
Unit II : ASSOCIATION RULES 

Basic Concepts - Market Basket Analysis - Frequent 
Itemsets, Closed Itemsets and Association Rules - Frequent 
Itemset Mining Methods – Apriori Algorithm – Generating 
Association Rules - Frequent pattern growth - Mining 
Various Kinds of Association Rules 
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Frequent Patterns 

 Frequent pattern: a pattern (a set of items, 
subsequences, substructures, etc.) that occurs frequently 
in a data set 

 itemset: A set of one or more items 

 k-itemset: X = {x1, …, xk} 

 Mining algorithms 

 Apriori 

 FP-growth 

Tid Items bought 

10 Beer, Nuts, Diaper 

20 Beer, Coffee, Diaper 

30 Beer, Diaper, Eggs 

40 Nuts, Eggs, Milk 

50 Nuts, Coffee, Diaper, Eggs, Beer 
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Support & Confidence 
 Support 

 (absolute) support, or, support count of X: Frequency or 
occurrence of an itemset X 

 (relative) support, s, is the fraction of transactions that 
contains X (i.e., the probability that a transaction contains X) 

 An itemset X is frequent if X’s support is no less than a minsup 
threshold 

 Confidence (association rule: XY ) 

 sup(XY)/sup(x)  (conditional prob.: Pr(Y|X) = Pr(X^Y)/Pr(X) ) 

 confidence, c, conditional probability that a transaction 
having X also contains Y 

 Find all the rules XY with minimum support and confidence 

 sup(XY) ≥ minsup 

 sup(XY)/sup(X) ≥ minconf 
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Algorithms to find frequent pattern 
 Apriori: uses a generate-and-test approach – 

generates candidate itemsets and tests if they 
are frequent 
 Generation of candidate itemsets is expensive (in both 

space and time) 
 Support counting is expensive 

 Subset checking (computationally expensive) 
 Multiple Database scans (I/O) 
 

 FP-Growth: allows frequent itemset discovery 
without candidate generation. Two step: 
 1.Build a compact data structure called the FP-tree 

 2 passes over the database 

 2.extracts frequent itemsets directly from the FP-tree 
 Traverse through FP-tree 
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Pattern-Growth Approach: Mining Frequent Patterns 

Without Candidate Generation 
 The FP-Growth Approach 

 Depth-first search (Apriori: Breadth-first search) 

 Avoid explicit candidate generation 

 FP-tree construction: 

• Scan DB once, find frequent 
1-itemset (single item 
pattern) 

• Sort frequent items in 
frequency descending order, 
f-list 

• Scan DB again, construct FP-
tree 

FP-Growth approach: 

• For each frequent item, construct its 
conditional pattern-base, and then 
its conditional FP-tree 

• Repeat the process on each newly 
created conditional FP-tree  

• Until the resulting FP-tree is empty, 
or it contains only one path—single 
path will generate all the 
combinations of its sub-paths, each 
of which is a frequent pattern 
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Step 1: FP-Tree Construction 
FP-Tree is constructed using 2 passes over the 

data-set: 

Pass 1: 
– Scan data and find support for each item. 

– Discard infrequent items. 

– Sort frequent items in decreasing order based on 
their support. 

 Use this order when building the FP-Tree, so 
common prefixes can be shared. 
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Step 1: FP-Tree Construction 

Pass 2: 
Nodes correspond to items and have a counter 
1. FP-Growth reads 1 transaction at a time and maps it to a 

path 
2. Fixed order is used, so paths can overlap when 

transactions share items (when they have the same prfix ). 
–  In this case, counters are incremented 

3.  Pointers are maintained between nodes containing the 
same item, creating singly linked lists (dotted lines) 
– The more paths that overlap, the higher the compression. FP-

tree may fit in memory. 

4. Frequent itemsets extracted from the FP-Tree. 
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Step 1: FP-Tree Construction (Example) 
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FP-Tree Size 

 The size of an FP-tree is typically smaller than the size of the 

uncompressed data because many transactions often share a few 

items in common  

 

 Best case scenario:  All transactions have the same set of 

items, and the FP-tree contains only a single branch of nodes.  

 Worst case scenario: Every transaction has a unique set of 

items. As none of the transactions have any items in common, 

the size of the FP-tree is effectively the same as the size of the 

original data. 

 

 The size of an FP-tree also depends on how the items are ordered 
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Mining Frequent Patterns Without Candidate Generation 

 Grow long patterns from short ones using local 

frequent items 

 “abc” is a frequent pattern 

 Get all transactions having “abc”: DB|abc 

 “d” is a local frequent item in DB|abc  abcd is 

a frequent pattern 
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Construct FP-tree from a Transaction Database 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 

min_support = 3 

TID  Items bought   (ordered) frequent items 
100  {f, a, c, d, g, i, m, p} {f, c, a, m, p} 
200  {a, b, c, f, l, m, o}  {f, c, a, b, m} 
300   {b, f, h, j, o, w}  {f, b} 
400   {b, c, k, s, p}  {c, b, p} 
500   {a, f, c, e, l, p, m, n} {f, c, a, m, p} 

1. Scan DB once, find frequent 
1-itemset (single item 
pattern) 

2. Sort frequent items in 
frequency descending order, 
f-list 

3. Scan DB again, construct 
FP-tree 

F-list = f-c-a-b-m-p 
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Benefits of the FP-tree Structure 

