Greedy Algorithm-Huffman Coding, and Knapsack problem

Unit IV: Graph Algorithms 8 lecture hours

Graph Algorithms: Elementary Graph Algorithms, Breadth First Search, Depth First Search, Minimum Spanning Tree, Kruskal’s Algorithms,

Prim’s Algorithms, Single Source Shortest Path

Unit V: Special Topics in AAD 5 lecture hours

String Matching, Introduction of NP-Hard and NP-Completeness, Matrix Operations

Unit VI: Research 6 lecture hours

Research Topics : Approximation Algorithms : The Traveling Salesman Problem.

Discussion of some latest papers published in IEEE transactions and ACM transactions, Web of Science and SCOPUS indexed journals as well

as high impact factor conferences as well as symposiums.

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Text books
• T. Cormen, C.E. Leiserson, R.L. Rivest & C. Stein – Introduction to

Algorithms – PHI – 2nd Edition, 2005.

Reference Book
• Knuth E. Donald, Art of Computer Programming Sorting and Searching

Vol3, Second Edition, Pearson Education.
• Brassard Bratley, “Fundamental of Algorithms”, PHI
• A V Aho etal, “The Design and analysis of Algorithms”, Pearson Education
• Adam Drozdek, “Data Structures and Algorithms in C++”, Thomson Asia

Additional online materials

Program Name: BCA Program Code:

Recommended Books

6

What is an algorithm?

• An algorithm is a finite set of instructions for solving a
problem.

• An algorithm step by step process.

• Algorithms are the ideas behind computer programs.

• An algorithm has to solve a general, specified problem.
An algorithmic problem is specified by describing the
set of instances it must work on and what desired
properties the output must have.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

7

Algorithms

• Properties of algorithms: (all algorithms must satisfy the following properties)

• Input: Zero or more quantities are externally supplied.

• Output: At least one quantity is produced(solution).

• Definiteness: Each instruction is clear and
unambiguous

• Finiteness: Algorithm must be terminate after a finite
number of steps.

• Effectiveness: It also must be feasible(desire output).

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

8

Growth of Function
• Asymptotic notation (O, Θ, Ω)

– Big-oh O

– Theta Θ

– Omega Ω

• Informal definitions:
– Given a complexity function f(n),

–(f(n)) is the set of complexity functions that are
lower bounds on f(n)

– O(f(n)) is the set of complexity functions that are upper
bounds on f(n)

–(f(n)) is the set of complexity functions that, given
the correct constants, “correctly” describes f(n)

Asymptotic Notations

• A way to describe behavior of functions in the limit

– How we indicate running times of algorithms

– Describe the running time of an algorithm as n grows to 

• O notation:

•  notation:

•  notation:

asymptotic “less than and equal”: f(n) “≤” cg(n)

asymptotic “greater than and equal”:f(n) “≥” cg(n)

asymptotic “equality”: f(n) “=” cg(n)

F(n) = n2 +n+1

G(n)= O(n2)

10

Analysis of algorithm

• Analysis of algorithm or performance analysis
refers to the task of determine how much
computing (CPU) time and storage (RAM)
time requires.

• Time complexity
– The time complexity of an algorithm is the amount of

computer time it needs to run to completion.

• Space complexity
– The space complexity of an algorithm is the amount of

memory it needs to run to completion.

Continue

• Input Size: Size of problem say n

– The best notation for input size depends on the
problem being studied.

• Running Time: T(n)

– The running time of an algorithm on a particular
input is the number of primitive operations or
steps executed.

11

12

Best, Worst, and Average-Case

• The worst case complexity of the algorithm is the
function defined by the maximum number of
steps taken on any instance of size n.

• The best case complexity of the algorithm is the
function defined by the minimum number of
steps taken on any instance of size n.

• The average-case complexity of the algorithm is
the function defined by an average number of
steps taken on any instance of size n.

• Each of these complexities defines a numerical
function - time vs. size!

Program Name: BCA Program Code:

13

Best, Worst, and Average-Case

Program Name: BCA Program Code:

Asymptotic Notations

• A way to describe behavior of functions in the limit

– How we indicate running times of algorithms

– Describe the running time of an algorithm as n grows to 

• O notation:

•  notation:

•  notation:

asymptotic “less than and equal”: f(n) “≤” cg(n)

asymptotic “greater than and equal”:f(n) “≥” cg(n)

asymptotic “equality”: f(n) “=” cg(n)

F(n) = n2 +n+1

G(n)= O(n2)

Program Name: BCA Program Code:

Recurrence relation

• A recurrence relation is an equation which is
defined in terms of itself.

