Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Thermodynamics

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

TOPICS COVERED

- Free Energy Functions: Gibb's and Helmholz Energy
 - Free Energy
 - Helmholz Energy
 - Gibb's Free Energy
- The effect of temperature and pressure on Free energy
- Spontaneity criteria of ΔG

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Free Energy Functions: Gibb's and Helmholz Energy

Free Energy

- A measure of a system's ability to do work.
- Formula of free energy is q-TS at constant pressure and formula of Helmholz Energy is q-TS at constant volume, where q is quantity of heat absorbed by a system, TS is unavailable heat for doing useful work.

Helmholz Energy (A)

- It is Extensive property
- It is a state function
- Formula of Helmholz Energy is E-TS -----(1)

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Helmholz Energy

$$\mathbf{A}_1 = \mathbf{E}_1 - \mathbf{T}_1 \mathbf{S}_1$$

$$\mathbf{A}_2 = \mathbf{E}_2 - \mathbf{T}_2 \mathbf{S}_2$$

Substrate whole equation at constant T

$$\Delta A = \Delta E - T \Delta S$$

But by the Ist law of thermodynamics

$$\Delta E = q + w$$

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

$$w_{rev} = \Delta E - q_{rev}$$

$$-w_{max} = \Delta E - q_{rev}$$
(3) (when work is done by the system)

Comparing eq 2 to 3

$$\Delta A = -w_{\text{max}}$$
 or $-\Delta A = w_{\text{max}}$

• Decrease in work function A (i.e. $-\Delta A$) gives max. work that can be done by the system during the giving change.

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Gibb's Free Energy

- It is Extensive property
- It is a state function
- Formula of Gibb's Free Energy is G= H-TS -----(4)

$$G_1 = H_1 - T_1 S_1$$

$$G_2 = H_2 - T_2 S_2$$

at constant T

$$\Delta G = \Delta H - T \Delta S \dots (5)$$

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

$$\Delta G = \Delta E + P \Delta V - T \Delta S$$
 $(\Delta H = \Delta E + P \Delta V)$

We know that

$$\Delta E - T \Delta S = \Delta A \dots (6)$$

Put the values

$$\Delta G = \Delta A + P \Delta V$$

Since
$$\Delta A = -w_{\text{max}}$$

So,
$$\Delta G = -w_{\text{max}} + P \Delta V$$

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

$$-\Delta G = w_{max} - P \Delta V \text{ (Net work)}$$

- Negative sign of ΔG indicates the spontaneous process.
- Negative sign of ΔG indicates the non spontaneous process.
- If the value of ΔG is zero then the condition is in equilibrium

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

The effect of temperature and pressure on Free energy

Considering the equation (4)

$$G = H - TS$$

And also
$$H = U + PV$$
(7)

Substituting equation (7) in equation (2) we get:

$$G = U + PV - TS \dots (8)$$

Differentiating the above equation

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

$$dG = dU + PdV + VdP - TdS - SdT....(9)$$

For infinitesimal small change, the first law equation can be written as:

$$dq = dU - dw \dots (10)$$

As - dw = PdV substituting this in equation (10)

$$dq = dU + PdV \dots (11)$$

Making the use of equation

$$dS = dq/T$$

or

$$TdS = dq = dU + PdV \dots (12)$$

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Combining equation (9) and (12)

$$dG = VdP - SdT \dots (13)$$

The above equation gives the change in free energy on variation of temperature and pressure. If pressure of the system kept constant then dP = 0, thus equation (13) becomes:

$$dG = -SdT$$
(14)

Rearranging the above equation:

$$(\delta G / \delta T)_P = -S \dots (15)$$

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Similarly if temperature of the system is kept constant then, dT = 0, Thus equation (13) becomes:

$$dG = VdP$$

$$(\delta G / \delta P)_T = V$$

Spontaneity criteria of ΔG

$$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surrounding}}$$

We know that

$$\Delta G = \Delta H - T \Delta S$$

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

$$\Delta S_{\text{total}} = \Delta S + \frac{q_{\text{surrounding}}}{T_{\text{surrounding}}}$$

$$q_{surrounding} = -q_{system} = -\Delta H_{system}$$

$$\Delta S_{\text{total}} = \Delta S - \frac{\Delta H}{T}$$

Multiply whole equation with T

$$T\Delta S_{total} = T\Delta S - \Delta H$$

$$T\Delta S_{total} = -\Delta G$$
 or $\Delta G = -T\Delta S_{total}$

So, for any spontaneous system the value of ΔG is negative and for any non spontaneous system the value of ΔG is positive.

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

References

- 1. Atkins, P. W. & Paula, J. de *Atkin's Physical Chemistry* 10th Ed., Oxford University Press (2014).
- 2. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 3. Engel, T. & Reid, P. *Physical Chemistry* 3rd Ed. Pearson (2013).
- 4. Levine, I.N. *Physical Chemistry*6th Ed., Tata Mc Graw Hill (2010)
- 5. Puri Sharma Pathania Physical Chemistry Book.
- 6. E-content form Pathshala

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