 Completeness  

 Preserve complete information for frequent pattern 
mining 

 Never break a long pattern of any transaction 

 Compactness 

 Reduce irrelevant info—infrequent items are gone 

 Items in frequency descending order: the more 
frequently occurring, the more likely to be shared 

 Never be larger than the original database (not count 
node-links and the count field) 

 For Connect-4 DB, compression ratio could be over 100 
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Partition Patterns and Databases 

 Frequent patterns can be partitioned into subsets 
according to f-list 

 F-list=f-c-a-b-m-p 

 Patterns containing p 

 Patterns having m but no p 

 … 

 Patterns having c but no a nor b, m, p 

 Pattern f 

 Completeness and non-redundency 
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Find Patterns Having P From P-conditional Database 

 Starting at the frequent item header table in the FP-tree 
 Traverse the FP-tree by following the link of each frequent item p 
 Accumulate all of transformed prefix paths of item p to form p’s 

conditional pattern base 

Conditional pattern bases 

item cond. pattern base 

c f:3 

a fc:3 

b fca:1, f:1, c:1 

m fca:2, fcab:1 

p fcam:2, cb:1 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 
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From Conditional Pattern-bases to Conditional FP-trees  

 For each pattern-base 

 Accumulate the count for each item in the base 

 Construct the FP-tree for the frequent items of the 
pattern base 

m-conditional pattern base: 

fca:2, fcab:1 

{} 

f:3 

c:3 

a:3 
m-conditional FP-tree 

All frequent 
patterns relate to m 

m,  

fm, cm, am,  

fcm, fam, cam,  

fcam 

 
 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 
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Recursion: Mining Each Conditional FP-tree 

{} 

f:3 

c:3 

a:3 
m-conditional FP-tree 

Cond. pattern base of “am”: (fc:3) 

{} 

f:3 

c:3 

am-conditional FP-tree 

Cond. pattern base of “cm”: (f:3) 
{} 

f:3 

cm-conditional FP-tree 

Cond. pattern base of “cam”: (f:3) 

{} 

f:3 

cam-conditional FP-tree 
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A Special Case: Single Prefix Path in FP-tree 

 Suppose a (conditional) FP-tree T has a shared 

single prefix-path P 

 Mining can be decomposed into two parts 

 Reduction of the single prefix path into one node 

 Concatenation of the mining results of the two 

parts 

 

a2:n2 

a3:n3 

a1:n1 

{} 

b1:m1 
C1:k1 

C2:k2 C3:k3 

b1:m1 
C1:k1 

C2:k2 C3:k3 

r1 

+ 
a2:n2 

a3:n3 

a1:n1 

{} 

r1 = 
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Mining Frequent Patterns With FP-trees 

 Idea: Frequent pattern growth 

 Recursively grow frequent patterns by pattern and 
database partition 

 Method  

 For each frequent item, construct its conditional 
pattern-base, and then its conditional FP-tree 

 Repeat the process on each newly created conditional 
FP-tree  

 Until the resulting FP-tree is empty, or it contains only 
one path—single path will generate all the 
combinations of its sub-paths, each of which is a 
frequent pattern 
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Scaling FP-growth by DB Projection 

 FP-tree cannot fit in memory?—DB projection 

 First partition a database into a set of projected DBs 

 Then construct and mine FP-tree for each projected DB 

 Parallel projection vs. Partition projection techniques 

 Parallel projection is space costly 
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Partition-based Projection 

 Parallel projection needs a lot 

of disk space  

 Partition projection saves it 

Tran. DB  
fcamp 
fcabm 
fb 
cbp 
fcamp 

p-proj DB  
fcam 
cb 
fcam 

m-proj DB  
fcab 
fca 
fca 

b-proj DB  
f 
cb 
… 

a-proj DB 
fc 
… 

c-proj DB 
f 
… 

f-proj DB  
… 

am-proj DB  
fc 
fc 
fc 

cm-proj DB  
f 
f 
f 

… 
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FP-Growth vs. Apriori: Scalability With the Support Threshold 
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FP-Growth vs. Tree-Projection: Scalability with the Support Threshold 
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Why Is FP-Growth the Winner? 

 Divide-and-conquer:  

 decompose both the mining task and DB according to 

the frequent patterns obtained so far 

 leads to focused search of smaller databases 

 Other factors 

 no candidate generation, no candidate test 

 compressed database: FP-tree structure 

 no repeated scan of entire database  

 basic ops—counting local freq items and building sub 

FP-tree, no pattern search and matching 
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Discussion 

Advantages of FP-Growth 

– only 2 passes over data-set 

– “compresses” data-set 

– no candidate generation 

– much faster than Apriori 

Disadvantages of FP-Growth 

– FP-Tree may not fit in memory!! 

– FP-Tree is expensive to build 
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Visualization of Association Rules: Plane Graph 

   
School of Computing Science and Engineering 
Course Code : BSCS3530 Course Name:  Data Mining and Data Warehousing                          
 
 

Program Name: B.Sc., Computer Science                   Program Code: BSCS 



Visualization of Association Rules: Rule Graph 
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Visualization of Association Rules (SGI/MineSet 3.0) 
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