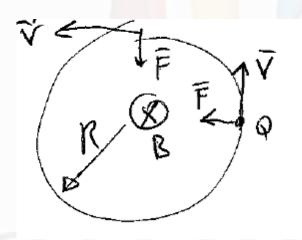

Curse Code: BSCP2003 Course Name: Electricity and Magnetism

Electricity and Magnetism
Topic Covered: Magneto-static
(Lorentz Force)

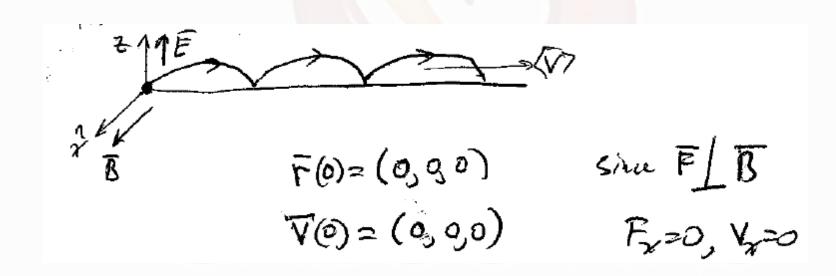
GALGOTIAS UNIVERSITY


Curse Code: BSCP2003 Course Name: Electricity and Magnetism

There are electromagnetic forces that depend on the velocity of a charge in given fields, and these forces are perpendicular to **v**. This term defines a field "B", which is the macroscopic magnetic field, or "Magnetic Induction".

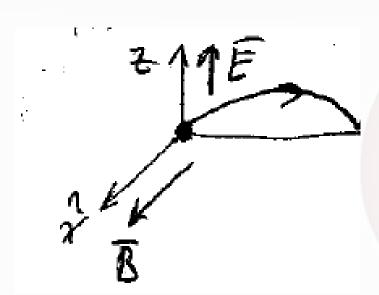
Curse Code: BSCP2003 Course Name: Electricity and Magnetism

Cyclotron motion: charge moving in a magnetic field.



Lorentz force provides centripetal force

Momentum


Curse Code: BSCP2003 Course Name: Electricity and Magnetism

Cycloid motion. Charge accelerated by an **E**-field in a perpendicular magnetic field.

Curse Code: BSCP2003

Course Name: Electricity and Magnetism

 $\nabla \times \overline{B} = (0, \hat{y}, \hat{z}) \times (B_{0}, 0, 0)$ $= [0, B \hat{z}, -B \hat{y}]$ $= [0, B \hat{z}, -B \hat{y}]$ $= [0, B \hat{z}, 0] = [0, B \hat{z}, 0] = [0, B \hat{z}, 0]$

Equation of motion,
Newton's second law:

Define the "cyclotron ,
$$\omega = \frac{QB}{m}$$
 frequency":
$$\ddot{y} = \omega \dot{z}, \quad \ddot{z} = \omega \left(\frac{E}{R} - \dot{y} \right)$$

Take time derivative of the first equation and substitute into the second equation

Curse Code: BSCP2003

Course Name: Electricity and Magnetism

$$\dot{y} = \omega \dot{z} \qquad \ddot{z} = \omega \left(\frac{E}{B} - \dot{y}\right)$$

$$\dot{y}' = \omega \dot{z}' = \omega^2 \left(\frac{E}{B} - \dot{y}\right)$$

$$\dot{y}'' + \omega^2 \dot{y} = \omega^2 \frac{E}{B}$$

$$\dot{y} = D_1 \sin \omega t + D_2 \cos \omega t + \frac{E}{B}$$

$$y = C_1 \cos \omega t + C_2 \sin \omega t + \frac{E}{B}t + C_3$$

$$\omega \dot{z} = \dot{y}' = -C_1 \omega^2 \cos \omega t - C_2 \omega^2 \sin \omega t$$

$$\cot \phi \dot{z} = -C_1 \sin \omega t + C_2 \cos \omega t + C_4$$

$$z = -C_1 \sin \omega t + C_2 \cos \omega t + C_4$$

Curse Code: BSCP2003

Course Name: Electricity and Magnetism

Initial conditions

$$\frac{\dot{y}(0)=0}{\dot{z}(0)=0}$$
 $\frac{\dot{y}(0)=0}{\dot{z}(0)=0}$
 $\frac{\dot{y}(0)=0}{\dot{z}(0)=0}$
 $\frac{\dot{y}(0)=0}{\dot{z}(0)=0}$
 $\frac{\dot{y}(0)=0}{\dot{z}(0)=0}$

$$y(0)=0 = C_1 \cos 0 + C_2 \sin 0 + \frac{E}{B} + C_3$$

$$Z(0)=0 = C_2 \cos 0 - C_1 \sin 0 + C_4$$

$$C_1 + C_3 = 0$$

$$C_2 + C_4 = 0$$

$$\dot{y}(0) = 0 = -C_1 \omega \sin 0 + C_2 \omega \cos 0 + \frac{E}{B} \longrightarrow C_2 = \frac{-E}{\omega B} = -C_4$$

$$\dot{Z}(0) = 0 = -C_2 \omega \sin 0 - C_1 \omega \cos 0 \longrightarrow C_1 = 0$$

$$C_3 = 0$$

$$R = \frac{E}{\omega B} \sin \omega t + \frac{E}{B} t$$

$$Z = \frac{E}{\omega B} \cos \omega t + \frac{E}{\omega B}$$

Curse Code: BSCP2003

Course Name: Electricity and Magnetism

$$y(t) = R(ut - sin\omega t)$$

$$z(t) = R(1 - \omega\omega t)$$

$$R = \frac{E}{\omega R}$$

$$(y - R\omega t)^{2} = R^{2} sin^{2}\omega t$$

$$(z - R)^{2} = R^{2} c\omega^{2}\omega^{2} + \Phi$$

$$(y - R\omega t)^{2} + (z - R)^{2} = R^{2}$$
This is the equation of a circle with a moving center

Curse Code: BSCP2003 Course Name: Electricity and Magnetism

No work is done by magnetic forces

$$\frac{Q}{dl = v dt}$$

$$\frac{dW_{mag}}{dW_{mag}} = \frac{\overline{F}_{mag}}{F_{mag}} \cdot \frac{d\overline{R}}{dR}$$

$$= Q(\overline{V} \times \overline{R}) \cdot \overline{V} dt$$

Curse Code: BSCP2003 Course Name: Electricity and Magnetism

References:

- •Griffiths, D. J. (1999). Introduction to electrodynamics. Upper Saddle River, N.J: Prentice Hall.
- •Concepts of Physics Part-2, Bharati Bhawan Publishers & Distributors, 1992, ISBN
- •Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education