
Dynamic Programming
Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by or formulated as recurrences 
with overlapping subinstances

• Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table 
- extract solution to the initial instance from that table
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Example: Fibonacci numbers
• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...
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Example: Fibonacci numbers  (cont.)
Computing the nth Fibonacci number using bottom-up iteration and 

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    
F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space
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What if we solve 

it recursively?
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Examples of DP algorithms
• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack
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Computing a binomial coefficient by DP
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1)  for n > k > 0

C(n,0) = 1,   C(n,n) = 1  for n  0

Value of C(n,k) can be computed by filling a table:

0   1   2  .  .  .   k-1          k

0   1

1   1   1

.

.

.

n-1                 C(n-1,k-1) C(n-1,k) 

n C(n,k) 
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Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)
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Knapsack Problem by DP
Given n items  of 

integer weights:    w1   w2 …  wn

values:                    v1   v2 …  vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j  W).

Let V[i,j] be optimal value of such instance.  Then

max {V[i-1,j], vi + V[i-1,j- wi]}   if j- wi  0
V[i,j] =

V[i-1,j]                                          if j- wi < 0

Initial conditions: V[0,j] = 0  and V[i,0] = 0

{
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Knapsack Problem by DP (example)
Example:  Knapsack of capacity W = 5

item      weight      value             

1             2             $12

2             1             $10

3             3             $20

4             2             $15                capacity j

0     1     2     3     4 5

0

w1 = 2, v1= 12    1

w2 = 1, v2= 10    2

w3 = 3, v3= 20    3

w4  = 2, v4= 15   4 ?

0    0     0

0    0    12

0   10   12 22   22   22 

0   10   12   22   30   32

0   10   15   25   30   37

Backtracing 

finds the actual 

optimal subset, 

i.e. solution.
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Knapsack Problem by DP (pseudocode)
Algorithm DPKnapsack(w[1..n], v[1..n], W)

var V[0..n,0..W],  P[1..n,1..W]: int

for j := 0 to W do

V[0,j] := 0

for i := 0 to n do

V[i,0] := 0

for i := 1 to n do

for j := 1 to W do

if  w[i]  j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then

V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]

else 

V[i,j] := V[i-1,j]; P[i,j] := j

return V[n,W] and the optimal subset by backtracing

Running time and space: 

O(nW).
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Longest Common Subsequence (LCS)

A subsequence of a sequence/string S is obtained by 

deleting zero or more symbols from S. For example, the 

following are all subsequences of “president”: pred, sdn, 

predent.  In other words, the letters of a subsequence of S 

appear in order in S, but they are not required to be 

consecutive.

The longest common subsequence problem is to find a 

maximum length common subsequence between two 

sequences.
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LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

president

providence
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LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

a l g o r i t h m

a l i g n m e n t
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How to compute LCS?
Let A=a1a2…am and B=b1b2…bn .

len(i, j): the length of an LCS between 

a1a2…ai and b1b2…bj

With proper initializations, len(i, j) can be computed as follows.
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   procedure LCS-Length(A, B) 

1. for i ← 0 to m do len(i,0) = 0 

2. for j ← 1 to n do len(0,j) = 0 

3. for i ← 1 to m do 

4.      for j ← 1 to n do 

5.           if ji ba =  then 



=

+−−=
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jilenjilen
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8.                           else 
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9. return len and prev 
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i j     0 1 

p 

2 

r 

3 

o 

4 

v 

5 

i 

6 

d 

7 

e 

8 

n 

9 

c 

10 

e 

0 0 0 0 0 0 0 0 0 0 0 0 

1  p 

2  

0 1 1 1 1 1 1 1 1 1 1 

2    r 0 1 2 2 2 2 2 2 2 2 2 

3    e 0 1 2 2 2 2 2 3 3 3 3 

4    s 0 1 2 2 2 2 2 3 3 3 3 

5    i 0 1 2 2 2 3 3 3 3 3 3 

6    d 0 1 2 2 2 3 4 4 4 4 4 

7    e 0 1 2 2 2 3 4 5 5 5 5 

8    n 0 1 2 2 2 3 4 5 6 6 6 

9    t 0 1 2 2 2 3 4 5 6 6 6 

 

 Running time and memory: O(mn) and O(mn).
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 procedure Output-LCS(A, prev, i, j) 

1 if  i = 0  or  j = 0  then return 

2 if  prev(i, j)=”     “  then 


 −−−

ia

jiprevALCSOutput

print    

)1,1,,(
 

3 else if  prev(i, j)=”   “  then  Output-LCS(A, prev, i-1, j) 

