
UNIT I INTRODUCTION

Introduction to Algorithms – Fundamentals of Algorithmic

Problem Solving – Fundamentals of the Analysis of Algorithmic

Efficiency – Analysis Framework – Asymptotic Notations and Basic

Efficiency Classes – Mathematical Analysis of Recursive

Algorithms – Mathematical Analysis of Non-recursive Algorithms

Mathematical Analysis of Recursive Algorithms 
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Plan for Analysis of Recursive Algorithms
Decide on  a parameter indicating an input’s size.

Identify the algorithm’s basic operation. 

Check whether the number of times the basic op. is executed may 
vary on different inputs of the same size.  (If it may, the worst, 
average, and best cases must be investigated separately.)

Set up a recurrence relation with an appropriate initial condition 
expressing the number of times the basic op. is executed.

Solve the recurrence (or, at the very least, establish its solution’s 
order of growth) by backward substitutions or another method.
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Smoothness Rule
• Let f(n) be a nonnegative function defined on the set of 

natural numbers. f(n) is call smooth if it is eventually
nondecreasing and f(2n) ∈ Θ (f(n))

– Functions that do not grow too fast, including logn, n, 
nlogn, and n where >=0 are smooth.

• Smoothness rule

Let T(n) be an eventually nondecreasing function and f(n) 
be a smooth function. If T(n) ∈ Θ (f(n)) for values of n 
that are powers of b, where b>=2, then T(n) ∈ Θ (f(n)) 
for any n.
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Example 1: Recursive evaluation of n!
Definition: n ! = 1  2  … (n-1)  n for n ≥ 1  and  0! = 1

Recursive definition of n!:  F(n) = F(n-1)  n for n ≥ 1  and  

F(0) = 1

Size: n 
Basic operation: Multiplications
Recurrence relation: M(n) = M(n-1) + 1,   M(0) = 0
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Solving the recurrence for M(n)

M(n) = M(n-1) + 1,  M(0) = 0

M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1   =   M(n-2) + 2

= (M(n-3) + 1) + 2   =   M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.
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Example 2: The Tower of Hanoi Puzzle

Recurrence for number of moves: M(n) = 2M(n-1) + 1

1

2

3
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Solving recurrence for number of moves
M(n) = 2M(n-1) + 1,  M(1) = 1

M(n) = 2M(n-1) + 1

= 2(2(M-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0 

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n - 1
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Tree of calls for the Tower of Hanoi Puzzle
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Example 3: Counting #bits

A(     ) = A(        ) + 1,   A(    ) = 0    (using the Smoothness Rule)

= (A(         ) + 1) + 1  = A(         ) + 2

= A(        ) + i

= A(         ) + k = k

= 

k2 12 −k 02

22 −k

n2log

22 −k

ik−2

kk−2

A(n) = A(            ) + 1,   A(1) = 0 2/n
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