• There are three type of recurrence solutions :

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Recurrence Relations
• Equation or an inequality that characterizes a

function by its values on smaller inputs.

• Solution Methods (Chapter 4)
– Substitution Method.

– Recursion-tree Method.

– Master Method.

• Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
– Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) + C(n) otherwise

Program Name: BCA Program Code:

Substitution Method
• Guess the form of the solution, then

use mathematical induction to show it correct.

– Substitute guessed answer for the function when the
inductive hypothesis is applied to smaller values –
hence, the name.

• Works well when the solution is easy to guess.

• No general way to guess the correct solution.

Program Name: BCA Program Code:

1. Total cost of each sub problems are equal

• Like merge sort recurrence relation

• T(n)=2T(n/2)+ cn if n>1

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

19

Recursion Tree for Merge Sort
For the original problem, we have
a cost of cn, plus two
subproblems each of size (n/2)
and running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems has a cost
of cn/2 plus two subproblems, each
costing T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and
merge.

Cost of sorting
subproblems.

Program Name: BCA Program Code:

20

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

log n

cn

cn

cn

cn

Total : cnlogn+cn

Program Name: BCA Program Code:

21

Recursion Tree

• At ith level no. of nodes 2i,
• Sub-problem size at level i is: n/2i

• Sub-problem size hits 1 when 1 = n/2i n= 2i

– Taking log, i=log2 n (Height of tree)

• Total cost = cost of each level × Height of tree

• T(n)= cn (log n+ 1)

• T(n)= cnlog n+ cn
– Ignore low-order term n and constant coefficient c

• T(n)= Θ(n log n),

Program Name: BCA Program Code:

2. Total cost of each sub-problems
are not equal and size of sub-
problems are also not equal.

• T(n)=T(n/2)+T(n/4)+n2

Program Name: BCA Program Code:

23

Recursion Tree
Continue expanding until the problem size reduces to 1.

cn2

c(n/4)2 c(n/2)2

c(n/16)2 c(n/8)2 c(n/8)2 c(n/4)2

c c c cc c

i=log2 n

c(5/16)0n2

c(5/16)1n2

c(5/16)2n2

c(5/16)in2

Program Name: BCA Program Code:

• T(n)=c(5/16)0n2 +c(5/16)1n2 + c(5/16)2n2 + …..
+ c(5/16)in2

() () ())(2

16

5
1

1
2

16

5
2

16

5
)(2log22

0

2
1log

0

2

4

nOcncncnnT
ni

i

i

i

in

i

=+

−

=+







+








= 



=

−

=

Program Name: BCA Program Code:

3. Total cost of each sub-problems are not
equal but size of sub-problems are equal.

• Example : T(n) = 3 T(n/4) + cn2

Program Name: BCA Program Code:

Example : T(n) = 3 T(n/4) + cn2

◼ Sub-problem size at level i is: n/4i

◼ Sub-problem size hits 1 when 1 = n/4i  i = log4n

◼ Cost of a node at level i = c(n/4i)2

◼ Number of nodes at level i = 3i  last level has 3log
4

n = nlog
4

3 nodes

Program Name: BCA Program Code:

Total cost:  T(n) = O(n2)

() () ())(

16

3
1

1

16

3

16

3
)(23log23log2

0

3log2
1log

0

444

4

nOncnncnncnnT
i

iin

i

=+

−

=+







+








= 



=

−

=

30 cn2+ 31c(n/4)2+ 32c(n/16)2+----

Or

(3/16)0 cn2+ (3/16)1cn2+ (3/16)2cn2+----

Assignment :-> T(n) = 4 T(n/2) +n, solve by recursion tree

Worst case consider here

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

28

The Master Method

◼ Based on the Master theorem.

◼ This approach for solving recurrences of the form

T(n) = aT(n/b) + f(n)

◼ a  1, b > 1 are constants.

◼ f(n) is asymptotically positive.

◼ n/b may not be an integer, but we ignore floors and ceilings.

◼ Requires memorization of three cases.

Program Name: BCA Program Code:

29

The Master Theorem
Theorem

Let a  1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.
T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalog n).

3. If f(n) = (nlogba+) for some constant  > 0,
and if a×f(n/b)  c f(n), for some constant c < 1 and all sufficiently large n, then T(n)

= (f(n)).

