
UNIT II - DIVIDE-AND-CONQUER

Divide and Conquer Methodology – Binary Search –

Merge Sort – Quick Sort – Heap Sort – Multiplication

of Large Integers – Strassen’sMatrix Multiplication

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heap and Heap Sort
Definition:

A heap is a binary tree with keys at its nodes (one key per node)

such that:

• It is essentially complete, i.e., all its levels are full except possibly

the last level, where only some rightmost keys may be missing

The key at each node is ≥ keys at its children

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

A heap can be seen as a complete binary tree:

What makes a binary tree complete?

Is the example above complete?

Heaps

16

14 10

8 7 9 3

2 4 1

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

A heap can be seen as a complete binary tree:

The book calls them “nearly complete” binary

trees; can think of unfilled slots as null pointers

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 111

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heaps

In practice, heaps are usually implemented as

arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heaps
To represent a complete binary tree as an array:

The root node is A[1]

Node i is A[i]

The parent of node i is A[i/2] (note: integer divide)

The left child of node i is A[2i]

The right child of node i is A[2i + 1]
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Referencing Heap Elements

So…

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

An aside: How would you implement this

most efficiently?

Trick question, I was looking for “i << 1”, etc.

But, any modern compiler is smart enough to do

this for you (and it makes the code hard to follow)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

The Heap Property

Heaps also satisfy the heap property:

A[Parent(i)]  A[i] for all nodes i > 1

In other words, the value of a node is at most the

value of its parent

Where is the largest element in a heap stored?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heap Height
Definitions:

The height of a node in the tree = the number of

edges on the longest downward path to a leaf

The height of a tree = the height of its root

What is the height of an n-element heap? Why?

This is nice: basic heap operations take at most

time proportional to the height of the heap

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heap Operations: Heapify()

Heapify(): maintain the heap property

Given: a node i in the heap with children l and r

Given: two subtrees rooted at l and r, assumed to

be heaps

Problem: The subtree rooted at i may violate the

heap property (How?)

Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

What do you suppose will be the basic operation

between i, l, and r?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heap Operations: Heapify()
Heapify(A, i)

{

l = Left(i); r = Right(i);

if (l <= heap_size(A) && A[l] > A[i])

largest = l;

else

largest = i;

if (r <= heap_size(A) && A[r] > A[largest])

largest = r;

if (largest != i)

Swap(A, i, largest);

Heapify(A, largest);

}

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing Heapify(): Informal

Aside from the recursive call, what is the
running time of Heapify()?

How many times can Heapify() recursively

call itself?

What is the worst-case running time of
Heapify() on a heap of size n?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing Heapify(): Formal

Fixing up relationships between i, l, and r

takes (1) time

If the heap at i has n elements, how many

elements can the subtrees at l or r have?

Draw it

Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by Heapify() is given by

T(n)  T(2n/3) + (1)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing Heapify(): Formal

So we have

T(n)  T(2n/3) + (1)

By case 2 of the Master Theorem,

T(n) = O(lg n)

Thus, Heapify() takes logarithmic time

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heap Operations: BuildHeap()

We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

So:

Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

Order of processing guarantees that the children of node

i are heaps when i is processed

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

BuildHeap()
// given an unsorted array A, make A a heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)

Heapify(A, i);

}

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

BuildHeap() Example

Work through example

A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing BuildHeap()

Each call to Heapify() takes O(lg n) time

There are O(n) such calls (specifically, n/2)

Thus the running time is O(n lg n)

Is this a correct asymptotic upper bound?

Is this an asymptotically tight bound?

A tighter bound is O(n)

How can this be? Is there a flaw in the above

reasoning?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing BuildHeap(): Tight

To Heapify() a subtree takes O(h) time

where h is the height of the subtree

h = O(lg m), m = # nodes in subtree

The height of most subtrees is small

Fact: an n-element heap has at most n/2h+1

nodes of height h

CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapsort

Given BuildHeap(), an in-place sorting

algorithm is easily constructed:

Maximum element is at A[1]

Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

Restore heap property at A[1] by calling

Heapify()

Repeat, always swapping A[1] for A[heap_size(A)]

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Heapsort Algorithm
Heapsort(A)

{

BuildHeap(A);

for (i = length(A) downto 2)

{

Swap(A[1], A[i]);

heap_size(A) -= 1;

Heapify(A, 1);

}

}

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analyzing Heapsort

The call to BuildHeap() takes O(n) time

Each of the n - 1 calls to Heapify() takes

O(lg n) time

Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Priority Queues

Heapsort is a nice algorithm, but in practice

Quicksort (coming up) usually wins

But the heap data structure is incredibly useful

for implementing priority queues

A data structure for maintaining a set S of

elements, each with an associated value or key

Supports the operations Insert(),

Maximum(), and ExtractMax()

What might a priority queue be useful for?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Priority Queue Operations

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with

the maximum key

ExtractMax(S) removes and returns the

element of S with the maximum key

How could we implement these operations

using a heap?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example of Heap Construction

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

Construct a heap for the list 2, 9, 7, 6, 5, 8

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction) Stage 2 (root/max removal)

1 9 7 6 5 8 9 6 8 2 5 7

2 9 8 6 5 7 7 6 8 2 5 | 9

2 9 8 6 5 7 8 6 7 2 5 | 9

9 2 8 6 5 7 5 6 7 2 | 8 9

9 6 8 2 5 7 7 6 5 2 | 8 9

2 6 5 | 7 8 9

6 2 5 | 7 8 9

5 2 | 6 7 8 9

5 2 | 6 7 8 9

2 | 5 6 7 8 9

Example of Sorting by Heapsort

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Insert the new element at last position in heap.

Compare it with its parent and, if it violates heap condition,

exchange them

Continue comparing the new element with nodes up the tree until

the heap condition is satisfied

Example: Insert key 10

Efficiency: O(log n)

9

6

2 5

8

7 10

9

6

2 5

10

7 8

> >

10

6

2 5

9

7 8

Insertion of a New Element into a Heap

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

