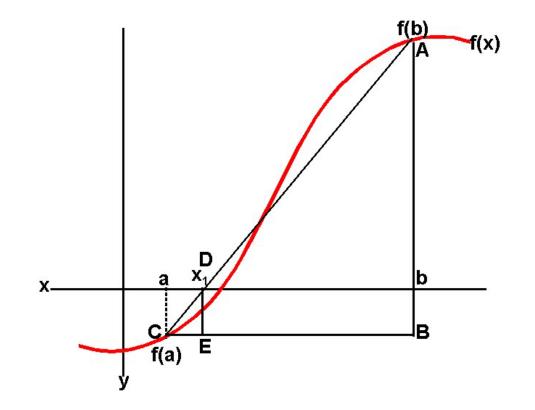
Course Code : MATH3010

Course Name: Numerical Methods


Lecture-03: Regula–Falsi Method

The **Regula–Falsi Method** is a numerical method for estimating the <u>roots of a polynomial</u> f(x). A value x replaces the midpoint in the <u>Bisection Method</u> and serves as the new approximation of a root of f(x). The objective is to make convergence faster. Assume that f(x) is continuous.

Algorithm for the Regula–Falsi Method:

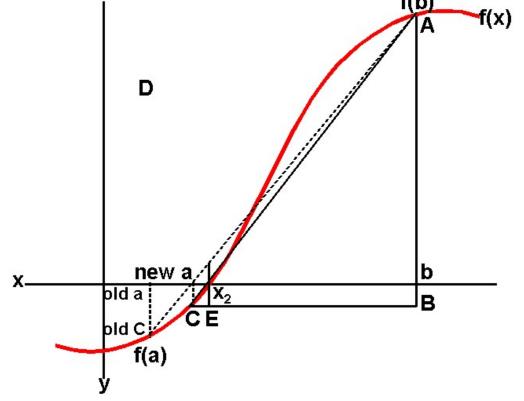
Given a continuous function f(x)

- Find points **a** and **b** such that $\mathbf{a} < \mathbf{b}$ and $\mathbf{f}(\mathbf{a}) * \mathbf{f}(\mathbf{b}) < \mathbf{0}$.
- Take the interval [a, b] and determine the next value of x_1 .
- If $f(x_1) = 0$ then x_1 is an exact root, else if $f(x_1) * f(b) < 0$ then let $a = x_1$, else if $f(a) * f(x_1) < 0$ then let $b = x_1$.
- Repeat steps 2 & 3 until $f(x_i) = 0$ or $|f(x_i)| \le DOA$,
- where **DOA** stands for **degree of accuracy**.

Course Code : MATH3010

Course Name: Numerical Methods

Continued...


Observe that EC/BC=E/AB [x-a]/[b-a]=[f(x)-f(a)]/[f(b)-f(a)]x-a=[b-a][0-f(a)]/[f(b)-f(a)]x=a+[b-a][-f(a)]/[f(b)-f(a)]x=a-[b-a] f(a)/[f(b)-f(a)]Note that the line segment drawn from f(a) to f(b) is called the interpolation line.

Course Code : MATH3010

Course Name: Numerical Methods

Continued...

Graphically, if the root is in [a, x_i], then the next interpolation line is drawn between (a, f(a)) and (x_i , f(x_i)); otherwise, if the root is in [x_i , b], then the next interpolation line is drawn between (x_i , f(x_i)) and (b, f(b)).

Course Code : MATH3010

Course Name: Numerical Methods

EXAMPLE 1: Consider $f(x) = x^3 + 3x - 5$, where [a = 1, b = 2] and DOA = 0.001.

i	a	x	b	f(a)	f(x)	f(b)
1	1	1.1	2	-1	- 0.369	9
2	1.1	1.13544668587896	2	- 0.369	- 0.129797592130931	9
3	1.13544668587896	1.14773797024856	2	- 0.129797592130931	- 0.0448680509813286	9
4	1.14773797024856	1.15196570867269	2	- 0.0448680509813286	- 0.0154155863909917	9
5	1.15196570867269	1.15341577448	2	- 0.0154155863909917	- 0.0052852985292482	9
6	1.15341577448	1.15391264384212	2	- 0.0052852985292482	- 0.00181077883487646	9
7	1.15391264384212	1.15408284038531	2	-0.00181077883487646	-0.000620231485743084	9

Hence root will be x=1.5408284038531

Name of the Faculty: Dr. Sushant Shekhar

Course Code : MATH3010

Course Name: Numerical Methods

Example 2:Find a root of an equation $f(x)=2x^3-2x-5$ using False Position method (regula falsi method)

n	a	f(a)	b	f(b)	x	f(x)
1	1	-5	2	7	1.41667	-2.14699
2	1.41667	-2.14699	2	7	1.55359	-0.60759
3	1.55359	-0.60759	2	7	1.58924	-0.15063
4	1.58924	-0.15063	2	7	1.59789	-0.0361
5	1.59789	-0.0361	2	7	1.59996	-0.00858
6	1.59996	-0.00858	2	7	1.60045	-0.00203
7	1.60045	-0.00203	2	7	1.60056	-0.00048

Hence root x=1.60056

Name of the Faculty: Dr. Sushant Shekhar

Course Code : MATH3010

Course Name: Numerical Methods

References

- <u>http://www2.lv.psu.edu/ojj/courses/cmpsc-201/numerical/regula.html</u>
- Chapra, Steven C. Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, 2017.
- Class Notes from ENGRD 3200: Engineering Computation taught by Professor Peter Diamessis at Cornell University

GALGOTIAS UNIVERSITY