
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 1

Objectives for Today

Build an understanding of…

• Importance of estimations

• Different estimation approaches (initial
situation, expectations, top-down versus
bottom-up…)

• Advantages and disadvantages of different
approaches

• Common pitfalls

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Importance of Estimations

• During the planning phase of a project, a first
guess about cost and time is necessary

• Estimations are often the basis for the decision
to start a project

• Estimations are the foundation for project
planning and for further actions

 Estimating is one of the core tasks of project
management, but still considered as black magic !

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Challenges

• Incomplete knowledge about:

• Project scope and changes

• Prospective resources and staffing

• Technical and organizational environment

• Infrastructure

• Feasibility of functional requirements

• Comparability of projects in case of new or
changing technologies, staff, methodologies

• Learning curve problem

• Different expectations towards project manager.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Problems with Estimations

• Estimation results (effort and time) are almost
always too high (for political / human reasons)
and have to be adjusted in a structured and
careful manner

• Reviews by experts always necessary

• New technologies can make new parameters
necessary

• Depending on the situation, multiple methods
are to be used in combination.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Guiding Principles

• Documentation of assumptions about

• Estimation methodology

• Project scope, staffing, technology

• Definition of estimation accuracy

• Increasing accuracy with project phases

• Example: Better estimation for implementation phase
after object design is finished

• Reviews by experienced colleagues

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Components of an Estimation

• Cost

• Personnel (in person days or valued in personnel cost)

• Person day: Effort of one person per working day

• Material (PCs, software, tools etc.)

• Extra costs (travel expenses etc.)

• Development Time

• Project duration

• Dependencies

• Infrastructure

• Rooms, technical infrastructure, especially in offshore
scenarios

This lecture

Lecture on Scheduling.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Estimating Development Time

Development time often estimated by formula

Duration = Effort / People

Problem with formula, because:

• A larger project team increases
communication complexity which usually
reduces productivity

• Therefore it is not possible to reduce duration
arbitrarily by adding more people to a project

• In the lectures on organization and scheduling
we take a more detailed look at this issue.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Estimating Personnel Cost

• Personnel type: Team leader, application
domain expert, analyst, designer, programmer,
tester…

• Cost rate: Cost per person per day

• 2 alternatives for cost rate:

• Single cost rate for all types (no differentiation
necessary)

• Assign different cost rates to different personnel types
based on�experience, qualification and skills

• Personnel cost: person days x cost rate.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Estimating Effort

• Most difficult part during project planning

• Many planning tasks (especially project schedule)
depend on determination of effort

• Basic principle:

• Select an estimation model (or build one first)

• Evaluate known information: size and project data,
resources, software process, system components

• Feed this information as parametric input data into the
model

• Model converts the input into estimates: effort,
schedule, performance, cycle time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Model
Parametric

Data Estimate

Examples:

Data Input Estimate

Size & Project Data Effort & Schedule

System Model Performance

Software Process Cycle Time

Basic Use of Estimation Models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Historical

Data

Meta- Model of

Software Process

Estimating ModelInsight

How do you Build an Estimating Model?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Basic Estimation

Model

Your Data

Your

Experience

Calibrated

Estimation

Model

Your

Insight

Calibrating an Estimation Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Top-Down and Bottom-Up Estimation

• Two common approaches for estimations

• Top-Down Approach

• Estimate effort for the whole project

• Breakdown to different project phases and work
products

• Bottom-Up Approach

• Start with effort estimates for tasks on the lowest
possible level

• Aggregate the estimates until top activities are
reached.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Top-Down versus Bottom-Up (cont’d)

• Top-Down Approach

• Normally used in the planning phase when little
information is available how to solve the problem

• Based on experiences from similar projects

• Not appropriate for project controlling (too high-level)

• Risk add-ons usual

• Bottom-Up Approach

• Normally used after activities are broken down the task
level and estimates for the tasks are available

• Result can be used for project controlling (detailed
level)

• Smaller risk add-ons

• Often a mixed approach with recurring
estimation cycles is used.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Estimation Techniques

• Expert estimates

• Lines of code

• Function point analysis

• COCOMO I

• COCOMO II

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Expert Estimates

= Guess from experienced people

• No better than the participants

• Suitable for atypical projects

• Result justification difficult

• Important when no detailed estimation can be
done (due to lacking information about scope)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Lines of Code

• Traditional way for estimating application size

• Advantage: Easy to do

• Disadvantages:

• Focus on developer’s point of view

• No standard definition for “Line of Code”

• “You get what you measure”: If the number of lines of
code is the primary measure of productivity,
programmers ignore opportunities of reuse

• Multi-language environments: Hard to compare mixed
language projects with single language projects

“The use of lines of code metrics for productivity
should be regarded as professional malpractice”
(Caspers Jones)

