
School of Computing Science and Engineering

Lecture Notes

on

Quick Sort

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Sorting

• sorting is an algorithm that arranges the element of a list in a
certain order (either ascending or descending)

• sometimes, sorting significantly reduces the problem complexity.
• These algorithms are very much used in computer algorithms,

database algorithms and many more.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Classification of sorting algorithms

it can be done via:
1 By number of comparisions
2 By number of swaps
3 By memory usage
4 By recursion
5 By stability

other classification
• internal sort
• external sort

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Quick Sort

• its a based on divide and conquer approach.
• In quick-sort, the division into two sub-arrays is made so that

the sorted sub-array do not need to be merged later.
• The sorting is done by picking some element of an input array

(pivot elemet) and then reorder other elements so that all the
elements appearing before pivot in a[1 : n] are less than or
equal to pivot

• & all elemets appearing after pivot are greater than or equal to
pivot.

• This process is referred as partitioning.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Quick-sort(a[],p,q)
{

if(p==q)
return(a);
else
{
pivot=partition(a,p,q);
Quick-sort(a,p,pivot-1);
Quick-sort(a,pivot+1,q);
}

return(a);
}

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

partition(a,m,p)
{

v=a[m];
i=m;
j=p;
repeat
{

Repeat
i=i+1;
until(a[i]>=v);

Repeat
j=j-1;
until(a[j]<=v);

if(i<j)then
interchange(a[i],a[j]);

}
until(i>=j)

interchange(a[j],a[m]);
return j;

}

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Running example

65 70 75 80 85 60 55 50 45

65 70i 75 80 85 60 55 50 45j

65 45 75i 80 85 60 55 50j 70

65 45 50 80i 85 60 55j 75 70

65 45 50 55 85i 60j 80 75 70

65 45 50 55 60j 85i 80 75 70

60 45 50 55 65 85 80 75 70

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Analysis
Best-case:
each partition splits array in halves & gives recurrence relation as:
T (n) = 2T (n2 ) + n
we can easily apply master’s method here.
T (n) = O(nlog2n)
Worst-case:
each partition gives unbalances splits & we get recurrence relation as:
T (n) = T (n− 1) + n
after solving it by substitutionmethos
T (n) = O(n2)
avg-case:
we don’t know where the split happens & recurrence relation for avg.
case is not defined. it is depend on partition.
T (n) = O(nlog2n)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

practice questions

What would be the output after calling quick-sort first time?

1. 54 26 93 17 77 31 44 55 20

2. 40 70 20 30 10 60 50

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Q & A?
Queries are welcome on slack channel
for discussion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar


	Analysis of an Algorithm

