Course Code : MSCP6001

**Course Name: ELECTRODYNAMICS** 

## Electrodynamics Topic Covered

□ Spacetime diagrams

□ 4-vectors

□ 4-vectors: Example

□ The magnitude of 4-velocity

□ References

## GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR



Name of the Faculty: Dr. ASHUTOSH KUMAR

**Course Code : MSCP6001** 

#### **Course Name: ELECTRODYNAMICS**

#### **4-vectors**

The Lorentz Transforms were used for transforming the 4-displacement (i.e. coordinates in 4D) in-between different inertial frames of reference.

Therefore, we can define a class of objects called '4-vectors' written as  $A^{\mu}$  to have the property : 4-vectors follow the same transform as the coordinates transform.

The most basic 4-vector is of course  $x^{\mu} = (ct, x, y, z)$ . It obviously transforms from one coordinate to another by means of Lorentz Transforms as we've found.

A simple extension would be to define  $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$ , which we call the '4-velocity' and  $a^{\alpha} \equiv \frac{dU^{\alpha}}{d\tau}$ , which we call '4-acceleration'.

Both of them also transform in-between coordinates like the 4-displacement  $x^{\mu}$ . This is because we have defined  $d\tau$ , the proper time to be a scalar quantity, i.e. it is a quantity that doesn't change with coordinates.

Name of the Faculty: Dr. ASHUTOSH KUMAR

#### Course Code : MSCP6001

**Course Name: ELECTRODYNAMICS** 

#### **4-vectors: Example**

Defining  $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$  and  $a^{\alpha} \equiv \frac{dU^{\alpha}}{d\tau}$ , it would be useful to see what they look like in 4-form.

Consider a moving spaceship with const. velocity Then, for people on it, they would consider themselves as stationary, meaning that their displacement is only  $\overline{dx^{\mu}} = (cd\tau, 0, 0, 0)$ 

\*the bar symbol is for moving frame 
$$L = \begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Therefore,  $\overline{U^{\alpha}} = (c, 0, 0, 0)$  and  $\overline{a^{\alpha}} = (0, 0, 0, 0)$ 

If we transform  $\overline{U^{\alpha}}$  to  $U^{\alpha}$  by using  $U^{\beta} = \Lambda^{\beta}{}_{\alpha}\overline{U^{\alpha}}$ , then we find

 $U^{\alpha} = (\gamma c, \gamma v, 0, 0)$ Which looks familiar... except with some extra  $\gamma$  s in there. Where are they from?

Name of the Faculty: Dr. ASHUTOSH KUMAR

#### Course Code : MSCP6001

#### **Course Name: ELECTRODYNAMICS**

#### **4-vectors: Example**

Remember that  $U^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau}$  but our classical velocity is  $v = \frac{dx}{dt}$ ! So we need to find the relation between dt and dt. From time-dilation, that would be dt =  $\gamma d\tau$ 

Thus,  $\frac{dx^{\alpha}}{dt} = U^{\alpha} \frac{d\tau}{dt} = (c, v, 0, 0)$  which is exactly the trajectory that we drew for a moving spaceship on the spacetime diagram.



Name of the Faculty: Dr. ASHUTOSH KUMAR

**Course Code : MSCP6001** 

**Course Name: ELECTRODYNAMICS** 

#### The magnitude of 4-velocity

Similar as in 3D case, the magnitude of 4-vectors can be found by  $g_{\alpha\beta}U^{\alpha}U^{\beta} = -c^2$ 

$$g_{\alpha\beta} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 is the metric in flat spacetime

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code : MSCP6001

**Course Name: ELECTRODYNAMICS** 

#### References

- D.J. Griffiths, Introduction to Electrodynamics,4th ed.,Pearson, USA, 2013.
- J.D. Jackson, Classical Electrodynamics, 3rd ed., New Age, New Delhi, 2009
- R.K. Patharia ,Theory of Relativity, 2nd ed, Hindustan Pub., Delhi, 1974.
- I.R. Kenyon, General Relativity, Oxford Univ. Press, 2001.
- J.B. Marion and M.A. Heald, Classical Electromagnetic Radiation, 3rd ed., Saunders college Publishing House, 1995.

# GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR