School of Basic and Applied Science

Course Code: BSMB2003 Course Name: Microbial Physiology and Metabolism

Nitrogen Metabolism: BIOLOGICAL NITROGEN FIXATION

GALGOTIAS UNIVERSITY

Nitrogen Cycle

- Nitrogen (N₂) is the most abundant gas and an important constituent of biomolecules in living organisms.
- Nitrogen cycle is a vital biogeochemical cycle by which inert nitrogen is converted into various chemical compounds and circulated within the atmosphere and earth ecosystems.
- In a series of Chemical reactions, nitrogen from the atmosphere is fixed in compounds in soil or water and assimilated into proteins by plants and animals,
- Eventually N_2 is released to the soil and water through decomposition, and returned to the atmosphere through denitrification.

Nitrogen Fixation

- Most of the plants obtain nitrogen from soil in the form of nitrate or ammonium ion, but it is limited
- As dinitrogen (N₂) gas is very stable hence fixation of nitrogen is required
- The conversion of N₂ to ammonia (NH₃) is called Nitrogen Fixation
- First discovered by the Hermann Hellrigel and Martinus Beijerinck

Nitrogen Fixation is carried out by two ways

1. Abiotic Nitrogen fixation

- Fixation by Lightening: During lightning N₂ can be oxidized to Nitric Oxide NO₂ during lightening process.
- These oxides are carried to the ground by rain and deposited as HNO₂ or HNO₃

Nitrogen Fixation is carried out by two ways

2. Biological Nitrogen Fixation

The conversion of N_2 to NH_3 is called Biological Nitrogen Fixation. Two mechanisms of fixation:

- Non symbiotic nitrogen fixation: carried out by free living bacteria (*Azotobacter, Azospirillum*) and Cyanobacteria (blue green algae)
- ➤ Symbiotic Nitrogen fixation: Symbiotic relationship between plants and N₂-fixing bacteria

Symbiotic Nitrogen fixation

Symbiotic relationship between plants and N₂-fixing bacteria

- ➤ Microbe receives carbohydrates. Plant also provides suitable environment (anaerobic site) for N₂ fixation .
- ➤ In return plant receives fixed nitrogen N₂

1. Symbioses involving Cyanobacteria

Cyanobacteria associate with Nonvascular plants: Liverworts, hornworts, mosses

Azolla (aquatic Fern): with Anabaena symbiont

Other examples: Gunnera with Nostoc symbiont

2. Nodule-forming symbioses

- Nitrogen-fixing soil bacteria belonging to genus *Rhizobium* form nodule forming symbiotic association with leguminous plants.

 Examples: Rhizobium sp.with Legumes and Rhizobium sp. with Parasponia (Cannabaceae)
- > Other examples actinomycetes *Frankia* association with actinorhizal plants (woody angiosperms)

Rhizobium-legume symbioses

Host plant legumes

Bacterial symbiont

Alfalfa

Clover

Soybean

Beans

Pea

Rhizobium meliloti

Rhizobium trifolii

Bradyrhizobium japonicum

Rhizobium phaseoli

Rhizobium leguminosarum

Rhizobium – Parasponia association: Only non-legume plant known to form nodules with Rhizobium

Process of root nodulation in plant

Process of *Rhizobium* attachment, infection and root nodulation in plant

- 1. Free-living *Rhizobium* are attracted to root exudates; attach to root and multiply
- 2. Symbiotic genes are activated in both plant and bacteria
- 3. Flavenoids activate *nodD1* and start synthesis of Nod protein (lipooligosaccharide) which act as nodulation factor.
- 4. Nod factors induce root hair curling and initiate nodule development
- 5. Bacteria enter root, root cortex cells divide to form nodule.
- 6. Bacteria fix nitrogen which is transferred to plant cells in exchange for fixed carbon

In root nodules, bacteria perform nitrogen fixation by converting atmospheric nitrogen to ammonia by an enzyme called **nitrogenase**.

This enzyme is encoded by *nif* genes and is composed of two protein components:

- Component I (Fe protein) : dinitrogenase reductase
- Component II (MoFe protein) : dinitrogenase

$$N_2 + 8H^+ + 8e^- + 16ATP \rightarrow 2NH_3 + H_2 + 16ADP + 16Pi$$

Nitrogenase enzyme is very sensitive to O₂

Protective mechanisms:

- reduced oxygen tension (Azospirillum)
- > anaerobic heterotrophs (*Clostridium*, *Desulfovibrio*, others)
- anoyxygenic phototrophs (Chromatium, Rhodospirillum, others)
- protective structures root nodule for Rhizobium, heterocysts in cyanobacteria

Root nodules contain leghaemoglobin, a oxygen-scavenging molecules

Pea Plant

- · Leghaemoglobin regulate the supply of oxygen to the nodule tissues. It delivers O₂ to the otherwise anaerobic nodule.
- Leghaemoglobin is found only in the nodules (responsible pink color of nodules)
- Not produced by either the bacterium or the plant when grown alone.

References

- ➤ Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education
- Moat AG and Foster JW. (2002). Microbial Physiology. 4th edition. John Wiley & Sons
- ➤ Madigan MT, and Martinko JM (2014). Brock Biology of Microorganisms. 14th edition. PrenticeHall International Inc.
- ➤ Singh, Prachi & Rajput, Rahul & Ram, Ratul & Singh, Harikesh. (2019). A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp. from the Perspective of Secondary Metabolism. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Doi-10.1007/978-981-13-5862-3 14
- ➤ Biological Nitrogen Fixation. N. Rascio, N. La Rocca, in Reference Module in Earth Systems and Environmental Sciences, 2013
- ➤ Uheda, Eiji, and Kazuhiro Maejima. "Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla." *Journal of Plant Physiology* 166. (2009): 1705-1709. Web. 9 Apr. 2012.

Thank you

GALGOTIAS UNIVERSITY