~ GALGOTIAS School of Computing Science and Engineering
A UNIVERSITY Course Code : BSCS2315 Course Name: DAA

Dynamic Programming

Dynamic Programming is a general algorithm design technique
for solving problems defined by or formulated as recurrences
with overlapping subinstances

* Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

 “Programming” here means “planning”

e Main idea:
- set up a recurrence relating a solution to a larger instance
to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering

AS
JRBd Course Code : BSCS2315 Course Name: DAA

Example: Fibonacci numbers

e Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)
F0)=0
F1)=1
 Computing the nt™ Fibonacci number recursively (top-down):
F(n)
F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + [@(n-4)

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering

i Course Code : BSCS2315 Course Name: DAA

Example: Fibonacci numbers (cont.)

Computing the n™" Fibonacci number using bottom-up iteration and
recording results:

F0)=0
F1)=1
F2)=1+0=1
;’in-Z) =
F(n-1) =

F(n) = F(n-1) + F(n-2)

0 1 1 e o o| F(n-2)| F(n-1) | F(n)

Efficiency: .
- time What 1f we solve

- Space . .
P it recursively?

Program Name: B.Sc., Computer Science Program Code: BSCS

e

7~ GALGOTIAS School of Computing Science and Engineering
A A .
< UNIVERSITY RO -0 RN N YL N Course Name: DAA

Examples of DP algorithms

 Computing a binomial coefficient

* Longest common subsequence
* Warshall’s algorithm for transitive closure

* Floyd’s algorithm for all-pairs shortest paths

* Constructing an optimal binary search tree

* Some instances of difficult discrete optimization problems:
- traveling salesman
- Kknapsack

Program Name: B.Sc., Computer Science Program Code: BSCS

AN

7~ GALGOTIAS School of Computing Science and Engineering
A A .
A\ UNIVERSITY RO -0 RN N YL N Course Name: DAA

Computing a binomial coefficient by DP
Binomial coefficients are coefficients of the binomial formula:
(a + b)" = C(n,0)a"b’ + ...+ C(n,k)a""*b*+ ...+ C(n,n)a’b"

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) forn>k>0
Cn0)=1, C(n,n)=1 forn=0

Value of C(n,k) can be computed by filling a table:

01 2... k1 k
01
11 1
n-1 C(n-1,k-1) C(n-1,k)
n C(n,k)

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
NIV MR®d Course Code : BSCS2315 Course Name: DAA

Computing C(n.k): pseudocode and analvsis
ALGORITHM Binomial(n. k)

//[Computes C(n. k) by the dynamic programming algorithm
/[Input: A pair of nonnegative integers n > k > 0
//Output: The value of C(n, k)
fori <~ Otondo
for j < 0 to min(i, k) do
g j=0orj=i
Cli, j] « 1

else Cli, j] < Cli =1, j—-1]+C[i -1, j]

return C|n. k]

Time efficiency: O(nk)
Space efficiency: O(nk)

Program Name: B.Sc., Computer Science Program Code: BSCS

fm GALGOTIAS

School of Computing Science and Engineering
UNIVERSITY EOII-N00ls CRE N Oy L N Course Name: DAA

Knapsack Problem by DP frr

Given »n items' of
integer weights: w; w, ... w,

values: Vi V3 ... V,

a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j < W).

ILet V]ij] be optimal value ofisuch instance. Then
max V=1l v VL= i = s =0

mm={
Pli-14] ity

Initial conditions: J/[0.7] =0 and V|,0] =0

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
A\ UNIVERSITY O EeLo [N O YN Course Name: DAA

Knapsack Problem by DP (example) FFJ
Example: Knapsack of capacity W =3 wea

item__ weight value

| 2 $12
2 | $10
3 3 $20
4 2 $15 capacity j
1 2 3 4 5
0 0 O
0 12

0
0
w=2,v;=12 1 0
0 10 12 22 22 22 Backtracing
0

W5 — 1, V2= 10 2
W3 — 3, v3= 20 3 10 12 22 30 32 ﬁnds the actual
optimal subset,

w,=2,v,—=15 4 v i.e. solution.

1l

i

~ -

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
A\ UNIVERSITY O EeLo [N O YN Course Name: DAA

Knapsack Problem by DP (pseudocode) FFJ
Algorithm DPKnapsack(w]|1..n], v[I..n], W) S
var V][0..n,0..W], P|l..n,1..W]: int
for j := 0 to W do

Vio,j] :=0
fori:=0tondo Running time and space:

VIi,0] := 0 O(nW).
fori:=1tondo
forj:=1to Wdo
it wli] <jand v[i] + V]i-1,j-w]i]] = V]i-1,j] then
V[l)]] o= V[l] T V[i-],j-W[i]],’ P[l)]] .'=j-W[i]
else
Vii,jl := V0i-1,j]; Pli,j] :=J
<= return Vin, W] and the optimal subset by backtracing

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

IL.ongest Common Subsequence (LLCS) rrr

rra
A subsequence of a sequence/string S is obtained by

deleting zero or more symbols from §S. For example, the
following are all subsequences of “president”: pred., sdn,
predent. In other words, the letters of a subsequence of' S
appear in order in S, but they are not required to be
consecutive.

The longest common subsequence problemiis to find a
maximum length common subsequence between two
sequences.

i

i

i

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
Course Code : BSCS2315 Course Name: DAA

I'rf

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

president

T

providence

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering

N UNIVERSITY O N o [-RR NP LY Course Name: DAA

| L ON ¥y,

Another example:

Sequence 1: algorithm

Sequence 2: alignment
One of its LL.CS is algm.

a O r 1 t hm

1
1

Program Name: B.Sc., Computer Science Program Code: BSCS

a 1 gnment

i

L F

School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

How to compute LCS? r'rs

et A=a,a,...a, and B=b,b;...b, .
len(t, j): the length of an ILCS between
a;a;...a;and b;b;...h;

With proper initializations, /en(i; j) can be computed as follows.

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
Course Code : BSCS2315 Course Name: DAA

I'rf

i

o
- m

i

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
Course Code : BSCS2315 Course Name: DAA

rr

<= Running time and memory: O(mn) and O(mn).

e . A 4

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
N UNIVERSITY O EeLo [N O YN Course Name: DAA

The backtracing algorithm X,

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

f\‘ GALGOTIAS School of Computing Science and Engineering
| A AT 'a
UNIVERSITY EOI YN eLo [N NNy RN Course Name: DAA

{11,

11

Program Name: B.Sc., Computer Science Program Code: BSCS

— hool of Computing Science and Engineerin
7~ GALGOTIAS Bk puting 5 &
- UNIVERSITY RGN0l CRE N YL Course Name: DAA

yvarsnail's Algoritnme: 1ransitve blOSllfﬁll

- Computes the transitive closure of a relation AR

 Alternatively: existence of all nontrivial paths in a digraph

» Example of transitive closure:

0010 0010
100 1 1111
0000 0000
0100 1111

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

S School of Computing Science and Engineering
id Course Code : BSCS2315 Course Name: DAA

Warshall’s Algorithm frr

Constructs transitive closure 7 as the Iast matrix in the sequénce"
of n-by-n matrices R, ..., R® ... R where

R®]ij] = 1 iff there is nontrivial path from 7 toj with only the
first k vertices allowed as intermediate

Note that R = A (adjacency matrix), R = T (transitive closure)

LLRARBRA

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

.-.‘\ L] L] 3 03
= GALGOTIAS School of Computing Science and Engineering
- UNIVERSITY JOIE-Nels SRR N NP Course Name: DAA

Warshall’s Algorithm (recurrence) I

On the /-th iteration, the algorithm determines for every pair of "
vertices Z, j if a path exists from 7 and j with just vertices 1....,k
allowed as intermediate

HED7 (path using just 1 ,...,k-1)
RONyl= or:
RUDIGE] and RUEDIE]E (path from 7 to &
and from k to j

using just 1 ,...,k-1)

'\ Initial condition?

Program Name: B.Sc., Computer Science Program Code: BSCS

N . o ° L]
"~ GALGOTIAS School of Computing Science and Engineering
\ UNIVERSITY EOI YN eLo [N NNy RN Course Name: DAA

Warshall’s Algorithm (matrix generatlop) l

Recurrence relating elements R to elements of R*Djs:

ROy SRy orREDI] nd R o)

It implies the following rules for generating R™ from R*:1:

Rule 1' If an element in row 7 and column j is 1 in R*=D,
it remains 1 in' R™

Rule 2 If an element in row 7 and column j is 0 in R*D,
it has to be changed to 1 in R™ if and only if
the element in its row 7 and column % and the element
in its column j and row k are both 1°s in R*D

1]

i

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
A\ UNIVERSITY O EeLo [N O YN Course Name: DAA

Warshall’s Algorithm (example) '

___®

o« __»

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
\ UNIVERSITY O EeLo [N O YN Course Name: DAA

Warshall’s'Algorithm'(pseudocode and analysis)y

ALGORITHM Warshall(A[l..n, 1..n])

//Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO A
fork < 1tondo
fori < 1tondo
for j < 1tondo
RWM[i, j1 < R*V[i, jlor (R*DV[i k]and R* D[k, j])
return R\

Time efficiency: O(n°)

Space efficiency: Matrices can be written over their predecessors
(with some care), so it’s O(n"2).

Program Name: B.Sc., Computer Science Program Code: BSCS

§ School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

Floyd’s Algorithm: All'pairs shortest pathSf*

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D, ...,

D "™ using increasing subsets of the vertices allowed
as intermediate

Example: -

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

.-‘\ L] L] 3 03
7~ GALGOTIAS School of Computing Science and Engineering
\ UNIVERSITY JOIE-Nels SRR N NP Course Name: DAA

Floyd’s Algorithm (matrix generation) fff

On the /-th iteration, the algorithm determines shortest paths
between every pair: ofi vertices z, j that use only vertices among
1,....,k as intermediate

D7) =i DS 7 [DS G| e DG e

Initial condition?

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

Irr

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GAL COTIAS School of Computing Science and Engineering
UNIVERSITY JEIEYNele BRI Ny Course Name: DAA

Floyd®stAlgorithmi(pseudocodeand analysis)ppy
ALGORITHM Floyd(W[l..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
/[Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths

D < W //is not necessary if W can be overwritten

fork < 1tondo
fori < 1tondo
for j < 1tondo
Dli, j] < min{D[i, j], D[i, k] + D[k, j]}
return D [f D[; k] + D[k,j]1 < D[i,j] then P[i,;

Since the superscripts k& or k-1 make
no difference to D[i,k] and D[k,/].
Space efficiency: Matrices can be written over their predecessors

Time efficiency: O(°)

oy Note: Works on graphs with negative edges but without negative cycles.
h Shortest paths themselves can be found, too.

Program Name: B.Sc., Computer Science Program Code: BSCS

7~ GALGOTIAS School of Computing Science and Engineering
A\ UNIVERSITY O EeLo [N O YN Course Name: DAA

Optimal Binary Search Trees '

rrva
Problem: Given n keys a; < ...<a, and probabilities p;, ..., p,

searching for them, find a BST with a minimum
average number of comparisons in successful search.

Since total number of BSTs with » nodes is given by
C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys 4, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

()
Average # of comparisons
o O = 1%0.4 + 2%(0.24+0.3) + 3%0.1

o =1.7

Program Name: B.Sc., Computer Science Program Code: BSCS

1l

i

A

7~ GALGOTIAS School of Computing Science and Engineering
N UNIVERSITY O EeLo [N O YN Course Name: DAA

DP for Optimal BST Problem '

rrevau
ILet Clz,7] be minimum average number: of comparisons made in

T[57]; optimal BST for keys a; < ...<a., where 1 = i< j=n.
Consider optimal BST among all BSTs with some a, (i< k< j)
as their root; T|[i,j] is the best among them.

{:B» Cloy) =

min {p, 1+
i<k<j

k-1
> p; (level a, in T[i,k-1] +1) +

Optimal =
BST for

Optimal

y s G

J
). P, (evel a in T{A+1,7] +1)§
= |

A A~

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

DP for Optimal BST Problem (cont.) ',’,’.

After simplifications, we obtain the recurrence for Cli,j]:

i

ad

i

Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

The tables below are ﬁlled dlagonal by dlagonal the left one is filled
using the recurrence
Clry] = min C[nA=1] % Clk+1y]5 + ZPS, Cloi] = p;;

i<k<j S=1
the right one, for trees’ roots, records k°s values giving the minima

; Jp o |1 (2 |3 |4 ; JIo|1 (2|34
1 0 |.1 (4 |11|1.7 1 1 [2 (33 G}
2 0 |2 | 8|14 2 213 (3 (

3 0 | 4 1.0 3 313 4

4 0 | .3
: : optimal BST

5 0]
Program Name: B.Sc., Computer Science Program Code: BSCS

School of Computing Science and Engineering
Course Code : BSCS2315 Course Name: DAA

D11 ¢ X
Optimal BST(P|1..n])
HTinds an optimal binary search (ree by dynamic programming
{fInput: An array P|l..] of search probabilities for a sorted list of 1 keys
[fOutpul: Average number of comparisons in successtul scarches in the
ff optimal BST and table R of subtrees’ roots in the optimal BST

fori «— 1 to s do
Cli, i —1] =0
Ci, 1] « Pl
R[i,i] ¢
Cln+1, 1] <0
for d — 1to n — 1 do //diagonal count
fori < lton —d do
=i d
minval «— oo
fork «— i to j do
it C[i. k— 1]+ C[k +1, j] < minval
minval « Cli, k= 1]+ Clk+ 1, j} kmin <k
Rli. f] = kmin
sum +— Pli]; fors « i + 1to j do sum — sum + P|s]
Ci. f] < minval + swm
return C'[1, n]. R

Program Name: B.Sc., Computer Science Program Code: BSCS

§ School of Computing Science and Engineering
i Course Code : BSCS2315 Course Name: DAA

Analysis DP for Optimal BST Problem ’ f l

Time efficiency: O(7°) but can be reduced to O(7n*) by taklng
advantage of monotonicity of entries in the
root table, i.e., R[z,7] is always in the range
between R]i,j-1] and R|i+1.j]

Space efficiency: O(7?)

Method can be expended to include unsuccessftul searches

1l

i

Program Name: B.Sc., Computer Science Program Code: BSCS

—Q—
Thank You

