
Unit II : ASSOCIATION RULES

Basic Concepts - Market Basket Analysis - Frequent
Itemsets, Closed Itemsets and Association Rules - Frequent
Itemset Mining Methods – Apriori Algorithm – Generating
Association Rules - Frequent pattern growth - Mining
Various Kinds of Association Rules

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc.,Computer Science Program Code: BSCS

Frequent Patterns

 Frequent pattern: a pattern (a set of items,
subsequences, substructures, etc.) that occurs frequently
in a data set

 itemset: A set of one or more items

 k-itemset: X = {x1, …, xk}

 Mining algorithms

 Apriori

 FP-growth

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Beer

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Support & Confidence
 Support

 (absolute) support, or, support count of X: Frequency or
occurrence of an itemset X

 (relative) support, s, is the fraction of transactions that
contains X (i.e., the probability that a transaction contains X)

 An itemset X is frequent if X’s support is no less than a minsup
threshold

 Confidence (association rule: XY)

 sup(XY)/sup(x) (conditional prob.: Pr(Y|X) = Pr(X^Y)/Pr(X))

 confidence, c, conditional probability that a transaction
having X also contains Y

 Find all the rules XY with minimum support and confidence

 sup(XY) ≥ minsup

 sup(XY)/sup(X) ≥ minconf

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Algorithms to find frequent pattern
 Apriori: uses a generate-and-test approach –

generates candidate itemsets and tests if they
are frequent
 Generation of candidate itemsets is expensive (in both

space and time)
 Support counting is expensive

 Subset checking (computationally expensive)
 Multiple Database scans (I/O)

 FP-Growth: allows frequent itemset discovery
without candidate generation. Two step:
 1.Build a compact data structure called the FP-tree

 2 passes over the database

 2.extracts frequent itemsets directly from the FP-tree
 Traverse through FP-tree

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Pattern-Growth Approach: Mining Frequent Patterns

Without Candidate Generation
 The FP-Growth Approach

 Depth-first search (Apriori: Breadth-first search)

 Avoid explicit candidate generation

 FP-tree construction:

• Scan DB once, find frequent
1-itemset (single item
pattern)

• Sort frequent items in
frequency descending order,
f-list

• Scan DB again, construct FP-
tree

FP-Growth approach:

• For each frequent item, construct its
conditional pattern-base, and then
its conditional FP-tree

• Repeat the process on each newly
created conditional FP-tree

• Until the resulting FP-tree is empty,
or it contains only one path—single
path will generate all the
combinations of its sub-paths, each
of which is a frequent pattern

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Step 1: FP-Tree Construction
FP-Tree is constructed using 2 passes over the

data-set:

Pass 1:
– Scan data and find support for each item.

– Discard infrequent items.

– Sort frequent items in decreasing order based on
their support.

 Use this order when building the FP-Tree, so
common prefixes can be shared.

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Step 1: FP-Tree Construction

Pass 2:
Nodes correspond to items and have a counter
1. FP-Growth reads 1 transaction at a time and maps it to a

path
2. Fixed order is used, so paths can overlap when

transactions share items (when they have the same prfix).
– In this case, counters are incremented

3. Pointers are maintained between nodes containing the
same item, creating singly linked lists (dotted lines)
– The more paths that overlap, the higher the compression. FP-

tree may fit in memory.

4. Frequent itemsets extracted from the FP-Tree.

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Step 1: FP-Tree Construction (Example)

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

FP-Tree Size

 The size of an FP-tree is typically smaller than the size of the

uncompressed data because many transactions often share a few

items in common

 Best case scenario: All transactions have the same set of

items, and the FP-tree contains only a single branch of nodes.

 Worst case scenario: Every transaction has a unique set of

items. As none of the transactions have any items in common,

the size of the FP-tree is effectively the same as the size of the

original data.

