School of Medical and Allied Sciences

Course Code : BPHT5004

Course Name: Pharmacognosy and Phytochemistry II

Amino acid Biosynthesis

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Sameksha Koul

Program Name: B.Pharm

DISCLAIMER

ALL THE CONTENT MATERIAL PROVIDED HERE IS ONLY FOR TEACHING PURPOSE.

GALGOTIAS UNIVERSITY

OUTLINE

- Introduction
- Synthesis of amino acids
 - the Glutamate family
 - Histidine biosynthesis
 - the Serine family
 - the Aromatic family
 - the Pyruvate family
 - the Aspartate family
- Regulation of amino acid biosynthesis
- Diseases of amino acid metabolism
- Conclusion
- References

INTRODUCTION

- All amino acids are derived from intermediates in glycolysis, the citric acid cycle, or pentose phosphate pathway.
- Nitrogen enters these pathways by way of glutamate and glutamine.
- Organisms vary greatly in their ability to synthesize the 20 common amino acids.
- Whereas most bacteria and plants can synthesize all 20, mammals can synthesize about half of them- generally those with simple pathways: the non-essential amino acids not needed in the diet.
- The remainder, the essential amino acids must be obtained from food.

ESSENTIAL AND NON-ESSENTIAL AMINO ACIDS IN HUMANS

Essential	Nonessential	
Arginine"	Alanine	
Histidine	Asparagine	
Isoleucine	Aspartate	
Leucine	Cysteine	
Lysine	Glutamate	
Methionine	Glutamine	
Phenylalanine	Glycine	
Threonine	Proline	
Tryptophan	Serine	
Valine	Tyrosine	

Arg is essential in infants and children Most synthesized Arg \rightarrow Ornithine and Urea via the <u>urea cycle</u>

Cys gets its sulfur atom from Met Tyr is hydroxylated Phe So it's not really non-essential

AMINO ACID BIOSYNTHESIS OVERVIEW (USE OF COMMON INTERMEDIATES)

THE GLUTAMATE FAMILY

Glu

 α -Ketoglutarate + AA \rightarrow Glutamate + α -Ketoacid

Gln

- GLU + ATP + $NH_3 \rightarrow GLN + ADP + P_i$
 - Glutamine <u>synthetase</u>
 - NH₃ is toxic; it's stored as Gln

ARG, PRO

PRO, ORNITHINE, ARG ARE DERIVED FROM GLUTAMATE

Step 1: Activate Glu; a kinase

Glutamate-5-semialdehyde branch point

Spontaneous cyclization to an internal schiff base

→ Pro Transamination to
Ornithine
→ Arg in urea cycle

acids: arginine, ornithine, and proline. The enzymes catalyzing proline biosynthesis are (1) γ-glutamyl kinase, (2) dehydrogenase, (3) nonenzymatic, and (4) pyrroline-5-carboxylate reductase. The enzymes catalyzing ornithine biosynthesis are (5) *N*-acetylglutamate synthase, (6) acetylglutamate kinase, (7) *N*-acetyl-γ-glutamyl phosphate reductase, (8) *N*-acetylornithine-δ-aminotransferase, and (9) acetylornithine deacetylase. An alternate pathway to ornithine is through Reaction 10, catalyzed by ornithine-δ-aminotransferase. Ornithine is converted to arginine (11) via the urea cycle (Fig. 26-7, Reactions 2–4).

HISTIDINE BIOSYNTHESIS

• Atoms derived from:

- 5-Phosphoribosyl-αpyrophosphate
 - Provides 5 c-atoms
 - Prpp involved in purine synthesis
 - Prpp involved in pyrimidine synthesis
 - Purine salvage pathway
 - An intermediate in trp synthesis
- ATP provides the 6th C- atom
- Gln supplies the second ring N

- ATP + α -D-ribose-5-phosphate \rightarrow Prpp + AMP
- α -D-ribose-5-phosphate from H-M shunt
- The products of the amido-transferase step:
 - Aicar
 - An intermediate in purine biosynthesis
- Imidazole glycerol phosphate

THE SERINE FAMILY

- **3-phosphoglycerate is precursor of**
 - Ser
 - Gly
 - Cys
 - **Ser** (a 3-step pathway) (1) 3-PG +

