School of Basic and Applied Sciences

Course Code: BCHY2008 Course Name: Analytical Chemistry 1

Transmission Electron Microscopy

Instrumentation

GALGOTIAS UNIVERSITY

Introduction

- Transmission electron microscope is a microcopy technique in which a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through.
- An image is formed from the interaction of the electrons transmitted through the specimen, the image is magnified and focused onto an imaging device, such as a fluorescent screen, on a layer of photographic film, or to be detected by a sensor.

Components

- Electron Source: produces high energy, large current, high coherence electron beam necessary for generating diffraction patterns and high spatial resolution images
- Condenser lenses: control spot sizes and illumination area on sample.
- Objective lens: images sample and is strongest lens in the system.
- Intermediate and projector lenses: changes modes from diffraction to imaging.
- Detectors: various different configurations designed to collect secondary signals produced by the high-energy electron beam.

Principle

- TEM is complex and sophisticated but the basic principle behind its operation can be readily understood.
- A heated tungsten filament in the electron gun generates a beam of electrons that is then focused on the specimen by the condenser.
- Since electrons cannot pass through a glass lens, magnetic lenses are used to focus the beam.
- The column containing the lenses and specimen must be under high vaccum to obtain a clear image because electrons are deflicted by collisions with air molecules.
- The specimen scatters electron passing through it, and the beam is focused by magnetic lenses to form an enlarged, visible image of the specimen on a fluorescent screen.
- A denser region in the specimen scatters more electron and therefore appears darker in the image.
- In contrast, electron-transparent regions are brighter.
- The screen can also be moved aside and the image captured on photographic film as a permanent record.

Instrumentation

Advantages

- TEMs offer very powerful magnification and resolution.
- TEMs have a wide range of applications and can be utilized in a variety of different scientific, educational and industrial fields.
- TEMs provide information on element and compound structure.
- Images are high qualified and detailed.

Disadvantages

- TEMs are large and very expensive.
- Laborious sample preparation.
- Operation and analysis require special training.
- Samples are limited to those that are electron transparent.
- Images are black and white.

GALGOTIAS UNIVERSITY

Ray diagram

References

- 1. <u>Ayache, Beaunier, Boumendil, Ehret, Laub</u> Sample Preparation Handbook for Transmission Electron Microscopy, Volumes 1 and 2
- 2. http://www.biosciencenotes.com/author/anupbiochemistgmail-com/
- 3. <u>Newbury, Echlin and Joy</u> Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Sciences, and Geologists, 2nd edition
- 4. <u>Goodhew, Humphreys, Beanland</u> Electron Microscopy and Analysis
- 5. <u>Hajibagheri</u> Electron Microscopy Methods and Protocols
- 6. <u>Haugstad</u> Atomic Force Microscopy: Understanding the Basic Modes and Advanced Applications
- 7. <u>Hunter</u> Practical Electron Microscopy, A Beginner's Illustrated Guide, 2nd edition
- 8. Paddock, Stephen W. Confocal Microscopy Methods and Protocols
- 9. Prutton, El Gomati Scanning Auger Electron Microscopy
- 10. Ruzin Plant Microtechnique and Microscopy Scientific Notebook, Prod. No. 70018
- 11. <u>Stokes</u> Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) Microscopy: A Textbook for Materials Sciences