
© 2005 Pearson Education

Unit-2
Geometric

Transformations
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Geometric Transformations

• Basic transformations:
– Translation
– Scaling
– Rotation

• Purposes:
– To move the position of objects
– To alter the shape / size of objects
– To change the orientation of objects
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Basic two-dimensional geometric
transformations

• Two-Dimensional translation
– One of rigid-body transformation, which move objects without

deformation
– Translate an object by Adding offsets to coordinates to generate

new coordinates positions
– Set tx,ty be the translation distance, we have

– In matrix format, where T is the translation vector
xtx'x  yty'y 
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– We could translate an object by applying the equation to
every point of an object.

• Because each line in an object is made up of an
infinite set of points, however, this process would
take an infinitely long time.

• Fortunately we can translate all the points on a line
by translating only the line’s endpoints and drawing
a new line between the endpoints.

• This figure translates the “house” by (3, -4)

Basic Two-dimensional geometric
transformations
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Translation Example
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Basic two-dimensional geometric transformations

• Two-Dimensional rotation
– Rotation axis and angle are specified for rotation
– Convert coordinates into polar form for calculation

– Example, to rotation an object with angle a
• The new position coordinates

• In matrix format

• Rotation about a point (xr, yr)
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– This figure shows the rotation of the house by 45
degrees.

• Positive angles are measured counterclockwise
(from x towards y)

• For negative angles, you can use the identities:
– cos(- ) = cos( ) and sin(- )=-sin( )

Basic two-dimensional geometric transformations
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Rotation Example

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(3, 1) (5, 1)

(4, 3)



© 2005 Pearson Education

Basic two-dimensional geometric
transformations

• Two-Dimensional scaling
– To alter the size of an object by multiplying the coordinates

with scaling factor sx and sy

– In matrix format, where S is a 2by2 scaling matrix

– Choosing a fix point (xf, yf) as its centroid to perform scaling

xsx'x  ysyy 
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– In this figure, the house is scaled by 1/2 in x and 1/4 in y
• Notice that the scaling is about the origin:

– The house is smaller and closer to the origin

Basic two-dimensional geometric
transformations
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Scaling

Note: House shifts position relative to origin
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– If the scale factor had been greater than 1, it would be
larger and farther away.

WATCH OUT: Objects grow and move!
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Scaling Example
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Homogeneous Coordinates

• A point (x, y) can be re-written in homogeneous
coordinates as (xh, yh, h)

• The homogeneous parameter h is a non-
zero value such that:

• We can then write any point (x, y) as (hx, hy, h)

• We can conveniently choose h = 1 so that
(x, y) becomes (x, y, 1)
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Why Homogeneous Coordinates?

• Mathematicians commonly use homogeneous
coordinates as they allow scaling factors to be
removed from equations
• We will see in a moment that all of the
transformations we discussed previously can be
represented as 3*3 matrices
• Using homogeneous coordinates allows us use
matrix multiplication to calculate transformations –
extremely efficient!
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Homogenous Coordinates

• Combine the geometric transformation into a single matrix with 3by3 matrices
• Expand each 2D coordinate to 3D coordinate with homogenous parameter
• Two-Dimensional  translation matrix

• Two-Dimensional  rotation matrix

• Two-Dimensional  scaling  matrix
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Inverse transformations

• Inverse translation matrix

• Two-Dimensional  translation matrix

• Two-Dimensional  translation matrix
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Basic 2D Transformations
• Basic 2D transformations as 3x3 Matrices
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Geometric transformations in three-
dimensional space

• Extend from two-dimensional transformation by including
considerations for the z coordinates

• Translation and scaling are similar to two-dimension,
include the three Cartesian coordinates

• Rotation method is less straight forward
• Representation

– Four-element column vector for homogenous coordinates
– Geometric transformation described 4by4 matrix
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Geometric transformations in three-
dimensional space

• Three-dimensional translation
– A point P (x,y,z) in three-dimensional space translate to new

location with the translation distance T (tx, ty, tz)

