
UNIT I INTRODUCTION:

Introduction to Algorithms – Fundamentals of Algorithmic Problem

Solving – Fundamentals of the Analysis of Algorithmic Efficiency –

Analysis Framework – Asymptotic Notations and Basic Efficiency

Classes – Mathematical Analysis of Recursive Algorithms –

Mathematical Analysis of Non-recursive Algorithms

Mathematical Analysis of Non-recursive Algorithms

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Time efficiency of non-recursive algorithms

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Useful summation formulas and rules
lin1 = 1+1+…+1 = n - l + 1

In particular, lin1 = n - 1 + 1 = n  (n)

1in i = 1+2+…+n = n(n+1)/2  n2/2  (n2)

1in i2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a  1

In particular, 0in 2i = 20 + 21 +…+ 2n = 2n+1 - 1  (2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai + m+1iuai

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 1: Maximum element

T(n) = 1in-1 1 = n-1 = (n) comparisons

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 2: Element uniqueness problem

T(n) = 0in-2 (i+1jn-1 1)

= 0in-2 n-i-1 = (n-1+1)(n-1)/2

= () comparisons
2n

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 3: Matrix multiplication

T(n) = 0in-1 0in-1 n

= 0in-1 ()

= () multiplications

2n
3n

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 4: Gaussian elimination
Algorithm GaussianElimination(A[0..n-1,0..n])

//Implements Gaussian elimination of an n-by-(n+1) matrix A

for i  0 to n - 2 do
for j  i + 1 to n - 1 do
for k  i to n do

A[j,k]  A[j,k] - A[i,k]  A[j,i] / A[i,i]

Find the efficiency class and a constant factor improvement.

for i  0 to n - 2 do
for j  i + 1 to n - 1 do

B 0
for k  i to n do

B  A[i,k]  A[j,i]
A[j,k]  A[j,k] - B / A[i,i]

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example 5: Counting binary digits

The halving game: Find integer i such that n/ ≤ 1.

Answer: i ≤ log n. So, T(n) = (log n) divisions.

Another solution: Using recurrence relations.

i2

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