NAD⁺ \rightarrow 3phosphohydroxypyruvate + NADH+ H⁺

(2) 3-PHP+ glu \rightarrow 3-phosphoserine + α -KG

(3) 3-phosphoserine + $H_2 \circ \rightarrow$ Ser + P_i

• Cysteine (in mammals)

- Ser + Homocysteine \rightarrow Cystathionine
 - Homocysteine is a breakdown product of methionine
- Cystathionine $\rightarrow \alpha$ -Ketobutyrate + Cys
- Note: -SH group comes from Met
 - So Cys is actually an essential amino acid

THE AROMATIC FAMILY

- In plants and microrganisms
 - Phe
 - Tyr
 - Trp
- Precursors are:
 - Pep
 - Erythrose-4-phosphate
 - These condense with ultimate conversion to <u>chorismate</u>

- Chorismate
 - 1. Shikimate formed in steps 1-4
 - 2. Chorismate formed in steps 5-7

Roundup

- Glycophate inhibites the enzyme that converts 5- Enolpyruvylshikimate 3-phosphate to chorismate, and hence blocks aromatic amino acid biosynthesis in plants.
- Animals lack this enz- herbicide fairly nontoxic

- 2) dehydroquinate synthase
- 3) 3-dehydroquinate dehydratase
- 4) shikimate dehydrogenase
- 5) shikimate kinase
- 6 5-enolpyruvylshikimate 3-phosphate synthase
- 7) chorismate synthase

The Trp pathway

• Chorismate

- Branch point for trp synthesis
- Chorismate \rightarrow anthranilate \rightarrow trp
- Glutamine donates the N in the indole ring
 - Condensation occurs with PRPP donating two carbons to the ring

• Tryptophan synthase

Catalyzes final 2 steps

```
Indole-3-glycerol phos \rightarrow Indole + Glyc 3-p
```

2

3

5

Indole + Ser \rightarrow H₂o + Trp

The Tyr and Phe pathway

- Chorismate \rightarrow prephenate
- Prephenate
 - Branch point for phe, tyr synth
 - Aminotransferases in each final step

chorismate mutase

prephenate dehydrogenase prephenate dehydratase

In mammals, tyr is a product of:• Phe hydroxylation

1

3

Oxaloacetate Aspartate Asparagine Methionine Threonine Lysine • Asp: non-essential amino acid transamination reaction one-step $oldsymbol{O}$ from oxaloacetate

- glu is the amino donor
- Asn: synthesized from Asp
- gln is the amino donor

THE ASPARTATE FAMILY

MET, THR AND LYS

• Asp- common precursor of these essential amino acids

- Met
- Thr
- Lys

• First committed step is

• Asp + ATP \rightarrow Aspartyl- β -phosphate + ADP

Branch points occur at

- aspartate β-semialdehyde- an intermediate in all three pathways, and
- homoserine,- a precursor of thr and met

THE PYRUVATE FAMILY

- Ala: non-essential amino acid
- One-step transamination reaction from pyruvate.
- glu is the amino donor

LEU, ILE AND VAL

• "branched chain essential amino acids"

leu

I ile

val

- Val, Ile: same pathway after 1st step
- Leu pathway branches from val pathway
- final steps all catalyzed by aminotransferases
 - glu is the amino donor

• the first step:

 $\begin{array}{l} Pyr + Tpp \rightarrow \\ hydroxyethyl-tpp \end{array}$

•first pyr and tpp form an adduct then decarboxylated to He-tpp

•adds to keto group of

pyruvate \rightarrow val, leu α -ketobutyrate \rightarrow ile

School of Medical and Allied Sciences

Course Code : BPHT5004

Course Name: Pharmacognosy and Phytochemistry II

References :

- 1. https://www.biochemden.com/citric-acid-cycle.
- Weinstein, L. H.; Porter, C. A.; Laurencot, H. J. (1962). "Role of the Shikimic Acid Pathway in the Formation of Tryptophan in Higher Plants : Evidence for an Alternative Pathway in the Bean". Nature. 194 (4824): 205–206.
- 3. Brown, Stewart A.; Neish, A. C. (1955). "Shikimic Acid as a Precursor in Lignin Biosynthesis". Nature. 175 (4459): 688–689
- 4. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/shikimic-acid-pathway
- 5. https://www.sciencedirect.com/topics/biochemistry-genetics-and- molecularbiology/mevalonate-pathway
- 6. Banerjee A, Sharkey TD. (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:10431055