
UNIT I INTRODUCTION

Introduction to Algorithms – Fundamentals of Algorithmic

Problem Solving – Fundamentals of the Analysis of Algorithmic

Efficiency – Analysis Framework – Asymptotic Notations and Basic

Efficiency Classes – Mathematical Analysis of Recursive

Algorithms – Mathematical Analysis of Non-recursive Algorithms

Mathematical Analysis of Recursive Algorithms

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Plan for Analysis of Recursive Algorithms
Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed may
vary on different inputs of the same size. (If it may, the worst,
average, and best cases must be investigated separately.)

Set up a recurrence relation with an appropriate initial condition
expressing the number of times the basic op. is executed.

Solve the recurrence (or, at the very least, establish its solution’s
order of growth) by backward substitutions or another method.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Smoothness Rule
• Let f(n) be a nonnegative function defined on the set of

natural numbers. f(n) is call smooth if it is eventually
nondecreasing and f(2n) ∈ Θ (f(n))

– Functions that do not grow too fast, including logn, n,
nlogn, and n where >=0 are smooth.

• Smoothness rule

Let T(n) be an eventually nondecreasing function and f(n)
be a smooth function. If T(n) ∈ Θ (f(n)) for values of n
that are powers of b, where b>=2, then T(n) ∈ Θ (f(n))
for any n.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 1: Recursive evaluation of n!
Definition: n ! = 1  2  … (n-1)  n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and

F(0) = 1

Size: n
Basic operation: Multiplications
Recurrence relation: M(n) = M(n-1) + 1, M(0) = 0

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1 = M(n-2) + 2

= (M(n-3) + 1) + 2 = M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 2: The Tower of Hanoi Puzzle

Recurrence for number of moves: M(n) = 2M(n-1) + 1

1

2

3

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Solving recurrence for number of moves
M(n) = 2M(n-1) + 1, M(1) = 1

M(n) = 2M(n-1) + 1

= 2(2(M-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n - 1

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Tree of calls for the Tower of Hanoi Puzzle

 n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

...
2

1 1

2

1 1

2

1 1

2

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 3: Counting #bits

A() = A() + 1, A() = 0 (using the Smoothness Rule)

= (A() + 1) + 1 = A() + 2

= A() + i

= A() + k = k

=

k2 12 −k 02

22 −k

n2log

22 −k

ik−2

kk−2

A(n) = A() + 1, A(1) = 0 2/n

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

