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Corollaries of Archimedean properties:

Corollary 1. Let y be any positive real number and x be any real number. Then, there exists a positive
integer n (or natural number) such thatny > x.

Proof: Case 1. If y<x.
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Then, x is also positive.

Thus, x and y both are positive and y<x. Proof done by Archimedean property.
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Case 2. If O<x<y
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In this case we have x and y both are positive. But the proof of Archimedean depends on y not x.

Similar proof works.

Case3. |If x<O<y
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Proof of Archimedean property depends only ony not x.

Similar proof works.
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Corollary 2. For any real number X there exists an integer n such that n > x.

Proof: Puty=1 in Corollary 1. We will get the result.

Corollary 3. For any real number x there exists two integers mand nsuchthatn < x < m.

Proof: Forx < m we use corollary 2. ............... .(1)

If X is a real number (-1.2 is real number) then - x is also a real number (-(-1.2)=1.2 is also a real
number).

By using Corollary 2, there exists an integer “p” such that p > —x.
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Operate “-” sign both the sides, we get
—p < x if p is an integer then - p = n(assume) is also an integer.

Thus, We et T8 < Xuusesssersasansenss P

From (1) and (2)

n < x < m. Proved.

Characterization of supremum and infimum:
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Characterization of supremum and infimum:

Theorem 1. Let @ be a supremum of a subset § of Rif and only if

(i) x<aV x€S i.e,aisanupper bound for set§
(ii) For any given €2 0 there exists some x € § such that x > a—¢&.

Proof: If part is sufficient and only if is necessary part.
Only if (necessary pat) i.e,,
Assume «a is a supremum of a subset S of R.
Aim: Our aim is to prove that
a. x=<aV x€S5 ie.,aisanupper bound for set 5

b. For any given €= 0 there exists some x € § such that x > a—E.
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BY as5umptid§irxl 'rn supremum of a subset 5 of R. Then, by the definition of supremum
L I+

i a is an upper bound of §
ii. @ is the lowest{or smallest) of all upper bounds of §.

(i) condition impliesthat x < a Vx €S

(iijcondition implies @ is the smallest of all upper bounds so that for given £ = 0,
a— &< d.

There @ — £ will not be an upper bound for 5.

This implies that there exists some x € § suchthat x > a — &

Proved
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If part(sufficient)
Assume
a x<aV x€J5§ ie.,aisanupper bound for set S
b. For any given €>> 0 there exists some x € § such that x > a—e.
Aim: a is the supremum of §.

(a) Condition implies that & is an upper bound
(b) Condition implies that & is smallest
BY def a is the supremum of 5.

Proved.
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Theorem 1. Let ff be a infimum of a subset § of R if and only if

(i) x=f VxeESie, [ isalower bound for set§
(ii) For any given €2 0 there exists some x € § such that x < §+€.

Proof: Similar proof as above

Reference book: Bansi Lal and Sanjay Arora; Introduction to Real Analysis, Satya Prakashan, 1st Vol ([1991)
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