School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

Electrodynamics

Topic Covered **Electrodynamics** Topic Covered

- \square Spacetime diagrams
- □ 4-vectors
- □ 4-vectors: Example
- \Box The magnitude of 4-velocity
- □ References

U operators Example

□ 4-vectors: Example

□ The magnitude of 4-velocity

□ References

□ References

□ N I V E R S I T Y

Name of the Faculty: Dr. ASHUTOSH KUMAR

Program Name: M.Sc. Physics

4-vectors

School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

The Lorentz Transforms were used for transforming the 4-displacement (i.e.

coordinates in 4D) in-between different inertial frames The Lorentz Transforms were used for transforming the 4-displacement (i.e. coordinates in 4D) in-between different inertial frames of reference.

Therefore, we can define a class of objects called '4-vectors' written as A^μ to have the property : 4-vectors follow the same transform as the coordinates transform. **School of Basic and Applied Sciences**

Course Code : MSCP6001 **Course Name: ELECTRODYNAMICS**

The Lorentz Transforms were used for transforming the 4-displacement (i.e.

coordinates in 4D) in-between different inertial f

one coordinate to another by means of Lorentz Transforms as we've found.

The most basic 4-vector is of course $x^{\mu} = (ct, x, y, z)$. It obviously transforms from
one coordinate to another by means of Lorentz Transforms as we've found.
A simple extension would be to define $U^{\alpha} \equiv \frac{dx^{\alpha}}{dt}$, whi A simple extension would be to define $U^{\alpha} \equiv \frac{dx^{\alpha}}{dz}$, which we call the '4-velocity' and **Name: ELECTRODYNAMICS**

orming the 4-displacement (i.e.

ial frames of reference.

led '4-vectors' written as A^{μ} to have

sform as the coordinates transform.
 (x, y, z) . It obviously transforms from

tz Transforms as $a^{\alpha} \equiv \frac{dU^{\alpha}}{dx}$, which we call '4-acceleration'. $\frac{10}{d\tau}$, which we call '4-acceleration'.

Both of them also transform in-between coordinates like the 4-displacement x^{μ} . This is because we have defined $d\tau$, the proper time to be a scalar quantity, i.e. it is a quantity that doesn't change with coodinates.

4-vectors: Example

School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

4-vectors: Example
 $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$ and $a^{\alpha} \equiv \frac{dU^{\alpha}}{d\tau}$, it would be useful to see what they look like in 4-form. Defining $U^\alpha \equiv \frac{dx^\alpha}{d\tau}$ and $a^\alpha \equiv \frac{dU^\alpha}{d\tau}$, it would be useful to see what they $\frac{d\sigma}{d\tau}$, it would be useful to see what they look like in 4-form.

Consider a moving spaceship with const. velocity Then, for people on it, they would consider themselves as stationary, meaning that their **School of Basic and Applied Sciences**

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS
 $4\text{-vectors: Example}$

Defining $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$ and $a^{\alpha} \equiv \frac{dU^{\alpha}}{d\tau}$, it would be useful to see what they look like in 4-for

displacement is only $\overline{dx^{\mu}} = (c\overline{d}\tau, 0,0,0)$

*the bar symbol is for moving frame
 $L = \begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Therefore, $\overline{U^{\alpha}} = (c, 0,0,0)$ and $\overline{a^{\alpha}} = (0,0,0,0)$
 Course Code : MSCP6001 Course Name: ELECTRODYNAMICS
 A-vectors: Example

Defining $U^{\alpha} \equiv \frac{dx^{\alpha}}{dt}$ and $a^{\alpha} \equiv \frac{du^{\alpha}}{dt}$, it would be useful to see what they look like in 4-form.

Consider a moving spaceshi **botage is: Little Example:**
 botage is: Container themselves as stationary, meaning that their

(0,0)

(0,0,0,0)
 botage is: $L = \begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(0,0,0,0)
 $\beta = A$ **Example 20** and the term and y to take the state of the polyon of the state of $L = \begin{pmatrix} \gamma$ = **TRODYNAMICS**

y look like in 4-form.

