# **School of Basic and Applied Sciences**

**Course Code: MSDB6001** 

**Course Name: Genetics** 

# MENDELIAN GENETICS

GALGOTIAS UNIVERSITY

## **OVERVIEW**

- Introduction to Genetics and heredity
- Gregor Mendel a brief biography
- Genetic terminology
- Monohybrid crosses
- Dihybrid crosses



## **INTRODUCTION TO GENETICS**

• **GENETICS** – branch of biology that deals with heredity and variation of organisms.

- Chromosomes carry the hereditary information (genes)
  - Arrangement of nucleotides in DNA
  - DNA → RNA → Proteins



#### **GREGOR JOHANN MENDEL**

- Austrian Monk, born in what is now Czech Republic in 1822
- Son of peasant farmer, studied Theology and was ordained priest Order St. Augustine.
- Went to the university of Vienna, where he studied botany and learned the Scientific Method
- Worked with pure lines of peas for eight years
- Prior to Mendel, heredity was regarded as a "blending" process and the offspring were essentially a "dilution" of the different parental characteristics.



Gregor Mendel

## **MENDEL PEA PLANTS**

Mendel looked at seven traits or characteristics of pea plants:

| Trait           | Stem<br>length    | Pod<br>shape | Seed<br>shape | Seed<br>color | Flower position | Flower<br>color | Pod<br>color |
|-----------------|-------------------|--------------|---------------|---------------|-----------------|-----------------|--------------|
| eristics        | Tall              | Inflated     | Smooth        | Yellow        | Lateral         | Purple          | Green        |
| Characteristics | <b>¥</b><br>Dwarf |              | Wrinkled      | Green         | Terminal        | White           | Yellow       |
|                 |                   | Constrict    | ed            |               |                 |                 |              |

### **MENDEL'S WORK**

- In 1866 he published <u>Experiments in Plant Hybridization</u>, (<u>Versuche über Pflanzen-Hybriden</u>) in which he established his three Principles of Inheritance
- He tried to repeat his work in another plant, but didn't work because the plant reproduced asexually!
- Work was largely ignored for 34 years, until 1900, when 3 independent botanists rediscovered Mendel's work.

### **MENDEL'S WORK**

- Mendel was the first biologist to use Mathematics to explain his results quantitatively.
- Mendel predicted

The concept of genes

That genes occur in pairs

That one gene of each pair is present in the gametes



#### **GENETICS TERMS YOU NEED TO KNOW**

- Gene a unit of heredity; a section of DNA sequence encoding a single protein
- Genome the entire set of genes in an organism
- Alleles two genes that occupy the same position on homologous chromosomes and that cover the same trait (like 'flavors' of a trait).
- Locus a fixed location on a strand of DNA where a gene or one of its alleles is located.

#### **GENETICS TERMS YOU NEED TO KNOW**

- **Homozygous** having identical genes (one from each parent) for a particular characteristic.
- Heterozygous having two different genes for a particular characteristic.
- **Dominant** the allele of a gene that masks or suppresses the expression of an alternate allele; the trait appears in the heterozygous condition.
- **Recessive** an allele that is masked by a dominant allele; does not appear in the heterozygous condition, only in homozygous.

#### **GENETICS TERMS YOU NEED TO KNOW**

- Genotype the genetic makeup of an organisms
- <u>Phenotype</u> the physical appearance of an organism (Genotype + environment)
- Monohybrid cross: a genetic cross involving a single pair of genes (one trait); parents differ by a single trait.
- **P** = Parental generation
- $\mathbf{F_1}$  = First filial generation; offspring from a genetic cross.
- F<sub>2</sub> = Second filial generation of a genetic cross

### **MONOHYBRID CROSS**

- Parents differ by a single trait.
- Crossing two pea plants that differ in stem size, one tall one short

T = allele for Tall

t = allele for dwarf

TT = homozygous tall plant

t t = homozygous dwarf plant





## MONOHYBRID CROSS FOR STEM LENGTH



## **PUNNETT SQUARE**

- A useful tool to do genetic crosses
- For a monohybrid cross, you need a square divided by four....
- Looks like a window pane...
  We use the Punnett square to predict the genotypes and phenotypes of the offspring.



## **USING A PUNNETT SQUARE**

#### STEPS:

- 1. determine the genotypes of the parent organisms
- 2. write down your "cross" (mating)
- 3. draw a p-square

Parent genotypes:

TT and tt

Cross

 $TT \times tt$ 

| LAS |  |
|-----|--|
| ITY |  |

## **PUNNETT SQUARE**

- 4. "split" the letters of the genotype for each parent & put them "outside" the p-square
- 5. determine the possible genotypes of the offspring by filling in the p-square
- 6. summarize results (genotypes & phenotypes of offspring)

Genotypes: 100% Tt

Phenotypes: 100% Tall plants

## **MONOHYBRID CROSS: F2 GENERATION**

• If you let the F1 generation self-fertilize, the next monohybrid cross would be:



## **SECRET OF THE PUNNETT SQUARE**

- Key to the Punnett Square:
- Determine the gametes of each parent...
- How? By "splitting" the genotypes of each parent:

If this is your cross

The gametes are:



Once you have the gametes...



#### MENDEL'S PRINCIPLES

# • 1. Principle of Dominance:

One allele masked another, one allele was dominant over the other in the  $F_1$  generation.

# • 2. Principle of Segregation:

When gametes are formed, the pairs of hereditary factors (genes) become separated, so that each sex cell (egg/sperm) receives only one kind of gene.

### **DIHYBRID CROSSES**

• Matings that involve parents that differ in <u>two</u> genes (two independent traits)

For example, flower color:

and stem length:

$$t = \text{short}$$



#### **DIHYBRID CROSSES: FLOWER COLOR AND STEM LENGTH**



# **DIHYBRID CROSSES: 4 PHENOTYPES**

white

1 Short



## **DIHYBRID CROSSES: 9 GENOTYPES**



#### PRINCIPLE OF INDEPENDENT ASSORTMENT

- Based on these results, Mendel postulated the
  - 3. Principle of Independent Assortment:

"Members of one gene pair segregate independently from other gene pairs during gamete formation"

Genes get shuffled – these many combinations are one of the advantages of sexual reproduction

#### **SUMMARY**

- Chromosomes carry hereditary info (genes)
- Contribution of G J Mendel
- Monohybrid vs. Dihybrid crosses
- Mendel's Principles:
  - Dominance: one allele masks another
  - Segregation: genes become separated in gamete formation
  - Independent Assortment: Members of one gene pair segregate independently from other gene pairs during gamete formation

#### REFERENCES

- Benjamin A. Pierce. 2003. Genetics: A Conceptual Approach. W.H, Freeman and Company, New York,
- Griffith A.F. J., Miller, J.H, Suzuki, D.T., Lewontin, R.C., Geibart., W.M, 1993. An Introduction to Genetic analysis (7th edition). W.H Freeman & Company, New York.
- NY. Gardner E.J., Simmons, M.J., and Snustad, D.P. 1991. Principles of Genetics, (8th edition) John Wiley & Sons Inc., New York.
- Klung, W. and Cummings, M. R 2003. Concepts of Genetics. (7thedition) Pearson Education, Singapore.