4 else  Output-LCS(A, prev, i, j-1) 

 

The backtracing algorithm
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i j     0 1 

p 

2 

r 

3 

o 

4 

v 

5 

i 

6 

d 

7 

e 

8 

n 

9 

c 

10 

e 

0 0 0 0 0 0 0 0 0 0 0 0 

1  p 

2  

0 1 1 1 1 1 1 1 1 1 1 

2    r 0 1 2 2 2 2 2 2 2 2 2 

3    e 0 1 2 2 2 2 2 3 3 3 3 

4    s 0 1 2 2 2 2 2 3 3 3 3 

5    i 0 1 2 2 2 3 3 3 3 3 3 

6    d 0 1 2 2 2 3 4 4 4 4 4 

7    e 0 1 2 2 2 3 4 5 5 5 5 

8    n 0 1 2 2 2 3 4 5 6 6 6 

9    t 0 1 2 2 2 3 4 5 6 6 6 

 

Output: priden 
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Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

0  0  1  0

1  1  1 1

0  0  0  0

1 1  1  1

3

4
2

1
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Warshall’s Algorithm
Constructs transitive closure T as the last matrix in the sequence 

of n-by-n matrices  R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only the 

first k vertices allowed as intermediate 

Note that R(0) = A (adjacency matrix), R(n) = T  (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(1)

0  0  1  0

1  0 1 1

0  0  0  0

0  1  0  0

R(2)

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1  1

R(3)

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(4)

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

3

42

1
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Warshall’s Algorithm (recurrence)
On the k-th iteration, the algorithm determines for every pair of 

vertices i, j if a path exists from i and j with just vertices 1,…,k 

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k]  and R(k-1)[k,j] (path from i to k

and from k to j

using just 1 ,…,k-1)
i

j

k

{

Initial condition?
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Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is: 

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1), 

it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if 

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)
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Warshall’s Algorithm (example)

3

42

1 0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(0)  =

0  0  1  0

1  0  1 1

0  0  0  0

0  1  0  0

R(1)  =

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1 1

R(2)  =

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(3)  =

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

R(4)  =
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

(with some care), so it’s Θ(n^2).
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Floyd’s Algorithm: All pairs shortest paths
Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,
D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

0   ∞  4  ∞
1   0   4  3 

∞  ∞  0  ∞
6  5   1  0
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Floyd’s Algorithm (matrix generation)
On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Initial condition?
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Floyd’s Algorithm (example)
0   ∞ 3   ∞
2   0  ∞  ∞
∞  7   0   1
6   ∞ ∞  0

D(0)  = 

0   ∞  3   ∞
2   0   5 ∞
∞  7   0   1
6   ∞  9 0

D(1)  =

0   ∞  3   ∞
2   0   5   ∞
9 7   0   1

6   ∞  9   0
D(2)  =

0  10 3  4

2   0   5  6

9   7   0  1

6  16 9  0

D(3)  =

0  10  3  4

2   0   5  6

7 7   0  1

6  16  9  0

D(4)  =

3
1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles.          

Shortest paths themselves can be found, too. How?

If D[i,k] + D[k,j] < D[i,j] then P[i,j]  k

Since the superscripts k or k-1 make 

no difference to D[i,k] and D[k,j].
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Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1, …,  pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by 

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

 

D 

A 

B 

C 

Average # of comparisons        

= 1*0.4 + 2*(0.2+0.3) + 3*0.1 

= 1.7 
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DP for Optimal BST Problem
Let C[i,j] be minimum average number of comparisons made in 

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤  i ≤  j ≤ n. 

Consider optimal BST among all BSTs with some ak  (i ≤  k ≤ j ) 

as their root; T[i,j] is the best among them. 

a

Optimal

BST for

a   , ...,  a

Optimal

BST for

a      , ...,  ai

k

k-1 k+1 j

C[i,j] =

min  {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j
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goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)
After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi    for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j
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Example:   key                  A     B     C     D

probability   0.1   0.2   0.4  0.3
The tables below are filled diagonal by diagonal: the left one is filled 

using the recurrence 

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps ,    C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima
0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i 
j

i 
j
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Optimal Binary Search Trees
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Analysis DP for Optimal BST Problem
Time efficiency:  Θ(n3) but can be reduced to Θ(n2) by taking

advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range 

between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches
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