Using the Master Method

• In each of three cases, we compare the
function f(n) with the function nlog

b
a .

– The larger of two functions determines the solution
to the recurrence.

• For case 1, f(n)< nlog
b

a

• For case 2, f(n)= nlog
b

a

• For case 3, f(n)> nlog
b

a

30
Program Name: BCA Program Code:

Example of Master Method
• T(n)=9T(n/3)+n

– For this recurrence we have a=9, b=3 and f(n)=n

– Thus we have that nlog
b

a = nlog
3

9 = Θ(n2)

– We can apply case 1 f(n)< nlog
b

a n<n2

– Since f(n) = O(nlog
3

9-ε), where ε=.1

– The solution is T(n)= Θ(n2)

• T(n)=T(2n/3)+1,
– in which a=1, b=3/2 and f(n)=1

– We have nlog
b

a = nlog
3/2

1 = n0=1 (f(n)=
nlog

b
a)

– Case 2 applies ,

– Since f(n)= Θ(nlog
3/2

1)= Θ(1)

– The solution of this recurrence is T(n)= Θ(logn) (T(n) = (nlogbalog n))

31
Program Name: BCA Program Code:

Example of Master Method

• T(n)=3T(n/4)+nlogn
– We have a=3, b=4 and f(n)=nlogn
– Thus we have that nlog

b
a = nlog

4
3 = O(n0.793)

– Since f(n) = O(nlog
4

3+ε), where ε≈0.207

– f(n)>nlog
b

a  nlogn >n
– case 3 applies if we can show that the regularity condition

holds for f(n).
– For sufficiently large n, we have that
– af(n/b)<=cf(n)

• af(n/b)=3f(n4)=3(n/4)log(n/4)=(3/4)nlog(n/4)

– (¾)nlog(n/4)<=c nlogn for c=3/4 :: (c<1)
– The solution of this recurrence is T(n)= Θ(nlogn)

32Program Name: BCA Program Code:

• T(n)= 2T(n/2) + n log n

• a=2, b=2 , f(n)= nlogn and nlog
b

a = n

• nlogn>n case three apply (mistake)

– For sufficiently large n, we have that

– af(n/b)<=cf(n)

– af(n/b)=2(n/2)log(n/2)<=(2/2)nlogn=cf(n) for
c=2/2=>1 :: (c<1)

– Not hold the condition

Program Name: BCA Program Code:

Problems

1. T(n) = 2T(n/2)+ Θ(n)
2. T(n) = 8T(n/2) + Θ(n2)
3. T(n) = 7T(n/2) + Θ(n2)
4. T(n)= T(n/2) +1
5. T(n)= 4T(n/3)+cn2

6. T(n) =2T(n/4)+1
7. T(n)=2T(n/4)+√n
8. T(n) = 2T(n/4) + n2

9. Can the master method be applied to the
recurrence T(n) = 4T(n/2)+ n2 log n? Why or why
not? Give an asymptotic upper bound for this
recurrence.

34

Solve the recurrence relation for
T(1)=O(1)
T(n) = 128T(n/2) + log3n
where n>=2 and a power of 2.

Program Name: BCA Program Code:

Insertion Sort

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Procedure
• A good algorithm for sorting a small number of elements.

• Start with an empty left hand and the cards face down on the
table.

• Then remove one card at a time from the table, and insert it
into the correct position in the left hand.

• To find the correct position for a card, compare it with each of
the cards already in the hand, from right to left.

• At all times, the cards held in the left hand are sorted, and
these cards were originally the top cards of the pile on the
table.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Program Name: BCA Program Code:

Problem

• Sort following list by Insertion sort.

• 4, 3, 2, 10, 12, 1, 5, 6

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

complexity

• Best Case T(n)= O(n)

• Average Case T(n)= O(n2)

• Worst Case T(n)= O(n2)

Program Name: BCA Program Code:

Analysis of Insertion Sort

Program Name: BCA Program Code:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Program Name: BCA Program Code:

Best Case

Program Name: BCA Program Code:

Worst Case

Program Name: BCA Program Code:

Program Name: BCA Program Code:

Average Case

• J=J/2

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

complexity

• Best Case T(n)= O(n)

• Average Case T(n)= O(n2)

• Worst Case T(n)= O(n2)

Program Name: BCA Program Code:

• void InsertionSort(int a[], int n)

• {int i, j, key;

– for(j=1; j<n; j++)

{ key =a[j];

• i = j-1;

• while (i>= 0) && (A[i] >key)
– A[i+1] = A[i];

– i = i – 1;

• A[i+1] = key;

}

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Introduction to Algorithms
Second Edition

by

Cormen, Leiserson, Rivest & Stein

Chapter 7

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Description of Quick Sort
• Quick sort, like merge sort, is based on divide-

and-Conquer paradigm. Here is three steps for
sorting a Array A[p…r]

• Dividing: Partition the array into two possible
(possible empty) subarrays A[p..q-1] and
A[q+1..r].

