Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Peterson olefination Reaction

GALGOTIAS UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

TOPICS COVERED

- ➤ Peterson Olefination Reaction
- > Mechanism in presence of Acid
- ➤ Mechanism in presence of Base
- > Reactions related to topic
- ➤ More examples

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

What is Peterson Olefination

The Peterson olefination (also called the Peterson reaction) is the chemical reaction of α -silyl carbanions with ketones (or aldehydes) to form a β -hydroxysilane which eliminates to form alkenes.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Peterson Olefination

One attractive feature of the Peterson olefination is that it can be used to prepare either cis- or trans-alkenes from the same β -hydroxysilane. Treatment of the β -hydroxysilane with acid will yield one alkene, while treatment of the same β -hydroxysilane with base will yield the alkene of opposite stereochemistry.

In the first step of the Peterson Olefination, addition of the silylcarbanion to a carbonyl compound and subsequent aqueous work up leads to diastereomeric adducts.

UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Basic elimination

The action of base upon a β -hydroxysilane (1) results in a concerted *syn* elimination of (2) or (3) to form the desired alkene. The penta-coordinate silicate intermediate (3) is postulated, but no proof exists to date.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Acidic elimination

The treatment of the β -hydroxysilane (1) with acid results in protonation and an *anti* elimination to form the desired alkene.

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

Some of these reactions are stereoselective and may be rationalized with simple models: The reaction of benzaldehyde and a silylcarbanion gives the *threo*-product if the silyl group is small. This implies that in the transition state, the two sterically demanding groups are *anti*. As the silyl group becomes more sterically demanding than trimethylsilyl, the selectivity shifts towards the *erythro*-isomer.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Acidic hydrolysis proceeds via an anti-elimination

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

In contrast, the base-catalyzed elimination may proceed via a 1,3-shift of the silyl group after deprotonation, or with the formation of a pentacoordinate 1,2-oxasiletanide that subsequently undergoes cycloreversion:

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Examples

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Examples

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

References

- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998.
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012.
- T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997.
- <a href="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson+olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination+ppt&rlz=1C1CHBD_enIN920IN920&source="https://www.google.com/search?q=peterson-olefination-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefination-peterson-olefi
 - qTsAhXh8HMBHbG5CooQ_AUoAXoECAwQAw&biw=1366&bih=576#imgrc=XSutzmD8IKyxtM

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