 The size of an FP-tree also depends on how the items are ordered

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Mining Frequent Patterns Without Candidate Generation

 Grow long patterns from short ones using local

frequent items

 “abc” is a frequent pattern

 Get all transactions having “abc”: DB|abc

 “d” is a local frequent item in DB|abc abcd is

a frequent pattern

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Construct FP-tree from a Transaction Database

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Sort frequent items in
frequency descending order,
f-list

3. Scan DB again, construct
FP-tree

F-list = f-c-a-b-m-p

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Benefits of the FP-tree Structure

 Completeness

 Preserve complete information for frequent pattern
mining

 Never break a long pattern of any transaction

 Compactness

 Reduce irrelevant info—infrequent items are gone

 Items in frequency descending order: the more
frequently occurring, the more likely to be shared

 Never be larger than the original database (not count
node-links and the count field)

 For Connect-4 DB, compression ratio could be over 100

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Partition Patterns and Databases

 Frequent patterns can be partitioned into subsets
according to f-list

 F-list=f-c-a-b-m-p

 Patterns containing p

 Patterns having m but no p

 …

 Patterns having c but no a nor b, m, p

 Pattern f

 Completeness and non-redundency

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Find Patterns Having P From P-conditional Database

 Starting at the frequent item header table in the FP-tree
 Traverse the FP-tree by following the link of each frequent item p
 Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

From Conditional Pattern-bases to Conditional FP-trees

 For each pattern-base

 Accumulate the count for each item in the base

 Construct the FP-tree for the frequent items of the
pattern base

m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate to m

m,

fm, cm, am,

fcm, fam, cam,

fcam

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table
Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Recursion: Mining Each Conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

A Special Case: Single Prefix Path in FP-tree

 Suppose a (conditional) FP-tree T has a shared

single prefix-path P

 Mining can be decomposed into two parts

 Reduction of the single prefix path into one node

 Concatenation of the mining results of the two

parts

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Mining Frequent Patterns With FP-trees

 Idea: Frequent pattern growth

 Recursively grow frequent patterns by pattern and
database partition

 Method

 For each frequent item, construct its conditional
pattern-base, and then its conditional FP-tree

 Repeat the process on each newly created conditional
FP-tree

 Until the resulting FP-tree is empty, or it contains only
one path—single path will generate all the
combinations of its sub-paths, each of which is a
frequent pattern

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Scaling FP-growth by DB Projection

 FP-tree cannot fit in memory?—DB projection

 First partition a database into a set of projected DBs

 Then construct and mine FP-tree for each projected DB

 Parallel projection vs. Partition projection techniques

 Parallel projection is space costly

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Partition-based Projection

 Parallel projection needs a lot

of disk space

 Partition projection saves it

Tran. DB
fcamp
fcabm
fb
cbp
fcamp

p-proj DB
fcam
cb
fcam

m-proj DB
fcab
fca
fca

b-proj DB
f
cb
…

a-proj DB
fc
…

c-proj DB
f
…

f-proj DB
…

am-proj DB
fc
fc
fc

cm-proj DB
f
f
f

…

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

FP-Growth vs. Apriori: Scalability With the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e

(s
e

c.
)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

FP-Growth vs. Tree-Projection: Scalability with the Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

R
u

n
ti

m
e
 (

s
e
c
.)

D2 FP-growth

D2 TreeProjection

Data set T25I20D100K

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Why Is FP-Growth the Winner?

 Divide-and-conquer:

 decompose both the mining task and DB according to

the frequent patterns obtained so far

 leads to focused search of smaller databases

 Other factors

 no candidate generation, no candidate test

 compressed database: FP-tree structure

 no repeated scan of entire database

 basic ops—counting local freq items and building sub

FP-tree, no pattern search and matching

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Discussion

Advantages of FP-Growth

– only 2 passes over data-set

– “compresses” data-set

– no candidate generation

– much faster than Apriori

Disadvantages of FP-Growth

– FP-Tree may not fit in memory!!

– FP-Tree is expensive to build

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Visualization of Association Rules: Plane Graph

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Visualization of Association Rules: Rule Graph

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

Visualization of Association Rules (SGI/MineSet 3.0)

School of Computing Science and Engineering
Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Program Name: B.Sc., Computer Science Program Code: BSCS

