Course Code: BSCP3001 Course Name: QUANTUM MECHANICS

Quantum Mechanics Covered Topics

- Postulate of Quantum Mechanics: 1
- Postulate of Quantum Mechanics: 2
- **❖** Postulate of Quantum Mechanics: 3
- ❖ Postulate of Quantum Mechanics: 4
- **❖** Postulate of Quantum Mechanics: 5
- References

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code: BSCP3001

Course Name: QUANTUM MECHANICS

1) The wavefunction defines the state of a QM system completely:

$$\psi(x)$$

The **probability** that a particle lies in an interval $\,dx$:

$$\psi^*(x)\psi(x)dx$$

The wavefunction is normalized:

$$\int \psi^*(x)\psi(x)dx = 1$$

Properties of the wavefunction: it only has one value at a given point in space and time, it is finite and continuous at all points, as are its first and second derivatives with respect to distance.

Postulate of Quantum Mechanics: 1

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code: BSCP3001

Course Name: QUANTUM MECHANICS

Postulate of Quantum Mechanics: 2

Total energy \hat{H} — $\frac{1}{2}$ Angular momentum \hat{L}_x — i

Every classical observable has a QM linear, Hermitian operator:

Property	Symbol	Operator
Position	\hat{X}	multiply by ${\mathcal X}$
Momentum	\hat{P}_x	$-i\hbar\frac{\partial}{\partial x}$
Kinetic energy	\hat{K}	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)=-\frac{\hbar^2}{2m}\nabla^2$
Potential energy	$\hat{V}(\hat{x},\hat{y},\hat{z})$	multiply by $V(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$
Total energy	\hat{H}	$-\frac{\hbar^2}{2m}\nabla^2 + V(x,y,z)$
Angular momentum	\hat{L}_x	$-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)$

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code: BSCP3001

Course Name: QUANTUM MECHANICS

Postulate of Quantum Mechanics: 3

NIVERSITY

3) Observables associated with an operator are eigenvalues of the wavefunction.

$$\hat{A}\psi_n = a_n\psi_n$$

The time-independent Schrödinger equation is a special case:

$$\hat{H}\psi_n = E_n\psi_n$$

4) The average value of an observable is defined as:

$$\langle a \rangle = \int \psi^* \hat{A} \psi dx$$

Postulate of Quantum Mechanics: 4

Course Code: BSCP3001

Course Name: QUANTUM MECHANICS

5) The wavefunction is solution to the time-dependent Schrödinger equation:

$$\hat{H}\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

Typically, we can separate the spatial and temporal:

$$\Psi(x,t) = \psi(x)f(t)$$

Most wavefunctions of interest are stationary-state solutions:

$$\Psi_n(x,t) = \psi_n(x)e^{-iE_nt/\hbar}$$

In this course we focus only on solving the time-independent equation:

$$\hat{H}\psi(x) = E\psi(x)$$

Postulate of Quantum Mechanics: 5

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code: BSCP3001 Course Name: QUANTUM MECHANICS

References:

- 1. NouredineZettili,Quantum Mechanics: concepts and applications, 2nd Edition, Wiley, UK, 2009f
- 2. Introduction to Quantum Mechanics, D.J. Griffith, 2ndEd. 2005, Pearson Education
- 3. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEd., 2002, Wiley.
- 4. Quantum Mechanics, Leonard I. Schiff, 3rdEd. 2010, Tata McGraw Hill.
- 5. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, Springer

Name of the Faculty: Dr. ASHUTOSH KUMAR