Course Code: BTME 3060

Course Name: Computer Aided Design

BTME 3060 Computer Aided Design Lecture 18

2nd Year

III Semester

Galgotias University

2020-21

NIVERSITY

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

Unit II: Transformation

- Syllabus
- Geometric Transformation Basic transformation,
 - translation,
 - rotation,
 - scaling,
 - reflection,
- homogeneous coordinates;
- Composite Transformation-Introduction, translation, rotation, scaling,
 - 3-D transformation- translation, rotation, scaling, reflection;
 - 3-D composite transformation- generalized rotation,
 - generalized reflection.

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

Objective of the lecture

- 3-D composite transformation-generalized rotation,
- generalized reflection.

GALGOTIAS UNIVERSITY

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

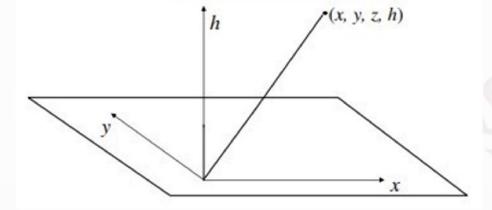
Course Name: Computer Aided Design

3-D composite transformation

- Geometric transformations are mappings from one coordinate system onto itself.
- The geometric model undergoes change relative to its MCS (Model CoordinateSystem)
- The Transformations are applied to an object represented by point sets.
- Rigid Body Motion: The relative distances between object particles remain constant
- Affine and Non-Affine maps
- Transformed point set X* = f(P, transformation parameters)

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060 Course Name: Computer Aided Design

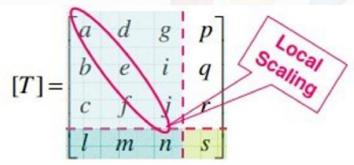

Contd..

Homogeneous coordinates in 3 dimensions

• A point in homogeneous coordinates (x, y, z,h), h 0, corresponds to the 3-D vertex (x/h, y/h, z/h) in Cartesian coordinates.

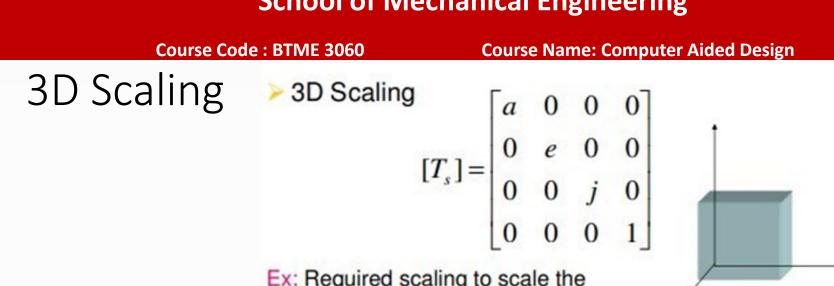
Homogeneous coordinates in 3D give rise to 4 dimensional position

vector.


Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design


Contd..

Generalized 4 x 4 transformation matrix in homogeneous coordinates

- Perspective transformations
 - Linear transformations local scaling, shear, rotation / reflection
 - Translations I, m, n along x, y, and z axis
 - Overall scaling

Course Name: Computer Aided Design

Ex: Required scaling to scale the RPP to a unit cube is 1/2, 1/3, 1

$$[X'] = [T_s] \begin{bmatrix} 0 & 2 & 2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 & 0 & 0 & 3 & 3 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Name of the Faculty: Pramod Kumar

Course Code: BTME_3060

Course Name: Computer Aided Design

Overall scaling
$$[T_s] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & s \end{bmatrix}$$
 If S<1 Enlargement of volume S>1 Reduction in volume
$$[T_s][X] = \begin{bmatrix} x' & y' & z' & s \end{bmatrix}^T$$

$$= \begin{bmatrix} x'/s & y'/s & z'/s & 1 \end{bmatrix}^T$$

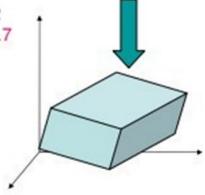
Ex: Uniformly scale the unit cube by a factor of,2 requires s= 1/2

$$[X'] = \begin{bmatrix} 0 & 2 & 2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 & 2 & 2 \\ 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design


3D-Shearing

> 3D SHEARING
$$\begin{bmatrix} 1 & d & g & 0 \\ b & 1 & i & 0 \\ c & f & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

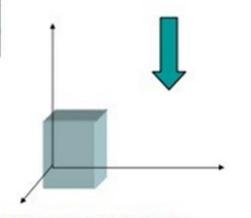
$$[T_s][X] = [x + yd + gz \quad bx + y + iz \quad cx + fy + z \quad 1]^T$$

Ex: Uniformly scale the unit cube by a factor of 2 requires d= -0.75, g=0.5,i=1, b=-0.85,c=0.25,f=0.7

$$[X'] = \begin{bmatrix} 0.5 & 1.5 & 0.75 & -0.25 & 0 & 1 & 0.25 & -0.75 \\ 1 & 0.15 & 1.15 & 2 & 0 & -0.85 & 0.15 & 1 \\ 1 & 1.25 & 1.95 & 1.7 & 0 & 0.25 & 0.95 & 0.7 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060


