
School of Computing Science and Engineering

Lecture Notes

on

Complexity of an Algorithm

09-July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Types of Time Complexity

• Best-case time complexity:
minimum amount of time required to solve a particular problem
is called best-case time complexity.
• Worst-case time complexity:

maximum amount of time required to solve a particular problem
is called worst-case time complexity.
• Average-case time complexity:

avg. amount of time required to solve a particular problem is
called avg.-case time complexity.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Rate of Growth
• The rate at which the running time increases as a function of

input, is called rate of growth.
• let us assume, we bought a two items (car & cycle)
Totalcost = costofcar + costofcycle
Totalcost ≈ costofcar(Approximation)

Why it is called Asymptotic Analysis?
• In every case, for a given function f(n), we are trying to find

another function g(n) which approximates f(n) at higher values
of ′n′.
• which means, g(n) is also a curve which approximates f(n) at

higher values of n.
• In mathematics, we call such curves as asymptotic curves.
• for this reason, we call algorithm analysis as an asysmptotic

analysis.
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Asymptotic Notations:
1 Big-oh Notation (O)

2 Omega Notation (Ω)

3 theta Notation (θ)

4 small-oh Notation (o)

5 small-omega Notation (ω)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Big-oh Notation (O) (<=)

let f(n)&g(n) be two functions
from set of integer.
f(n) = O(g(n)) IFF
f(n) <= c.g(n) : ∀n, n >= n0 ;
c & n0 are constant.

• Asymptotic upper bound pro-
vided by O-notation, which
may or may not be aymptot-
ically tight.
e.g. i) n2 = O(n3): not
tightest upper bound
ii) n2 = O(n10): not tight-
est upper bound
iii) n2 = O(n2): tightest up-
per bound
• A = O(B); where B is either

tightes or not-tightest UB.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Omega Notation Ω (>=)

let f(n)&g(n) be two functions
from set of integer.
f(n) = ω(g(n)) IFF
f(n) >= c.g(n) : ∀n, n >= n0 ;
c & n0 are constant.

• e.g. i) n3 = Ω(n): not tight-
est lower bound
ii) n3 = Ω(n2): not tightest
lower bound
iii) n3 = Ω(n3): tightest
lower bound
• A = Ω(B); where B is either

tightes or not-tightest LB.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

theta Notation (θ)

• f(n) = θ(g(n)) IFF
i) f(n) <= c1.g(n) :
∀n, n >= n0 ;
ii)f(n) >= c2.g(n) :
∀n, n >= n0

• T (A) = O(n3); worst-case
(O)
• T (A) = ω(n3); best-case(Ω)

• when worst− case = best−
case; then only θ apply.
T (A) = θ(n3)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

small-oh (o) Notation (<):

• we use o-notations to denote an upper bound that is not
asymptotically tight.
• i) n2 = o(n3): NT

ii) n2 = o(n10): NT
• A = o(B) where B is not tight upper bound.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

small-omega (ω) Notation (>):

• we use ω notations to denote an lower bound that is not
asymptotically tight.
• i) n3 = ω(n2): NT

ii) n3 = ω(n): NT
• A = ω(B) where B is not tight lower bound.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Q & A?
Queries are welcome on slack channel
for discussion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar


	Analysis of an Algorithm