– In matrix format
xtx'x  yty'y 



























































1
z
y
x

1000
t100
t010
t001

1
'z
'y
'x

z

y

x

PT'P 

ztz'z 



© 2005 Pearson Education

Geometric transformations in three-dimensional
space

• Three-dimensional scaling
– Relative to the coordinate origin, just include the parameter

for z coordinate scaling in the transformation matrix

– Relative to a fixed point (xf, yf zf)
• Perform a translate-scaling-translate composite

transformation



























1000
z)s1(s00
y)s1(0s0
x)s1(00s

)z,y,x(T)s,s,s(S)z,y,x(t

fzz

fyy

fxx

fffzyxfff

PS'P 


























































1
z
y
x

1000
0s00
00s0
000s

1
'z
'y
'x

z

y

x



© 2005 Pearson Education

Geometric transformations in three-
dimensional space

• Three-dimensional rotation definition
– Assume looking in the negative direction along the axis
– Positive angle rotation produce counterclockwise

rotations
about a coordinate axis
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Geometric transformations in three-
dimensional space

• Three-dimensional coordinate-axis rotation
– Z-axis rotation equations

– Transformation equations for rotation about the other two
coordinate axes can be obtained by a cyclic permutation

x  y  z  x
– X-axis rotation equations
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Geometric transformations in three-
dimensional space

• Three-dimensional coordinate-axis rotation
– Y-axis rotation equations

– General Three-dimensional rotations
• Translate object so that the rotation axis coincides with the parallel

coordinate axis
• Perform the specified rotation about that axis
• Translate object back to the original position

y'y
cosxsinz'x
sinxcosz'z








T)(RT)(R
PT)(RT'P

x
1

x
1












 





















1000

0cos0sin

0010

0sin0cos





yy RR



© 2005 Pearson Education

• Inverse of a rotation matrix
     RR 1

     sinsin,coscos 

   

   
   












































1000

0100

00cossin

00sincos

1000

0100

00cossin

00sincos

1 





 zz RR

TRR 1 : orthogonal matrix
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Concatenation of Transformations

• Concatenating
– affine transformations by multiplying together
– sequences of the basic transformations
 define an arbitrary transformation directly

– ex) three successive transformations

    CBApApBCq 

A B Cp q

CBAM 

Mpq  Mp q

CBA

p1 = Ap
p2 = Bp1
q   = Cp2

q = CBp1
q = CBAp

p1 p2
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Matrix Concatenation Properties

• Associative properties

• Transformation is not commutative (CopyCD!)
– Order of transformation may affect transformation

position

321321321 M)MM()MM(MMMM 
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Two-dimensional composite
transformation

• Composite transformation
– A sequence of transformations
– Calculate composite transformation matrix rather than

applying individual transformations

• Composite two-dimensional translations
– Apply two successive translations, T1 and T2

– Composite transformation matrix in coordinate form
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Two-dimensional composite
transformation

• Composite two-dimensional rotations
– Two successive rotations, R1 and R2 into a point P

– Multiply two rotation matrices to get composite
transformation matrix

• Composite two-dimensional scaling
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Two-dimensional composite
transformation

• General two-dimensional Pivot-point rotation
– Graphics package provide only origin rotation
– Perform a translate-rotate-translate sequence

• Translate the object to move pivot-point position to
origin

• Rotate the object
• Translate the object back to the original position

– Composite matrix in coordinates form
),y,x(R)y,x(T)(R)y,x(T rrrrrr  
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Two-dimensional composite
transformation

• Example of pivot-point rotation
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Pivot-Point Rotation
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Two-dimensional composite
transformation

• General two-dimensional Fixed-point scaling
– Perform a translate-scaling-translate sequence

• Translate the object to move fixed-point position to
origin

• Scale the object wrt. the coordinate origin
• Use inverse of translation in step 1 to return the object

back to the original position
– Composite matrix in coordinates form

)s,s,y,x(S)y,x(T)s,s(S)y,x(T yxffffyxff 
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Two-dimensional composite
transformation

• Example of fixed-point scaling
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GeNeral Fixed-Point Scaling
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Two-dimensional composite
transformation

• General two-dimensional scaling directions
– Perform a rotate-scaling-rotate sequence
– Composite matrix in coordinates form
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General Scaling Directions

• Converted to a parallelogram
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General Rotation
• Three successive rotations about the three axes

rotation of a cube about the z axis rotation of a cube about the y axis

rotation of a cube about the x axis

?
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General Rotation
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Instance Transformation

• Instance of an object’s
prototype
– occurrence of that object in the

scene
• Instance transformation

– applying an affine
transformation to the
prototype to obtain desired
size, orientation, and location

?

instance transformation
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Instance Transformation

TRSM 
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