• Conquer: Sort the two subarrays A[p..q-1] and
A[q+1..r] by recursive calls to quicksort.

• Combine: Since the subarrays are sorted in
place, no work is needed to combine them: the
entire array A[p..r] is now sorted.

Program Name: BCA Program Code:

Quick sort steps

j=p, i=j-1

1. Compare pivot & jth element

2. If jth element is small than
1. Increment in i by 1

2. Exchange ith & jth element

3. Repeat steps 1, 2 & 4 until j reaches to last
or r+1 location

4. After tracing all elements in array

5. Exchange pivot element with i+1 position
element.

Program Name: BCA Program Code:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

Sort the following sequence by using the Quick sort: { 10, 2, 1, 5, 3, 8, 11, 24, 7 }.

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

Performance of Quick Sort

The running time of quick sort is depends on whether the

partitioning is balanced or unbalanced.

If the partitioning is balanced, the algorithms runs as fast as merge

sort.

If the partitioning is unbalanced, however, it can run as slowly as

insertion sort.

We will analyze quick sort in all three cases:

see in next slide

Program Name: BCA Program Code:

Worst Case Partitioning

The Worst-Case behavior for quick sort occurs when the

partitioning routine products one sub-problem with n-1 elements

and one with 0 element.

Let us assume that this unbalanced partitioning arise in each

recursive call.

The portioning cast is Θ(n).

Since the recursive call on array of size 0 just returns, T(0)= Θ(1),

the recurrence for the running time is

T(n)= T(n-1)+T(0)+ Θ(n) when n>1

T(n)= T(n-1)+Θ(n)

T(n)= T(n-1)+ cn solve by iterative method

Program Name: BCA Program Code:

T(n)= T(n-1)+ cn---------------1

Put n=n-1 in eqn 1st

We get T(n-1)= T(n-2)+c(n-1)

Put T(n-1) in eqn 1st
• T(n)= T(n-2)+c(n-1)+cn---------2
• put n=(n-2) in eqn 1st

• We get T(n-2)=T(n-3)+c(n-2)
• put in eqn 2
• T(n)=T(n-3)+c(n-2)+c(n-1)+cn
• T(n)= T(n-3)+3cn-3c
• ----------------------
• T(n)= T(n-k)+kcn-kc :: k=n-1
• T(n)=T(n-(n-1))+[(n-1)cn]+c(n-1)
• T(n)=T(1)+cn2-cn+cn-c
• T(n)=Θ(1)+cn2-c
• T(n)=Θ(n2)

Program Name: BCA Program Code:

Best Case Partitioning

• In the most even possible spilt, PARTITION
produces two sub-problems, each of size no
more than n/2:

– T(n)=2T(n/2)+Θ(n)

– T(n)=Θ(nlogn)

Program Name: BCA Program Code:

Average Case Partitioning

• Partitioning ratio is 9:1

• T(n)=T(9n/10)+T(n/10)+ Θ(n)

Program Name: BCA Program Code:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program Name: BCA Program Code:

Size of subproblem at ith level (9/10)in

i=log10/9 n

Cost of each level is cn

T(n) <= cost of each level × Height of longest Tree

<= cn × (log10/9 n+1)

T(n)=O(nlog10/9 n)

Or

T(n)=O(nlogn)

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

A Randomized version of quick

RANDOMIZED-PARTITION(A, p, r)
1. i = Random(p, r)
2. Exchange A[r] with A[i]
3. Return PARTITION(A, p, r)

RANDOMMIZED-QUICKSORT(A, p, r)
1. if p < r
2. q = RANDOMIZED-PARTITION(A, p, r)
3. RANDOMMIZED-QUICKSORT(A, p, q-1)
4. RANDOMMIZED-QUICKSORT(A, q+1, r)

Program Name: BCA Program Code:

School of Computing Science and Engineering
Course Code : BCAS2104 Course Name: ADA

An Example: Merge Sort
Sorting Problem: Sort a sequence of n elements into

non-decreasing order.

