School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

UNIT Il DIVIDE-AND-CONQUER
Divide and Conquer Methodology — Binary Search —
Merge Sort — Quick Sort — Heap Sort — Multiplication

of Large Integers — Strassen’s Matrix Multiplication

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

UNIVERSITY

(f‘ GALGOTIAS School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Mergesort

e Split array A[0..n-1] into about equal halves and make
copies of each half in arrays Band C

e Sort arrays B and C recursively

 Merge sorted arrays B and C into array A as follows:

— Repeat the following until no elements remain in one of the arrays:

* compare the first elements in the remaining unprocessed portions of
the arrays

e copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

— Once all elements in one of the arrays are processed, copy the remaining
unprocessed elements from the other array into A.

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Pseudocode of Mergesort

ALGORITHM Mergesort(A[0..n —1])

/[Sorts array A[O.

n — 1] by recursive mergesort

/[Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1

copy A[0..|n/2] — 1] to B[0..|n/2] — 1]

copy A[|n/2]..n — 1]to C[0..[n/2] — 1]

Mergesort(B[0..|n/2] — 1])

Mergesort(C[0..[n/2] — 1])

Merge(B, C, A)

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Pseudocode of Merge

ALGORITHM Merge(B[0..p — 1]. C[0..q — 1], A[0..p + g —1])

[/Merges two sorted arrays into one sorted array
/Input: Arrays B[0..p — 1] and C[0..g — 1] both sorted
//Output: Sorted array A[0..p + g — 1] of the elements of B and C
[< 0; j <0, k<0
while i < pand j < g do

if Bi] < C[/]

Alk] < Bli]; i < i +1

else A[k] < C[j]: j < j+1

k<—k+1
ifi =p

copy Clj..g —1]to Alk..p +q — 1]
else copy Bli..p — 1]to Alk..p +q — 1]

Time complexity: @(p+qg) = @(n) comparisons

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

UNIVERSITY

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

(P‘ GALGOTIAS School of Computing Science and Engineering

Mergesort Example

8 3297 15 4

— T

8 3 2 9 7 1 5 4

/ \ / \ The non-recursive
/ \ / \ / \ / \ version of Mergesort
starts from merging

single elements into

\‘3 8'/ \‘2 9'/ \‘1 7/ \4 ;/ sorted pairs.
N

2 3 8 9 1 45 7

\/

1 23 45 7 8 9

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

7~ GALGOTIAS School of Computing Science and Engineering

\ UNIVERSITY

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analysis of Mergesort

* All cases have same efficiency: O(n log n)
T(n) =2T(n/2) + @(n), T(1) =0

* Number of comparisons in the worst case is close to
theoretical minimum for comparison-based sorting:
[log,n!'l = nlog,n -1.44n

e Space requirement: ©O(n) (not in-place)

e Can be implemented without recursion (bottom-up)

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

—©—
Thank You