y, meaning that their
 $\gamma + \beta \gamma = 0$
 $\beta \gamma = \gamma = 0$

0 0 1 0

0 0 1 0

0 0 1 +βγ 0 0 **TRODYNAMICS**
y look like in 4-form.
y, meaning that their
 γ + $\beta \gamma$ 0 0
 $\beta \gamma$ γ 0 0
0 0 1 0
0 0 1 0 **TRODYNAMICS**
y look like in 4-form.
y, meaning that their
 γ + $\beta \gamma$ 0 0
 $\beta \gamma$ γ 0 0
0 0 1 0
0 0 1 0 *the bar symbol is for moving frame
 $L = \begin{pmatrix} r & r & r \\ +\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

If we transform $\overline{U^{\alpha}}$ to U^{α} by using $U^{\beta} = \Lambda^{\beta}{}_{\alpha} \overline{U^{\alpha}}$, then we find

 $U^{\alpha} = (\gamma c, \gamma v, 0.0)$ Which looks familiar... except with some extra γ s in there. Where are they from?

4-vectors: Example

School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

4-**vectors: Example**

Remember that $U^{\alpha} \equiv \frac{dx^{\alpha}}{dt^{\alpha}}$ but our classical velocity is $v = \frac{dx}{dt}$! So we need to find the re Remember that $U^\alpha \equiv \frac{dx^\alpha}{d\tau}$ but our classical velocity is $v = \frac{dx}{dt}$! So we need to find the **Basic and Applied Sciences**
 ourse Name: ELECTRODYNAMICS
 ectors: Example
 $\frac{dx^{\alpha}}{dx}$ but our classical velocity is $v = \frac{dx}{dt}$! So we need to find the

d d T. From time-dilation, that would be dt = $\gamma d\tau$

, v **School of Basic and Applied Sciences**
 Course Code : MSCP6001 Course Name: ELECTRODYNAMICS
 A-Vectors: Example

Remember that $U^{\alpha} = \frac{dx^{\alpha}}{dt}$ but our classical velocity is $v = \frac{dx}{dt}$! So we need to find the

r **ol of Basic and Applied Sciences**
 SECPEGODE CORE CONSTREMENT CONSTREMENT ACT CORE ASSEMBLE UT ALLOCATE: Example
 $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$ but our classical velocity is $v = \frac{dx}{dt}$! So we need to find the n dt and dr. Fr

Thus, $\frac{dx^{\alpha}}{dt} = U^{\alpha} \frac{d\tau}{dt} = (c, v, 0, 0)$ which is exactly th moving spaceship on the spacetime diagram.

School of Basic and Applied Sciences School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

The magnitude of 4-velocity

The magnitude of 4-velocity

Similar as in 3D case, the magnitude of 4-vectors can be found by $g_{\alpha\beta}U^\alpha U^\beta=-c^2$ \mathcal{S}
 $\beta = -c^2$

School of Basic and Applied Sciences
\n**Course Code : MSCP6001**
\n**Course Name: ELECTRODYNAMIC**
\n**The magnitude of 4-velocity**
\nSimilar as in 3D case, the magnitude of 4-vectors can be found by
$$
g_{\alpha\beta}U^{\alpha}U
$$

\n
$$
g_{\alpha\beta} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$
is the metric in flat spacetime

$$
g_{\alpha\beta} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$
 is the metric in flat spacetime
\n
\nName of the Faculty: Dr. ASHUTOSH KUMAR
\nProgram Name: M.Sc. Physics

School of Basic and Applied Sciences School of Basic and Applied Sciences

Course Code : MSCP6001 Course Name: ELECTRODYNAMICS

References

References

- D.J. Griffiths, Introduction to Electrodynamics,4th ed.,Pearson, USA, 2013.
-
-
-
- **School of Basic and Applied Sciences**
 Course Code : MSCP6001 Course Name: ELECTRODYNAMICS
 References

 D.J. Griffiths, Introduction to Electrodynamics, 4th ed.,Pearson, USA, 2013.

 J.D. Jackson, Classical Elect **• School of Basic and Applied Sciences**

• D.J. Griffiths, Introduction to Electrodynamics, 4th ed., Pearson, USA, 2013.

• J.D. Jackson, Classical Electrodynamics, 3rd ed., New Age, New Delhi, 2009

• R.K. Patharia ,Theo Saunders college Publishing House, 1995.

Name of the Faculty: Dr. ASHUTOSH KUMAR

Name of the Faculty: Dr. ASHUTOSH KUMAR

Program Name: M.Sc. Physics

Program Name: M.Sc. Physics

Program Name: M.Sc. Physics