• Divide: Divide the n-element sequence to be
sorted into two subsequences of n/2 elements
each

• Conquer: Sort the two subsequences recursively
using merge sort.

• Combine: Merge the two sorted subsequences to
produce the sorted answer.

Program Name: BCA Program Code:

Merge Sort – Example
18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

2618 6 32 1543 1 9

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 326 15 43 1 9

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6

6

32 6

18 26 32 6

43

43

15

15

43 15

9

9

1

1

9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

6 26 3218

1543 1 9

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence

Program Name: BCA Program Code:

Merge-Sort (A, p, r)
INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Program Name: BCA Program Code:

Procedure Merge
Merge(A, p, q, r)
1 n1  q – p + 1
2 n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Sentinels, to avoid having to

check if either subarray is

fully copied at each step.

Input: Array containing

sorted subarrays A[p..q]

and A[q+1..r].

Output: Merged sorted

subarray in A[p..r].

Program Name: BCA Program Code:

j

Merge – Example
6 8 26 32 1 9 42 43… …A

k

6 8 26 32 1 9 42 43

k k k k k k k

i i i i

 

i j j j j

6 8 26 32 1 9 42 43

1 6 8 9 26 32 42 43

k

L R

Program Name: BCA Program Code:

Correctness of Merge
Merge(A, p, q, r)
1 n1  q – p + 1
2 n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Loop Invariant for the for loop

At the start of each iteration of the

for loop:

Subarray A[p..k – 1]

contains the k – p smallest elements

of L and R in sorted order.

L[i] and R[j] are the smallest elements of

L and R that have not been copied back into

A.

Initialization:

Before the first iteration:

•A[p..k – 1] is empty.

•i = j = 1.

•L[1] and R[1] are the smallest

elements of L and R not copied to A.

Program Name: BCA Program Code:

Correctness of Merge
Merge(A, p, q, r)
1 n1  q – p + 1
2 n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Maintenance:

Case 1: L[i]  R[j]

•By LI, A contains p – k smallest elements

of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest

elements of L and R not yet copied into A.

•Line 13 results in A containing p – k + 1

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI

for the next iteration.

Similarly for L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

elements of L and R in sorted order.

•L and R together contain r – p + 3 elements.

All but the two sentinels have been copied

back into A.

Program Name: BCA Program Code:

Analysis of Merge Sort
• Running time T(n) of Merge Sort:

• Divide: computing the middle takes (1)

• Conquer: solving 2 subproblems takes 2T(n/2)

• Combine: merging n elements takes (n)

• Total:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n)

Program Name: BCA Program Code:

Example – Exact Function
Recurrence: T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step: T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n

Program Name: BCA Program Code:

Comp 122

Recursion-tree Method
• Making a good guess is sometimes difficult with

the substitution method.

• Use recursion trees to devise good guesses.

• Recursion Trees

– Show successive expansions of recurrences using
trees.

– Keep track of the time spent on the subproblems of
a divide and conquer algorithm.

– Help organize the algebraic bookkeeping necessary
to solve a recurrence.

Program Name: BCA Program Code:

Comp 122

Recursion Tree – Example

• Running time of Merge Sort:
T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

• Rewrite the recurrence as
T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.

Program Name: BCA Program Code:

Comp 122

Recursion Tree for Merge Sort
For the original problem,

we have a cost of cn,

plus two subproblems

each of size (n/2) and

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems

has a cost of cn/2 plus two

subproblems, each costing

T(n/4).
cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and

merge.

Cost of sorting

subproblems.

Program Name: BCA Program Code:

Comp 122

Recursion Tree for Merge SortContinue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total : cnlgn+cn

Program Name: BCA Program Code:

Comp 122

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level,

the number of subproblems doubles,

but the cost per subproblem halves

 cost per level remains the same.

•There are lg n + 1 levels, height is

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each

level = (lg n + 1)cn = cnlgn + cn =

(n lgn).

Program Name: BCA Program Code:

Comp 122

Recursion Trees – Caution Note

• Recursion trees only generate guesses.

– Verify guesses using substitution method.

• A small amount of “sloppiness” can be
tolerated. Why?

• If careful when drawing out a recursion tree
and summing the costs, can be used as direct
proof.

Program Name: BCA Program Code:

