
Dynamic Programming
Dynamic Programming is a general algorithm design technique
for solving problems defined by or formulated as recurrences
with overlapping subinstances

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Example: Fibonacci numbers
• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Example: Fibonacci numbers (cont.)
Computing the nth Fibonacci number using bottom-up iteration and

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…
F(n-2) =

F(n-1) =

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

n
n

What if we solve

it recursively?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Examples of DP algorithms
• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Computing a binomial coefficient by DP
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0

C(n,0) = 1, C(n,n) = 1 for n  0

Value of C(n,k) can be computed by filling a table:

0 1 2 . . . k-1 k

0 1

1 1 1

.

.

.

n-1 C(n-1,k-1) C(n-1,k)

n C(n,k)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP
Given n items of

integer weights: w1 w2 … wn

values: v1 v2 … vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j  W).

Let V[i,j] be optimal value of such instance. Then

max {V[i-1,j], vi + V[i-1,j- wi]} if j- wi  0
V[i,j] =

V[i-1,j] if j- wi < 0

Initial conditions: V[0,j] = 0 and V[i,0] = 0

{

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP (example)
Example: Knapsack of capacity W = 5

item weight value

1 2 $12

2 1 $10

3 3 $20

4 2 $15 capacity j

0 1 2 3 4 5

0

w1 = 2, v1= 12 1

w2 = 1, v2= 10 2

w3 = 3, v3= 20 3

w4 = 2, v4= 15 4 ?

0 0 0

0 0 12

0 10 12 22 22 22

0 10 12 22 30 32

0 10 15 25 30 37

Backtracing

finds the actual

optimal subset,

i.e. solution.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP (pseudocode)
Algorithm DPKnapsack(w[1..n], v[1..n], W)

var V[0..n,0..W], P[1..n,1..W]: int

for j := 0 to W do

V[0,j] := 0

for i := 0 to n do

V[i,0] := 0

for i := 1 to n do

for j := 1 to W do

if w[i]  j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then

V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]

else

V[i,j] := V[i-1,j]; P[i,j] := j

return V[n,W] and the optimal subset by backtracing

Running time and space:

O(nW).

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Longest Common Subsequence (LCS)

A subsequence of a sequence/string S is obtained by

deleting zero or more symbols from S. For example, the

following are all subsequences of “president”: pred, sdn,

predent. In other words, the letters of a subsequence of S

appear in order in S, but they are not required to be

consecutive.

The longest common subsequence problem is to find a

maximum length common subsequence between two

sequences.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

president

providence

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

a l g o r i t h m

a l i g n m e n t

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

How to compute LCS?
Let A=a1a2…am and B=b1b2…bn .

len(i, j): the length of an LCS between

a1a2…ai and b1b2…bj

With proper initializations, len(i, j) can be computed as follows.

 ,

. and 0, if)),1(),1,(max(

 and 0, if1)1,1(

,0or 0 if0

),(









−−
=+−−

==
=

ji

ji

bajijilenjilen

bajijilen

ji

jilen

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

 procedure LCS-Length(A, B)

1. for i ← 0 to m do len(i,0) = 0

2. for j ← 1 to n do len(0,j) = 0

3. for i ← 1 to m do

4. for j ← 1 to n do

5. if ji ba = then 



=

+−−=
" "),(

1)1,1(),(

jiprev

jilenjilen

6. else if)1,(),1(−− jilenjilen

7. then 



=

−=
" "),(

),1(),(

jiprev

jilenjilen

8. else 



=

−=
" "),(

)1,(),(

jiprev

jilenjilen

9. return len and prev

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

i j 0 1

p

2

r

3

o

4

v

5

i

6

d

7

e

8

n

9

c

10

e

0 0 0 0 0 0 0 0 0 0 0 0

1 p

2

0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3

5 i 0 1 2 2 2 3 3 3 3 3 3

6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6

 Running time and memory: O(mn) and O(mn).

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

 procedure Output-LCS(A, prev, i, j)

1 if i = 0 or j = 0 then return

2 if prev(i, j)=” “ then 


 −−−

ia

jiprevALCSOutput

print

)1,1,,(

3 else if prev(i, j)=” “ then Output-LCS(A, prev, i-1, j)

4 else Output-LCS(A, prev, i, j-1)

The backtracing algorithm

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

i j 0 1

p

2

r

3

o

4

v

5

i

6

d

7

e

8

n

9

c

10

e

0 0 0 0 0 0 0 0 0 0 0 0

1 p

2

0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3

5 i 0 1 2 2 2 3 3 3 3 3 3

6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6

Output: priden

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

4
2

1

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm
Constructs transitive closure T as the last matrix in the sequence

of n-by-n matrices R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only the

first k vertices allowed as intermediate

Note that R(0) = A (adjacency matrix), R(n) = T (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(1)

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(2)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(4)

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

42

1

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (recurrence)
On the k-th iteration, the algorithm determines for every pair of

vertices i, j if a path exists from i and j with just vertices 1,…,k

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k] and R(k-1)[k,j] (path from i to k

and from k to j

using just 1 ,…,k-1)
i

j

k

{

Initial condition?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),

it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (example)

3

42

1 0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(0) =

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(1) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(2) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3) =

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

R(4) =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

(with some care), so it’s Θ(n^2).

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm: All pairs shortest paths
Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,
D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

0 ∞ 4 ∞
1 0 4 3

∞ ∞ 0 ∞
6 5 1 0

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (matrix generation)
On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Initial condition?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (example)
0 ∞ 3 ∞
2 0 ∞ ∞
∞ 7 0 1
6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞
2 0 5 ∞
∞ 7 0 1
6 ∞ 9 0

D(1) =

0 ∞ 3 ∞
2 0 5 ∞
9 7 0 1

6 ∞ 9 0
D(2) =

0 10 3 4

2 0 5 6

9 7 0 1

6 16 9 0

D(3) =

0 10 3 4

2 0 5 6

7 7 0 1

6 16 9 0

D(4) =

3
1

3

2

6 7

4

1 2

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles.

Shortest paths themselves can be found, too. How?

If D[i,k] + D[k,j] < D[i,j] then P[i,j]  k

Since the superscripts k or k-1 make

no difference to D[i,k] and D[k,j].

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1, …, pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

D

A

B

C

Average # of comparisons

= 1*0.4 + 2*(0.2+0.3) + 3*0.1

= 1.7

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

DP for Optimal BST Problem
Let C[i,j] be minimum average number of comparisons made in

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤ i ≤ j ≤ n.

Consider optimal BST among all BSTs with some ak (i ≤ k ≤ j)

as their root; T[i,j] is the best among them.

a

Optimal

BST for

a , ..., a

Optimal

BST for

a , ..., ai

k

k-1 k+1 j

C[i,j] =

min {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)
After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

Example: key A B C D

probability 0.1 0.2 0.4 0.3
The tables below are filled diagonal by diagonal: the left one is filled

using the recurrence

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps , C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima
0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i
j

i
j

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search Trees

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-32Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Analysis DP for Optimal BST Problem
Time efficiency: Θ(n3) but can be reduced to Θ(n2) by taking

advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range

between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: DAA

Program Name: B.Sc., Computer Science Program Code: BSCS

8-33Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