Course Name: Computer Aided Design

3-D Rotation about z-axis

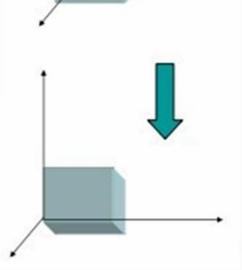
> 3D ROTATIONS - (i) Rotation about z-axis

We are already familiar with rotation about z-axis (in 2D rotations)

$$[T_{Rz}] = \begin{bmatrix} \cos \psi & \sin \psi & 0 & 0 \\ -\sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The position vector is assumed to be a row vector in right handed system

Name of the Faculty: Pramod Kumar

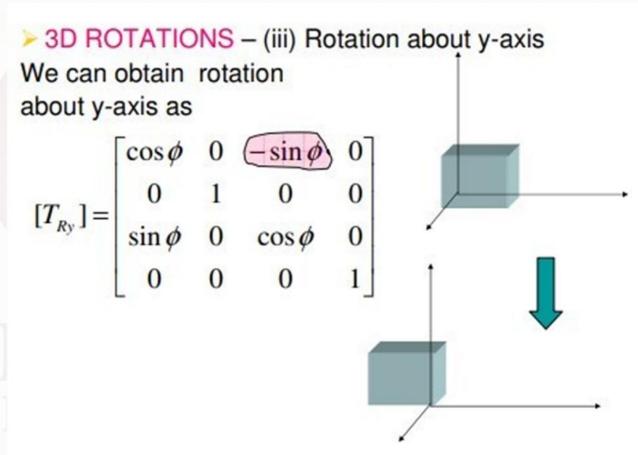

Course Code: BTME 3060

Course Name: Computer Aided Design

3DRotation about x-axis

Similarly we can obtain rotation matrix about x-axis

$$[T_{Rx}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \vartheta & \sin \vartheta & 0 \\ 0 & -\sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

3D-Rotation about y-axis

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

3D Reflection

> 3D REFLECTIONS - As in 2D, we can perform 3D transformations about a plane now.

Rotation of 180° about an axis passing through origin out into 4-D space and projection back onto 3D space.

Through x-y plane $[T_{xy}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$ Det[T]=-1

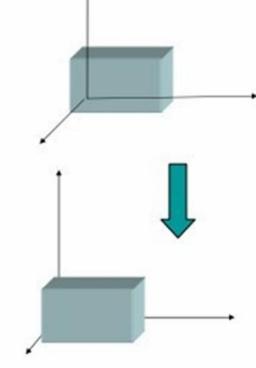
Similarly through y-z and x-z planes are

$$[T_{xz}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design


Example:

Example – for the RPP given by the matrix below obtain 3D reflection through xy - plane

$$[X] = \begin{bmatrix} 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & -2 & -2 & -2 & -2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$[T_{xy}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[X] = \begin{bmatrix} 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

COMBINATION OF TRANSFORMATIONS

- COMBINATION OF TRANSFORMATIONS As in 2D, we can perform a sequence of 3D linear transformations.
- This is achieved by concatenation of transformation matrices to obtain a combined transformation matrix

A combined matrix $[T][X] = [X][T_1][T_2][T_3][T_4]...[T_n]$

Where [Ti] are any combination of

- Translation
- Scaling
- Shearing
- Rotation
- Reflection

linear trans. but not perspective

transformation

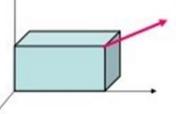
(Results in loss of info)

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

ROTATION ABOUT AN ARBITRARY AXIS IN SPACE


ROTATION ABOUT AN ARBITRARY AXIS IN SPACE

Make the arbitrary axis coincide with one of the coordinate axes.

Consider an arbitrary axis passing through a point (x₀, y₀, z₀)

Procedure

- Translate (x₀, y₀, z₀) so that the point is at origin
- Make appropriate rotations to make the line coincide with one of the axes, say z-axis
- Rotate the object about z-axis by required angle
- Apply the inverse of step 2
- Apply the inverse of step 1
- Coinciding the arbitrary axis with any axis the rotations are needed about other two axes

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060 Course Name: Computer Aided Design

Summery

- General concept is same as the 2D transformation
- The difference in the transformation matrix is mentioned

GALGOTIAS UNIVERSITY

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060 Course Name: Computer Aided Design

Questions

GALGOTIAS UNIVERSITY

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060 Course Name: Computer Aided Design

Books

- Text book
 - 1. Newman & Sprawl (1978), Principles of interactive Computer Graphics, Mcgraw hill college, ISBN- 978-0-074-63293-2
 - 2. Michel E. Mortenson (2006), Geometric modeling, Industrial press, ISBN-978-0-201-84840-3
 - 3. Van Dam, Hughes John, James Foley (2002), Computer graphics, principles and practices Pearson, ISBN- 978-0-201-84840-3
- Reference book
 - 1. Foley & van dam (1982), Fundamental of Interactive computer graphics, Addison Wesley longman publishing co, ISBN- 978-1-852-33818-3
 - 2. David Rogers (2001), Procedural elements of Computer graphics, TMH, ISBN- 978-0-070-53529-9
 - 3. Rogers and Adams (2002), Mathematical elements of Computer Graphics, TMH,ISBN- 978-0-070-53529-9
 - 4. Hearn & baker (2011), Computer Graphics, Pearson, ISBN- 978-8-177-58765-4.

Name of the Faculty: Pramod Kumar

Course Code: BTME 3060

Course Name: Computer Aided Design

Thank You!

Name of the Faculty: Pramod Kumar