Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

MATRIX MULTIPLICATION

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Name of the Faculty: Unnikrishnan

Program Name: MCA

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Standard algorithm

for
$$i \leftarrow 1$$
 to n

$$\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow 0$$

$$\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$$

GALGOTIAS UNIVERSITY

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Standard algorithm

for
$$i \leftarrow 1$$
 to n

$$\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow 0$$

$$\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$$

Running time =
$$\Theta(n^3)$$

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\Upsilon r \mid s \rangle = \Upsilon a \mid b \rangle \Upsilon e \mid f \rangle$$

$$\underline{A} \mid \mathcal{U}f = \underline{C} \mid df \mathcal{G} \mid hf$$

$$C = A \cdot B$$

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dg$$

$$u = cf + dh$$

s = af + bh 8 mults of $(n/2) \times (n/2)$ submatrices t = ce + dg 4 adds of $(n/2) \times (n/2)$ submatrices

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\Upsilon r \mid s \rangle = \Upsilon a \mid b \rangle \Upsilon e \mid f \rangle$$

$$\underline{A} \mid \mathcal{U}f = \underline{C} \mid df \mathcal{G} \mid hf$$

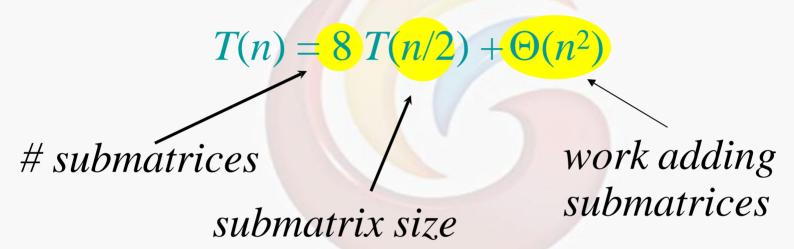
$$C = A \cdot B$$

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dh$$

$$u = cf + dg$$


recursive

8 mults of $(n/2)\times(n/2)$ submatrices

t = ce + dh 4 adds of $(n/2) \times (n/2)$ submatrices

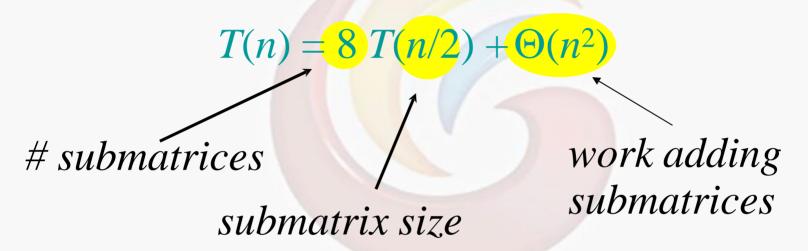
Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Analysis of D&C algorithm

GALGOTIAS UNIVERSITY

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Analysis of D&C algorithm


$$T(n) = 8T(n/2) + \Theta(n^2)$$
submatrices | work adding submatrices | submatrices |

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3).$$

UNIVERSITY

Course Code: MCAS2140 Course Name: Algorithm Analysis and Design

Analysis of D&C algorithm

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{Case } 1 \implies T(n) = \Theta(n^3).$$

No better than the ordinary algorithm.

Thank You